
Geometry: 
The Big Ideas and Essential 
Understandings
Geometry, as an integral area of mathematics, often loses its way in 
the middle school grades. An increasing emphasis on early algebra, 
as well as on working with variables in deriving general formulas, 
can make what is essentially geometric about a situation fade into 
the background or even disappear. For this reason, we have opted to 
start this chapter with an assertion about the centrality of geometry, 
both as an area of study in its own right and as a means of provid-
ing insight and understanding for other areas of mathematics. We 
then turn to the importance of imagery, the nature of geometric 
figures, and the influence of tools and geometric activities.

Four big ideas and several smaller, more specific essential un-
derstandings provide the structure of this chapter. The big ideas and 
all the associated understandings are identified as a group below to 
give you a quick overview and for your convenience in referring 
back to them later. Read through them now, but do not think that 
you must absorb them fully at this point. The chapter will discuss 
each one in turn in detail. 

Big Idea 1. Behind every measurement formula lies a geometric 
result.

�Essential Understanding 1a. Decomposing and rearranging 
provide a geometric way of both seeing that a measurement 
formula is the right one and seeing why it is the right one. 

�Essential Understanding 1b. In addition to decomposing and 
rearranging, shearing provides another geometric way of both 
seeing that a measurement formula is the right one and seeing 
why it is the right one.
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8	 Geometry

Big Idea 2. Geometric thinking involves developing, attending 
to, and learning how to work with imagery.

�Essential Understanding 2a. Geometric images provide the  
content in relation to which properties can be noticed,  
definitions can be made, and invariances can be discerned.

�Essential Understanding 2b. Symmetry provides a powerful  
way of working geometrically.

�Essential Understanding 2c. Geometric awareness develops 
through practice in visualizing, diagramming, and constructing.

Big Idea 3. A geometric object is a mental object that, when 
constructed, carries with it traces of the tool or tools by which it 
was constructed.

�Essential Understanding 3a. Tools provide new sources of  
imagery as well as specific ways of thinking about geometric 
objects and processes.

�Essential Understanding 3b. Geometric thinking turns tools 
into objects, and in geometry the process of turning an action 
undertaken with a tool into an object happens over and over 
again. 

Big Idea 4. Classifying, naming, defining, posing, conjecturing, 
and justifying are codependent activities in geometric investigation.

�Essential Understanding 4a. Naming is not just about  
nomenclature: it draws attention to properties and objects  
of geometric interest.

�Essential Understanding 4b. Definition can both generate and 
reflect structure: definitions are often dependent on a specific 
classification.

�Essential Understanding 4c. Conjectures can emerge out of a 
problem-posing process that generates claims that need to be 
justified.
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The Tangled Relationship between 
Measurement Formulas and Geometry: 
Big Idea 1
Big Idea 1. Behind every measurement formula lies a geometric 
result.

Measurement (and the use of formulas to produce numerical 
answers to measurement tasks) can seem to be the primary focus 
of geometry in the middle grades. For some people, however—
including the authors on most days—most measurement lies outside 
geometry—despite the “-metry” in the word geometry! 

The whole is the sum of its parts
Essential Understanding 1a. Decomposing and rearranging provide 
a geometric way of both seeing that a measurement formula is the 
right one and seeing why it is the right one. 

When we are comparing the areas of different shapes, our first im-
pulse is often to think numerically: do the measurements, in some 
square units of measure, yield the same number? Measurements 
may spring to mind quickly, because we have powerful formulas for 
determining them, such as the one for the area of a triangle. 

In the ancient Greek approach to such a question, numbers 
would be completely absent. The area of a triangle, say, would be 
compared with the area of another geometric shape. But which 
shape? That would depend on the context. One very powerful 
means through which such a comparison might occur involves  
decomposition and rearrangement. Reflect 1.1 involves rearrange-
ment with tangram pieces.

Reflect 1.1

Rearrange the seven pieces of a tangram into different designs. Start with a 
square. Then make other shapes. Convince yourself that your shapes all have the 
same area.

The shapes in figure 1.1 look quite different, and your first im-
pression might be that some of them cannot possibly have the same 
area. But each one is composed of the exact same seven tangram 
pieces, and this means that they must be equal in area.  A key fact 
about area is that it is additive: the area of the composition of two 
figures is the sum of their areas. This assures us that each one of the 
shapes in figure 1.1 has to have the same area as every other one. 
Thinking about area in this way focuses attention on comparing 
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10	 Geometry

areas through decomposition and rearrangement, rather than by cal-
culating numerical values. Reflect 1.2 invites you to compare areas 
of triangles and quadrilaterals.

Fig 1.1. Shapes made with tangram pieces

Reflect 1.2

Draw a triangle. Now draw a rectangle that has the same area as your triangle. 
Can you draw a different quadrilateral (a non-rectangular one, perhaps) that 
also has the same area as the starting triangle? What about a polygon with 
more than four sides? 

We could do the very same kind of work with triangles as with 
the tangram shapes, although slightly less playfully, to say some-
thing about their areas. In figure 1.2, an arbitrary triangle T is first 
decomposed into two parts N and M by the dotted line representing 
an altitude of the triangle. A second dotted line that is parallel to 
the base and passes through the midpoint of the altitude leads to a 
further decomposition of the original triangle into four parts, which 
we have labeled A, B, C, and D. By rearranging C and D (by rotating 
them 180 degrees about the points of intersection of the halfway 
line and the respective sides of the triangle), we transform triangle 
T into rectangle R. The triangle in this figure is acute. Any triangle, 
whether acute or obtuse, always has a longest side (though in the 
case of an isosceles or equilateral triangle this side is not unique). 
If we consider a rotation of an obtuse triangle—a change that does 
not alter area—we can think of that obtuse triangle as oriented as in 
figure 1.2. 

T

(a)

N
M

(b)

C D

B
A

(c)

C

D

B
A

(d) (e)

R

Fig. 1.2. Decomposing and rearranging a triangle into a rectangle
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The diagrams in figure 1.2 tell a compelling story. But we can 
make the story even better by explaining why shape R is a rectan-
gle. Figure 1.3a zooms in on just the left side of the configuration 
in figure 1.2c. Because the line passing through the midpoint of the 
altitude is parallel to the base, it cuts the altitude at right angles. 
The right angle marked in figure 1.3a is at one “corner” of R. How 
do we know that the other corner of R (the lower left vertex in fig-
ure 1.3b) is also a right angle? Because we are doing a half-turn, 
we know that the half-altitude of C (indicated by the double hash 
marks on one leg of triangle C ), which was perpendicular to the 
base of T to start with, will still be perpendicular to the base of T, 
and parallel to the original altitude. A similar argument works for 
triangle D in relation to B.

(a)

A

C

A
C

(b)

Fig. 1.3. Rotating C to create the left edge of the rectangle R

In this way, we can say that the area of T is the same as the 
area of R, so we have found the area of a triangle in terms of the 
area of an equivalent rectangle. We note that the length of the rect-
angle is the same as the base of the original triangle and that its 
width is exactly one-half of the height of the triangle. In this man-
ner, we can compare the area of the triangle with the area of a  
rectangle, leading to the well-known formula for the area of a  
triangle: A = ½bh. 

If T is an obtuse triangle, we can still undertake an identical 
process, provided that we choose the longest side as the base of the 
altitude (see the alternative shown in fig. 1.4). However, we could 
also create a comparable dissection argument for this obtuse tri-
angle by choosing a different altitude from the one shown in figure 
1.4. We would still create the rectangle of base times half-height. 
The paired triangles in figure 1.5d and 1.5e are the same in that 
one is a rotation through one-half the angle of rotation of the other 
(this claim still needs a formal proof), but the sequence of decom-
position and rearrangement in figure 1.5 explains why the same 
formula holds even for an obtuse angle triangle (though notice that 
the base and the height are different here—why does this not seem 
to matter in the formula?).

The word height 
sometimes means the 
same thing as  
altitude and some-
times is usefully dis-
tinguished, referring 
to the measure of the 
altitude. Furthermore, 
height is sometimes 
interpreted as vertical 
height, whereas an 
altitude can lie in 
any direction but is 
always perpendicular 
to a corresponding 
base.
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Fig. 1.5. The case of the decomposition of an obtuse-angled triangle, 
showing area is base times half-height

Through a different process of decomposition and rearrange-
ment, we can also decompose the triangle T in figure 1.2 into two 
different triangles, N and M (see fig. 1.6). But this time, we draw the 
dotted line parallel to the base and passing through the third vertex, 
so that it intersects the two lines perpendicular to the base and passes 
through its endpoints to produce a rectangle containing copies of 
triangles N and M. Consequently, this rectangle will have twice the 
area of T, and this means that it can be split into two congruent rect-
angles, each having the same area as T. This immediately shows that 
the area of T is one-half of the rectangle’s base times its height.

T

(a) (b) (c) (d)  (e)

N N

N
M M

M

R
R

R

Fig. 1.6. Decomposing and rearranging a triangle into a different  
rectangle

Further, if the split occurs along the line perpendicular to the 
base and through the third vertex of T, then we get two copies of 
rectangle R, each of whose length is equal to half the base and each 
of whose width is equal to the height of the triangle, leading to the 
formula A = (½b )h. As was the case with the previous approach 
to decomposition, an obtuse triangle can be handled by taking the 

T T

Fig. 1.4. Picking the height that corresponds to the longest side of the 
triangle

(a) (b) (c)

(d) (e)
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longest side to be the base. We offer you the challenge of creating a 
set of diagrams showing this decomposition approach for an obtuse 
triangle, in the manner of figure 1.6.  

We chose to compare triangle T with rectangles in both cases, 
and for a good reason. Using our principle of decomposition and 
rearrangement, we might also have chosen to compare T with a 
variety of other shapes, as shown in figure 1.7. The first one (fig. 
1.7a) shows a different way of rearranging C and D from the one 
shown in figure 1.2c, producing a heptagon instead of a rectangle. 
Figure 1.7b shows a division of the large rectangle (composed of 
two copies of R) into two right triangles—thus showing the area of 
T by comparing it with another triangle. Figures 1.7c and 1.7d show 
alternate ways of halving the rectangle—into trapezoids and hexa-
gons, respectively. The fact that all these shaded shapes have the 
same area, which is the area of T—as well as the area of the rectan-
gle in figure 1.2e and the rectangle in figure 1.6e—is a consequence 
of the decomposing and rearranging.

A
B

DC

(a) (b) (c) (d)

Fig. 1.7. Decomposing and rearranging a triangle into other shapes

Let’s call the rectangle in figure 1.2e R1 and the rectangle in 
figure 1.6e R2. In comparing T with both R1 and R2 by using the 
triangle area formula, we notice the rather surprising fact that al-
though the two rectangles R1 and R2 have distinct shapes, they have 
the same area (see fig. 1.8). This, of course, is something that the 
formula itself asserts, since algebraically, (½b)h = b(½h), where b 
and h are now seen as numbers—length measures of sides. A third 
algebraically equivalent form is ½(bh). This formula has a geometric 
interpretation as one-half the area of a rectangle, as suggested by 
figures 1.7b, 1.7c, and 1.7d. However, bear in mind that the algebra-
ic results arose from quite different ways of seeing the decomposi-
tion or rearrangement of a triangle geometrically. Algebra frequent-
ly masks distinctions that are clear and distinct in the geometry. 

T R1
R2

Fig. 1.8. Triangle T and rectangles R1 and R2 have the same area

The symbol  is 
sometimes used to 
indicate that two 
geometric figures 
are “equivalent by 
dissection,” which 
means, in particular, 
that they have the 
same area.
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This is not the only sense in which the algebra asserts a same-
ness that the geometry does not so obviously show. In figure 1.2, 
one side of triangle T was chosen as the base, but any of the three 
sides could have played that role, with one of three different, cor-
responding segments then being called the height. Working with 
this first approach to decomposition and rearrangement, we obtain 
rectangles Q1, R1, and S1, all different from one another but each 
having the same area as triangle T (see fig. 1.9a). Working with our 
second approach, we obtain the triangles R2, Q2, and S2 (see fig. 
1.9b). The triangle area formula is powerful because it works for 
any of the pairs of bases and corresponding heights that we choose 
and because it asserts that these six seemingly different rectangles 
are all equal in area to one another—and to T. This result is why we 
can get away with being casual about the form of the area formula 
for a triangle, asserting simply that the area is one-half base times 
height.

Q1

S1

R1

Q2
S2

R2

(a) (b)

Fig. 1.9. Decomposing and rearranging a triangle into rectangles with 
different bases and corresponding heights

Figure 1.9 shows six rectangles with the same area as one an-
other and as triangle T. Reflect 1.3 asks you to consider parallelo-
grams that have exactly twice the area of a triangle.

Reflect 1.3

Given a triangle T, how many different parallelograms can you find that are   
exactly twice the area of T?

In textbooks, the area of a triangle is often compared with the 
area of a parallelogram, since any parallelogram can be divided into 
two congruent triangles just by drawing in one of its diagonals. 
Equivalently, any triangle can be rotated around the midpoint of one 
of its sides to produce another triangle that can be composed with 
the original triangle to form a parallelogram. So the area of any 
triangle can easily be compared with the area of a parallelogram. 
Dwelling on this idea by exploring the different ways in which one 
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can produce a parallelogram out of a triangle helps to emphasize the 
idea of area as a comparison between two shapes rather than as a 
number. A premature shift to the algebraic formula can get in  
the way of developing the geometric insights that underlie any  
measurement formula. 

In the Expectations for grades 6–8 of NCTM’s Geometry 
Standard (NCTM 2000), we find, “All students should … create and 
critique inductive and deductive arguments concerning geomet-
ric ideas and relationships such as congruence, similarity, and the 
Pythagorean relationship” (p. 232). As our final example of de-
composing and rearranging in relation to Essential Understanding 
1a, we look at the most well-known theorem of school mathemat-
ics—namely, the Pythagorean theorem. Here, and again at the end 
of the next section in connection with Essential Understanding 1b, 
we explore ways of seeing why this theorem is true. Our exploration 
begins with Reflect 1.4.

Reflect 1.4

Below are two slightly different ways in which some people state the            
Pythagorean theorem:

1.  �For any right triangle in the plane, the square on the hypotenuse is always 
equal to the sum of the squares on the other two sides. 

2.  �For any right triangle in the plane, the square of the hypotenuse is always 
equal to the sum of the squares of the other two sides. 

What difference do you notice and what mathematical significance, if any, does 
this difference have?

As you might expect from our inclusion of the Pythagorean 
theorem in our discussion of Big Idea 1, we are interested in this 
theorem as a theorem of geometry, as opposed to its common alge-
braic interpretation. Further, here we are interested in attempting to 
see why the theorem is true, by using decomposition and rearrange-
ment. The difference between the two 
statements in Reflect 1.4 is the choice of 
preposition (on versus of) with regard to 
the relationship between the square and 
the sides of the triangle. In talking about 
the square on a side of the triangle, we 
emphasize that a geometric object is 
placed in relation to another geometric 
object, as shown in figure 1.10.

The square of the hypotenuse refers 
to the numerical operation of squar-
ing a number (representing the length 

Fig. 1.10. The shaded 
square is “the square on 

the hypotenuse.”

Essential 
Understanding 1b 
In addition to decom-
posing and rearrang-
ing, shearing provides 
another geometric 
way of both seeing 
that a measurement 
formula is the right 
one and seeing why it 
is the right one.

Big Idea 1

Behind every  
measurement  
formula lies a  
geometric result.
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Fig. 1.11. A sequence of three constructions involved in a dissection proof  
of the Pythagorean theorem

of the hypotenuse). Choosing this preposition is enough by itself 
to put us into an arithmetic or algebraic frame of mind, in which 
the Pythagorean relationship is conceived as an equality of num-
bers rather than as a sameness of areas. If we are thinking about 
sameness of areas, decomposing and rearranging the square on the 
hypotenuse so that it fits exactly into the other two squares is a 
plausible avenue for an informal (leading to a formal) proof. The 
question then becomes, “How should the square on the hypotenuse 
be decomposed? If we were going to cut the square into pieces, how 
do we know where to cut?”

One broad heuristic is to overlap the relevant interior regions as 
much as possible and then concentrate on what is left. Figure 1.11 
shows first one, then a second, reflection of squares across a side of 
the original right triangle (transforming ACDE to ACD´E´ and,  
subsequently, BCGF to BCG´F´). The third construction involves 
dropping a perpendicular from D´ onto CH.

E

E'

G

G

H

H

H

F

F

A

A

A

B

B

B

D

D'

D'

F'

G'
E'

C

C

C

I

I

I

Figure 1.12 shows how the five polygons into which the square 
on the hypotenuse has been cut in figure 1.11 can then be rearranged 
to fit exactly onto the two squares on the other sides of the right  
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triangle. This proof is still informal, in the sense that we have not yet 
shown the exactness with which these pieces fit together, nor do we, 
for instance, yet know for certain that one vertex of the square on 
the hypotenuse (point E in fig. 1.11) will always fall precisely onto 
the side of one of the other squares (E´). However, other than this 
uncertainty, the precise points at which the cuts are to be made are 
determined by the constructions.

A
B

C

D

E

A
B

C

D

E

Fig. 1.12. Rearranging the pieces of the square on the hypotenuse to 
fit into the two squares on the sides of the right triangle

Further empirical as well as heuristic evidence can be found 
by constructing these figures in a dynamic geometry environment 
(DGE), such as The Geometer’s Sketchpad or Cabri Geometry, and, 
for example, dragging the vertices of the original right triangle to 
see how the configuration and its decomposition hold together. In 
particular, looking at special cases, as when the right triangle is 
isosceles or when one leg is very small, can help provide a 
continuous sense of cases.

In our discussion of Essential Understanding 1a, we have 
focused on area formulas relating to triangles, but similar points 
underlying measurement formulas hold for all such results taught 
in school geometry, both in the plane and in three dimensions. For 
three-dimensional shapes, decomposing and rearranging solids can 
accomplish the work of making the formulas geometrically mean-
ingful, though this can prove much more challenging. 

To start to see the volume of a square-based pyramid, for in-
stance, one can begin with a simple decomposition of a cube into 
three identical and specific square-based pyramids, as shown in 
figure 1.13. From this decomposition, one can see that the volume 
of each pyramid is exactly one-third of the volume of the original 
cube. For this decomposition, we have had to use a very particular 
type of square-based pyramid: it has the same height as the sides of 
the square base and it is right-angled at one corner. Both these at-
tributes are required so that parts of these pyramids match the out-
side faces and corners of the starting cube. Consequently, we have 
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shown this relationship only for this very specific type of pyramid. 
In the discussion that follows of Essential Understanding 1b, we will 
work toward showing that the same volume formula holds for a 
general pyramid.

Fig. 1.13. Decomposition of a cube into three identical square-based 
pyramids

Continuous decomposition and infinite  
rearrangement
Essential Understanding 1b. In addition to decomposing and re- 
arranging, shearing provides another geometric way of both seeing 
that a measurement formula is the right one and seeing why it is 
the right one.

Shearing is a geometric transformation that makes a continuous 
and systematic change to a figure in such a way that it does not 
alter the figure’s area. With Reflect 1.5, we begin our exploration 
of shearing by focusing on how we might know that two triangles 
have the same area.

Reflect 1.5

Draw five different triangles that have the same area. How do you know that 
their areas are the same?

Working from the formula, you might have generated pairs of 
numbers that have the same product and then used these numbers 
to build the sides of different triangles. Or perhaps you worked more 
geometrically by starting with rectangles that have the same area 


