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Research in mathematics education involves phenomena, constructs, and instru-
ments. The phenomena concern the teaching, learning, and doing of mathemat-
ics, each of which has multiple aspects. The constructs touch on selected aspects 
of those phenomena. The instruments are designed to measure attributes of the 
constructs. Mathematics educators concern themselves with making sure that 
the constructs reflect the phenomena, and psychometricians concern themselves 
with making sure that the instruments reflect the constructs. The preceding 
chapters in the monograph have brought mathematics educators and psychome-
tricians together to consider how each field might profit from the other. In this 
commentary, I respond to those chapters from the perspective of a mathematics 
educator.

From a distance, proficiency in mathematics can look like a one-dimensional 
phenomenon, something that people possess to a greater or lesser degree. For 
example, in a study from Harvard’s Program on Education Policy and Governance 
and the journal Education Next (Hanushek, Peterson, & Woessmann, 2010), 
which found that the United States ranked behind most of its industrialized 
competitors in mathematics performance, researchers compared the perfor-
mance of high achievers not only across countries but also across the 50 U.S. 
states and 10 urban districts. Most states and cities ranked closer to developing 
countries than to developed countries. To achieve the rankings, the research-
ers compared the percentages of U.S. students in the states and districts who  
performed at an advanced level in mathematics on the 2005 National Assessment 
of Educational Progress (NAEP) with estimated percentages of students in other 
countries who would have reached that same level had they taken the NAEP 2005 
mathematics assessment. The rankings required that NAEP and Program for 
International Student Assessment (PISA) mathematics scores use the same scale, 
so the researchers “assumed that both NAEP and PISA tests randomly select 
questions from a common universe of mathematics knowledge” (Hanushek 
et al., 2010, p. 10). The researchers argued that the high between-country  
correlation (.93) reported in a previous study between PISA mathematics scores 
and mathematics scores from the Trends in International Mathematics and 
Science Study (TIMSS) makes the two measures comparable. (Researchers had 
already linked TIMSS and NAEP mathematics in several studies—see Kilpatrick, 
2011a, for more information.)

Chapter 9



176 Measured Mathematics

THE HAZARDS OF UNIDIMENSIONALITY

From a psychometric standpoint, rank ordering countries, states, or districts 
according to the percentage of test questions answered correctly is inappropriate 
when, as for NAEP, TIMSS, and PISA mathematics, the standard errors are 
greater than the differences in percentages (Stoneberg, 2005). Apparently,  
problems of scaling model misfit and differential item functioning also confound 
any ranking of countries on PISA scores (Kreiner & Christensen, 2014).

From a mathematics education standpoint, it makes no sense to treat 
NAEP and PISA as measuring the same construct. The NAEP eighth-grade  
mathematics test measures the mathematics proficiency deemed to be needed 
by U.S. students at that grade, whereas the designers did not intend for PISA 
mathematics to link to the school mathematics curriculum in any country. It  
measures the ability of 15-year-olds to apply the mathematics that they have 
learned to realistic situations. The study conflates “the results of two different 
tests that measure different domains of mathematics proficiency” (Kilpatrick, 
2011a, p. 2).

High between-country correlations do not at all imply that the same aspects 
of learning are being measured; instead, the measures are quite likely to be 
linked to similar learning assets (e.g., countries’ wealth, prior educational 
level, and investment in schools). If high correlations were all it took to ensure  
comparability, then the PISA scores for mathematical literacy, scientific liter-
acy, and reading literacy would all be comparable because their correlations at 
the country level in PISA are above .90. Would anyone want to claim that the 
PISA tests of scientific and reading literacy could therefore be used as measures 
of mathematical literacy? (Kilpatrick, 2011b, p. 1)

The Hanushek, Peterson, and Woessmann (2010) study is an extreme example 
of assuming that because a test is labeled mathematics, it must be essentially equiv-
alent to any other test so labeled. Unfortunately, educational researchers working 
outside mathematics education all too commonly make such assumptions. They 
assume that because mathematics is a single domain, it is unidimensional.

As Orrill and Cohen (2016) point out in Chapter 7, the conceptualization of 
the domain to be assessed shapes the assessment. For example, proficiency in 
mathematics may look more or less unidimensional depending on one’s purpose 
in measuring it. Orrill and Cohen observe that a certification assessment  
instrument such as the Praxis II for candidates who want to teach middle school 
mathematics simply provides a scaled score along a single dimension that allows 
each certification agency to set a cutoff. As long as the content of the assess-
ment is representative of the mathematics taught in the middle grades, the 
dimensionality of the instrument is not much of an issue. Educators treat it as  
unidimensional for the purpose of selecting qualified candidates. In Chapter 5, 
Templin, Bradshaw, and Paek (2016) give a similar example of an end-of-course 
test for eighth-grade mathematics that would provide a single score “as a measure 
of a respondent’s overall mathematical ability” (p. 100). The test would comprise 
items meant to be a representative sample of content from the course. The multiple 
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aspects of the course would, for the purpose of that assessment, be considered a 
single broad unidimensional construct. As Templin et al. observe, much depends 
on the conceptualization and operationalization of the constructs to be measured.

DIMENSIONALITY

In their discussion of extensions of item response theory (IRT) methods and 
models in Chapter 2, Bolt, Kim, Blanton, and Knuth (2016) note that “the  
concept of unidimensionality is statistical rather than substantive” (p. 34). In 
other words, one may simultaneously view proficiency in teaching, learning, 
or doing mathematics as having multiple components and nonetheless treat “it  
statistically as a unidimensional trait” (p. 34). Mathematics educators prefer to 
view proficiency in mathematics as a multidimensional phenomenon whether or 
not they treat it that way in a psychometric context.

In the 1960s, I participated in the National Longitudinal Study of Mathematical 
Abilities (NLSMA; see Begle & Wilson, 1970, and Howson, Keitel, & Kilpatrick, 
1981, pp. 189–195, for details). The NLSMA had many weaknesses, but one thing 
it did right was not only to use abilities in the plural but also to borrow, construct, 
and administer a great many measures of mathematical proficiency. The director, 
E. G. Begle, and the NLSMA advisory board might have originally thought that 
they could determine how well students using different textbooks were learning 
mathematics by either using existing tests or by easily creating new ones. They 
quickly realized, however, that they would have to create and try out tests in 
the batteries used in the NLSMA in an extensive instrument-development effort. 
Those tests allowed comparisons on multiple dimensions among groups of  
students using different textbooks.

In the section of Chapter 8 that deals with “Analysis–Construct Discrepancies” 
(p. 163), Jacobson, Remillard, Hoover, and Aaron (2016) cite examples in 
which the dimensionality of the knowledge construct, as proposed by previous  
empirical and theoretical work, was not borne out when psychometricians applied 
standard psychometric techniques to assessment data. They observe that the  
process of developing and testing the assessment instruments led the researchers 
to revise how they had conceptualized the domain. One could just as plausibly 
argue, however, that the assessment instruments—and not just the conceptual-
izations—also needed revision. In fact, in the two examples that Jacobson et al. 
give, one can see the revision process going both ways, with the reformulation of 
constructs and the writing of new assessment items.

In Chapter 1, Izsák and Templin (2016) point out that from a psychometric 
point of view, unidimensional models of mathematical topics are “much more 
common” (p. 8) than multidimensional models. I would argue that every 
topic in school mathematics is, as they indicate some significant topics are,  
“intricate and multifaceted” (p. 11) and therefore ought to have a multidimen-
sional model if possible. One problem seems to be not that such models do not 
exist but rather that if the researchers model the dimensions as continuous  
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variables, reliable measurement of each dimension would demand an im-  
practical number of assessment items. Izsák and Templin also point out that 
using a unidimensional model of growth in understanding a specific mathemat-
ical topic might be misleading. They suggest that models based on categorical 
latent variables and models based on a combination of continuous and categorical 
variables might help researchers in mathematics education move beyond the uni-
dimensionality issue.

In Chapter 6, Kersting, Stevenson, and Chen (2016) consider dimensionality 
in the context of instrument design and development. They deal with the  
unidimensionality issue, in part, by introducing the notion of essential  
unidimensionality—given that “real assessment data are almost never truly 
unidimensional” (p. 121). Assessment data are essentially unidimensional if a 
bifactor analysis reveals one predominant factor in the data together with weak 
orthogonal group factors. Kersting et al. observe that multidimensionality can 
arise among assessment items (when different items measure different latent 
traits) or within items (when individual items measure multiple latent traits). 
They point out that “dimensionality is largely a design choice” (p. 124), which I 
would interpret as applying both to the conceptualization of the constructs and 
to the creation of the assessment instruments.

Interpreting the statistical analysis of their data, Kersting et al. (2016) argue 
that "the data have both multidimensional and unidimensional characteristics” 
(p. 134) and can be modeled either way. This argument suggests that even if 
mathematical phenomena are multidimensional, the dimensionality of the  
constructs used to model them and the instruments used to assess those  
constructs may be to some degree arbitrary—dependent not just on existing theory 
and research but also on how researchers have conceptualized the constructs, 
developed the assessment instruments, and employed statistical procedures such 
as factor analysis.

TRADE-OFFS

A theme that runs through the preceding chapters in this monograph, just as 
it did during the conference from which the monograph arose, concerns the 
trade-offs that arise in the use of IRT models, diagnostic classification models 
(DCMs), and their combinations. In Chapter 4, Tatsuoka et al. (2016) note that 
trade-offs exist between “the desired level of detail about examinees’ reasoning 
and the extent of the covered mathematical terrain” (p. 75). Given practical  
limitations on the size of the sample of participants and on the length of 
assessment instruments, Izsák and Templin (2016) identify two trade-offs in 
Chapter 1: (a) between the ability to order one’s data with precision (IRT models) 
and the ability to assess multiple dimensions simultaneously (DCMs) and (b) 
between model complexity and sample size. In Chapter 3, de la Torre, Carmona, 
Kieftenbeld, Tjoe, and Lima (2016) see these trade-offs as “a tension between 
depth and breadth” (p. 67) regarding what is possible in a measurement situation. 
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They also point out that although DCMs provide researchers with “a rich set of 
different grain-sized descriptors of domain-specific knowledge” (p. 55), the time 
demanded to construct and improve the valid Q-matrices and assessment instru-
ments can be considerable—an observation that Tatsuoka et al. (2016) made in 
Chapter 4. 

Much of the trade-off issue appears to involve time: the time needed to 
develop and refine theories, constructs, and assessment instruments; the time 
that might be necessary to generalize theories and constructs to other contexts 
and to address issues of equity and social aspects of mathematics learning; the 
limited time that students and teachers have available for taking assessments; and 
the added time that might be necessary to score items that require constructed 
responses. In Chapter 4, Tatsuoka et al. (2016) point out that adaptive testing 
can achieve considerable savings in the time needed for assessment administra-
tion, and it is also true that scoring methods continue to become more efficient. 
However, the time needed for researchers in mathematics education and psycho-
metricians to learn to work together and to conduct the research studies needed 
to support their work is not likely to diminish.

CONCLUSION

Researchers in mathematics education have a special perspective on measure-
ment. From one angle, measurement is the process that they use to determine 
the nature and extent of the teaching, learning, and doing of mathematics in 
which their research participants engage. Much of that process involves drawing  
inferences about mental objects or activities, and issues of reliability and validity 
loom large whether the measurement involves scaling a quantity or sorting a  
quality. From another angle, for mathematics educators, measurement is a  
curriculum strand that begins with preschoolers comparing the lengths, areas, 
volumes, times, or other attributes of real objects and events that they will 
eventually learn to measure. The measurement strand continues through the 
grades, extending as far as graduate students generalizing their intuitive notions 
of length, area, and volume when they learn measure theory. In the school  
curriculum, measurements are more likely to be of physical objects than mental 
objects or activities; and issues regarding such concepts as units, iteration, tiling, 
proportionality, and additivity loom much larger than reliability or validity.

Consequently, researchers in mathematics education deal with, on the one 
hand, the measurement of teaching, learning, and doing mathematics and, on 
the other hand, the teaching, learning, and doing of measurement. In either case, 
they need to understand that all measurement relies on a mathematical model of 
the constructs being measured. Researchers in mathematics education are well 
positioned to understand the assumptions on which those models depend, but 
they may also be especially prone to question the assumptions. Recent develop-
ments in psychometrics have the potential to help those researchers clarify the 
measurement models.
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Interaction between theory and practice is an issue both in mathematics  
education and in psychometrics. Just as mathematics educators can help psycho-
metricians avoid treating all mathematics tests as equivalent, psychometricians 
can help mathematics educators avoid drawing unwarranted conclusions about 
the results of those tests. The present monograph should offer the reader hope 
that, by working together however long it may take, scholars from the two fields 
can improve their theories as well as their practices.
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