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Geometry and measurement help us understand the space in which 
we live. Because they also connect closely with other areas of 
mathematics, teachers of children of all ages, regardless of the 
mathematical content that they are actually teaching, must under-
stand some key ideas in geometry and measurement. This comes as 
no surprise.

Seeing Connections with Geometry at 
Other Age Levels
Each of the big ideas and essential understandings elaborated in 
chapter 1 helps teachers understand how children’s geometric think-
ing develops across the grade bands. It is useful to begin by looking 
back at the earliest years.

Locating and visualizing: The earliest geometry
From birth, children possess remarkable competencies in observing 
and moving within their spatial world. Infants can focus their eyes 
on objects, and soon they begin to follow moving objects with 
their eyes. Toddlers use geometric information about the overall 
shape of their environment to solve location tasks; this is the in-
tuitive basis of Big Idea 2. For example, figure 2.1 shows a baby 
and a mother, as seen from above, with the baby in a highchair 
and × marking a familiar toy in the baby’s field of vision in the 
space between them. 
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(a) (b)

Fig. 2.1. As seen from above, a baby in a highchair opposite a mother, 
with × marking the location of a toy between them 

The dotted lines in figure 2.1a indicate the baby’s perception 
of the toy as about 20 degrees left of the mother and slightly closer 
than she is—without, of course, knowing anything about degrees or 
measuring distances. Yet, the baby does have a sense of orientation 
in space and of comparative distance. 

The baby certainly does not locate the toy by thinking in x- 
and y-coordinates: “so much distance ahead and then so much dis-
tance directly to the left,” as suggested by the dotted lines in figure 
2.1b. A child thinks much more naturally in terms of direction and 
distance to a goal (polar coordinates) than of distance left-right and 
forward-backward (Cartesian coordinates). 

The “geometry in action” that the baby does in locating the toy 
lays an intuitive foundation for a variety of mathematical topics, such 
as work with paths and polar coordinates that he or she will en-
counter much later. Very young children start to develop the foun-
dation for these topics as they remember a location or route to a 
location through a pattern of movements associated with a goal.  

Later, they learn entire paths. They remember locations as 
distance and direction of their own movements and landmarks 
found along that path. Crawling from the kitchen to the playroom, 
the child learns the location of the door, the turn, the mirror that 
marks the playroom’s door. They build these competencies from an 
internal reference system—the reference is the self, moving through 
space. They lay the developmental foundation for understanding 
the concepts of geometric paths, straight paths, paths with bends 
(angles), distance and length, and, eventually, differential geometry 
(the study of the geometry of curves and surfaces).

Toddlers are also building experience with externally based 
reference systems. These systems and the experiences gained by 
using them in these early years support understanding of coordi-
nate systems. The beginnings are spatial relationships within and 
between environmental structures and landmarks. Such landmarks 
are initially objects that are familiar and important. For example, 
the child might remember last seeing a toy under a couch against a 
certain wall and, moreover, might recall that the toy was closer to 
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the end of the couch that is by the door. Such competencies develop 
into “mental maps” because they build knowledge of locations from 
distances and spatial relationships among environmental landmarks, 
structuring space as captured in Big Idea 2. 

Children later may recall that the sand shovel was buried about 
halfway out from the wall of the garage and “about this far” from 
the edge on the street side of the sandbox, a remembered loca-
tion that shows the development of precision central to Essential 
Understanding 2b. This is an early use of intuitive geometry that 
will later be articulated as Cartesian coordinate systems, as de-
scribed in the discussion of that essential understanding.

At first, children naturally see most objects in their environment 
from many points of view, and they code all those distinct images 
as the same object without attending very much to how the differ-
ent viewpoints affect the image. Their frequent early confusion of 
p, b, d, q (reflections and rotations of one another), as discussed in 
chapter 1, illustrates this point, which applies equally well to objects 
and pictures. Early geometric learning involves beginning to notice 
that the position of an object can change the way it looks. Children 
know that it is the same object, but they now also notice how the 
appearance can change. For example, the rim of a paper cup can 
seem either circular or elliptical or even appear to be a straight line, 
depending on how the cup is tilted. It looks circular when they stare 
down on it, straight into the cup, and looks like a straight line when 
they see the cup from the side, with their eyes level with the top.

The opposite occurs, too. Because we have special neurons de-
voted to recognizing vertical lines (presumably to help us remain 
upright ourselves), we privilege features that are “on top and bot-
tom” or that suggest vertical lines. As a result, young children see 
the two shapes in figure 2.2 quite differently. They are most attuned 
to the vertical and horizontal lines of the first, and most attuned 
to the vertically and horizontally aligned corners of the second. A 
young child will actually draw the second figure not as four lines, 
but as four corners, not necessarily even making straight-line con-
nections between those corners. 

Fig. 2.2. A square in different orientations
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It is no surprise that they, and we, refer to the second shape as 
a “diamond” or at least as a “turned square” (or “rotated square”). 
Even after we know that the two are “the same shape,” they don’t 
look the same. These two squares are, by the way, the same size, but 
often people see the “diamond” as larger. So, sometimes we need 
to notice that things really are different, although we “see” them 
naturally as the same; and sometimes we need to notice that things 
really are the same, although we see them as different. Both require 
learning.

Further, children learn spatial and geometric vocabulary—
terms that signify position, such as in, on, under, up, down, beside, 
between, in front of, behind, and later, right and left. This vocabu-
lary is the linguistic basis for connecting children’s early, intuitive 
ideas with the refinements and extensions that we know as math-
ematics. Intuitions become more precise models of everyday situa-
tions when we use mathematical ideas of number and shape, math-
ematical actions such as measuring or transforming shapes, and 
structural relationships among these ideas and actions. Mathematics 
involves both systematizing (refining, extending, and relating) these 
ideas and actions, and using the resulting models to solve problems. 
Learning mathematical language and using it are essential to this 
process of mathematizing.

Bringing together ideas related to location and transforming 
shapes, children can mathematize their experiences with navigation 
and spatial relationships as they use and create simple models and 
maps. Block building (see fig. 2.3), including making models and 
maps of the classroom or playground, capitalizes on many of these 
experiences and has meaning when viewed by teachers who have 
grasped Essential Understanding 2b. Building with blocks also re-
lates to students’ later experiences with coordinate systems and the 
spatial structuring that underlie the measurement of area and other 
topics both in and out of geometry. For example, making a floor for 
a building with square blocks can be the beginning of spatial struc-
turing. The ability to  organize objects into rows or columns, or into 
distances from axes, can begin with such activity and is meaningful 
to teachers with a firm grasp of Essential Understanding 2a.
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Fig. 2.3. A child building with blocks

Ideas about geometric shapes have their beginnings in early 
geometry. Shape is central to young children’s understanding of the 
world. Children’s attention to shape goes far beyond their learning 
names of familiar shapes such as circles, although that is important. 
When children learn new words for objects (such as “salt shaker”), 
the shape of that object is the main feature that they use, rather 
than the color, size, sound, or other attributes (Smith et al. 2001).  

The shape of almost every object is a combination of “basic” 
shapes. In fact, that is what we mean when we call a shape “basic”: 
it is the basis of many familiar but more complicated shapes. Think 
of the common simple representations of people with circular heads 
and rectangles for many other body parts, or the house represented 
as a triangle on top of a square. Such idealizations of shape are not 
restricted to children’s immature ways of drawing. Artists are of-
ten taught to “see” complex forms geometrically and to lay out the 
forms with purely geometric guidelines, as in figure 2.4, before fill-
ing in the details that make the artwork look more “real.”

Essential 
Understanding 2a
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Fig. 2.4. An example of an artist’s use of simple geometry figures

“Basic” shapes, just like complex forms, can also be decom-
posed, and children gain a head start in understanding some of 
these decompositions when they combine, for example, two blocks 
that are triangular prisms to make a prism that is square or rectan-
gular, or a larger triangular prism. As when children lay down an 
array of blocks to make a floor, such shape compositions build the 
conceptual foundation for understanding geometric compositions, 
length, area, volume, and coordinate systems.

Building to geometry in grades 3 –5
The geometry learned during the early childhood years forms a 
critical foundation for geometry and measurement in grades 3–5. 
Early learning of shape becomes more systematic, with students 
classifying shapes explicitly on the basis of properties, and draw-
ing inferences about the shapes on that basis (indicative of early 
work related to Big Idea 1). For example, students can now use a 
rectangle’s four right angles to make inferences about the relation-
ships among its sides, pairs of which must be parallel and the same 
length. Hierarchical inclusion—which involves recognizing that some 
classifications are subsets of other classifications—also begins more 
explicitly. For instance, students become aware that squares are spe-
cial cases of both rectangles and rhombi. They can compare different 
ways to define a shape category (for example, defining a rectangle 
as a quadrilateral with all right angles or as a parallelogram with a 
right angle).

Children in grades 3–5 build on their early work with length 
measure to address precision and subdivisions of units. Their 
knowledge of length measurements, origins, units, and distances 
becomes the foundation for their learning of a Cartesian coordinate 
system, which is one way to structure space and specify locations 
(Big Idea 2).
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Early work with sliding, flipping, and turning objects provides 
students with experiences that they later consider systematically 
as the geometric motions of translations, reflections, and rotations, 
respectively. Each of these transformations has particular charac-
teristics and specific geometric attributes that it does or does not 
preserve. To describe the characteristics or attributes of a rotation, 
for example, one must specify a point around which the rotation 
occurs—the center of rotation—and an amount of rotation (an angle, 
taken to be counterclockwise by convention but typically specified 
in elementary school with both an angle and a direction clockwise 
or counterclockwise, for clarity). In the later grades, students study 
such characteristics explicitly. Further, the implications of these 
transformations—what does or does not change under a particular 
transformation—are also made explicit and studied. The mathemat-
ics of these transformations is discussed in chapter 1 (Big Idea 
3), but most are developed in a school curriculum for students in 
grades 3 or above.

Students in the intermediate grades extend earlier shape com-
position to reflect on spatial structuring, area, and volume. The next 
section discusses these measurement topics.

Making Connections with Other Topics
The concepts that are specific to geometry and measurement are 
complemented by essential mathematical habits of mind, many of 
which are shared by other mathematical domains, illustrating both 
the coherence of mathematics and the centrality—and therefore 
the usefulness—of these habits of mind for educators and students. 
Connections between geometry and the rest of mathematics both il-
lustrate the elegance of mathematics and help students see that one 
domain can imbue another with new meaning.

Using number lines
Spatial, geometric, and measurement competencies connect directly 
with one of the basic models used in number and arithmetic: the 
number line. For mathematicians, just as for school children, the 
number line is a way of visualizing numbers both as locations and 
as distances between those locations. Each point on the number line 
is uniquely identified with a number, just as a house is uniquely 
identified with its address along a street. Houses generally use only 
whole numbers as addresses; likewise, number lines for the youngest 
children typically show only whole numbers. 

By contrast, a mathematician’s concept of a number line in-
cludes all real numbers—positive ones to the right of zero, and 
negative ones to the left, and all fractions and all other numbers 
as well, filling in the spaces. The number line, as children first see 
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it in school, is generally shown as a horizontal line, with a point 
designated as zero and equally spaced points labeled 1, 2, 3, 4, … 
representing the whole numbers. Pictures of the number line come, 
as all pictures do, in various sizes. But whether the space between 
consecutive numbers is an inch or a centimeter, as it might be on a 
ruler, or a much larger space, as wall models usually require, that 
distance between two consecutive numbers on that line is consid-
ered to be “the unit” for that number line. This allows us to say that 
the distance between 7 and 10 is 3. The line segment from 0 to 1 is 
the conventional, or standard, example of the unit segment, and the 
number 1 is also called the unit, with numbers serving both as loca-
tions and as distances. Once we have determined this, all the whole 
numbers are fixed on the line. 

Rulers are portable, physical representations of finite parts of 
number lines, so they can be readily used to find distances. Each 
ruler has its own unit—inches, centimeters, or, for special purposes, 
other units (or no named unit at all, as on wall number lines, with 
only the regular spacing serving as the unit). Thus, when we report 
a length (distance) that we measure with a ruler, we must also spec-
ify the unit of that particular ruler: the distance between the 7 and 
the 10 on an inch-ruler is 3 inches. 

The number 1⁄2  is exactly halfway between 0 and 1. We call 
the distance from 0 to 1⁄2 “one-half.” We see that exactly three of 
those distances to the right of 0 is a point exactly halfway between 
1 and 2, which can be called “three halves” (3⁄2 ) because it is three 
halves from 0. We can also call that point “one and one-half” (11⁄2 ) 
because it is 1 and 1⁄2 units from 0. (This is an example of number 
serving as location and distance.) Rulers marked in inches often 
subdivide each unit into halves, quarters, and even smaller subunits. 
We can subdivide units on the number line any way we need, to 
find thirds, or eighths, or tenths, or seventeenths.

The number line clearly connects directly with linear measure-
ment. It represents numbers—whole or rational or irrational (numbers 
that can’t be expressed as 10ths or 17ths, or any other nths)—as the 
length or distance from 0 to that number. Thus, both measurement 
and associated number line models can serve as tools for mathemat-
ics: number (including fractions and decimals), number comparison 
(any number “to the right” of another number is larger than that 
number), arithmetic (subtraction uses the distance between numbers 
as a way to compare them), and estimation (finding numbers “in the 
neighborhood”—that is, not too distant). 

Number lines are especially important for understanding ratio-
nal numbers, including fractions and their decimal representations. 
They can be used to illustrate the relationship between fractions 
and whole numbers and to demonstrate that fractions are numbers, 
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that fractions include numbers greater than 1, that fractions can be 
added on a number line model in a way that closely mirrors adding 
whole numbers on a number line, and so forth. In all these ways, 
measurement can support building “mental number lines,” which 
research suggests play a critical role in understanding mathematics 
(e.g., Elia, Gagatsis, and Demetriou 2007; Geary et al. 2008; Ramani 
and Siegler 2008; Rodriguez, Parmar, and Singer 2001; Vanbinst, 
Ghesquiere, and Smedt 2012).

Composing, decomposing, and unitizing
The composition and decomposition of shapes are core processes in 
geometry. Such processes, and the conservation of area, are useful 
conceptual tools for solving problems involving tessellations, area, 
and so on. However, these tools are also useful for understanding 
number. For instance, although the number line serves best to show 
fractions as numbers, fractions also describe amounts of something, 
and the decomposition of a geometric whole into parts of equal 
area can serve as a useful model of that use and aspect of fractions. 
Consider an example. Suppose that we choose the area of the equi-
lateral triangle in figure 2.5 as the unit with which to measure the 
area of the larger shape. The area measure is then 18 units. It takes 
18 of the units to cover the region.

Fig. 2.5. An equilateral triangle used as the area unit to  
measure area of a figure 

If we choose, instead, to measure the same region with a unit 
that is exactly 6 times the area of the original unit—that is, with the 
area of a regular hexagon in place of the equilateral triangle—we 
will now use 1⁄6 as many units as before. We will now report the 
area as 3 units. Figure 2.6 provides examples for 1⁄3 1⁄9, and 1⁄18 . 
This experience exactly parallels the experience with different size 
units for measuring length and helps establish a general truth about 
measurement, not just a specific kind of measurement.
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Fig. 2.6. Finding the area of same shape with different units

If the area unit is the area of the hexagon, the area is 3 units. If 
the unit is 1⁄3 that size—the area of the rhombus—the area is 3 times 
as many units, or 9 units. If we change units to use units of one-
third the size, we will need three times as many of them to measure 
the area: 1⁄3 is the multiplicative inverse of 3. If we choose instead 
to measure the area with a unit that is 1⁄2 the size of the rhombic 
area unit, this time using the area of the triangle, we will need two 
times as many of them to cover the region: 1⁄2 is the multiplicative 
inverse of 2. Working with the area of the triangle as the unit, we 
will report the area as 18 units. The number of units that we report—
the area measure—depends on the size of the units that we use, and 
the relationship is an inverse one under multiplication: the smaller 
the unit, the larger the measure.

The inverse relationship between the size of the unit and the 
number of units that compose a given shape or quantity is thus 
modeled in geometric shape composition and in area measure-
ment. It also mirrors the inverse relationship between the size of 
the counting numbers (increasing as 1, 2, 3, 4, …) and unit fractions 
(decreasing as 1⁄2 , 1⁄3 , 1⁄4 , …). 

Further, all numbers are structured by composition related to 
a specific unit. The decimal place-value system groups by tens. 
Base-ten blocks are designed to embody this structure. If we choose 
the length of one edge of a small cube to represent “one,” then the 
length of the rod formed by the lengths of the edges of ten cubes 
represents “ten,” as in figure 2.7. This is similar to the composition 
of shapes that are combined to form a larger shape that is concep-
tualized as a new shape (a rectangle, say) as well as a composite 
unit of smaller shapes (say, squares). This reflects the importance of 
viewing a number flexibly as “10 tens” and “1 hundred.”
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Shapes viewed as 3
squares and 1

rectangle
simultaneously

Base-ten blocks
viewed as 10 ones and
1 ten simultaneously

Fig. 2.7. Viewing shapes as a composition of units

Having a firm grasp of composition and decomposition in ge-
ometry and measurement broadens students’ understanding of parts 
and wholes and provides concrete models for numerical operations 
that combine, separate, or compare numbers.

Working with spatial structures
A particularly important example of composition and unitizing is 
in spatial structuring. One way to view the area of a rectangle is 
as partitioned into identical square units organized in rows and 
columns, as illustrated in chapter 1 (see fig. 1.26). Such decomposi-
tions, organized in rows and columns, lend a mathematical inter-
pretation to the formula Area = length × width. Each row contains 
the same number of square units, and the number of rows in the 
rectangle equals the number of squares in a column. 

Another connection between geometry and arithmetic involves 
rectangles and area. The commutative property of multiplication (by 
which, for example, 5 × 3 = 3 × 5) connects with the notion that one 
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can group the squares in the columns together into units, and then 
the number of squares in a row equals the number of those units. 
Alternatively, one could consider that a geometric motion, a 90-de-
gree rotation of the rectangle, “switches” the rows and columns.

The rotation of a rectangle is also an application of conserva-
tion of area. As is true of any shape, the area of a rectangle does 
not change with a rotation. However, young children may think 
that if a rectangle is rotated so that it is “taller” than the original 
rectangle (see fig. 2.8), it will have more area.

Fig. 2.8. A rectangle rotated to produce a “taller” rectangle

Area models for multiplication are important for another 
reason. Using arrays of discrete objects (for instance, 4 rows of 
pennies with 8 in each row) to model multiplication works well 
for whole numbers, but not in general for rational numbers. For 
example, 2.5 rows containing 5.1 pennies each makes no sense. 
Because area models based on measurement are continuous models 
and can be partitioned into units of any size, they lend themselves 
well to rational numbers and thus to the multiplication of fractions 
and decimals. 

Just as the area of a rectangle tiled by unit squares can be mea-
sured by counting unit squares per row and multiplying by the num-
ber of rows—that is, multiplying rows by columns, height by width—
the volume of a rectangular solid can be measured by counting the 
unit cubes in a layer (multiplying rows by columns in that layer) and 
multiplying by the number of layers. The formula Volume = length × 
width × height is explained by this spatial structure.

Thinking of a plane as an infinite array is a different spatial 
structuring. This structuring relates to a Cartesian coordinate sys-
tem, in which an ordered pair of numbers identifies each location, 
or point, in the plane and indicates its distance from two 
coordinate axes.
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Conclusion
The sophistication of geometric concepts required in later grades 
builds on the experiences that students have in the early grades. 
Understanding spatial relationships is one of the most important 
outcomes from children’s experiences. Children learn to structure 
and understand space in new ways. It is through spatial relation-
ships that children come to understand transformations of shapes 
in planes and space, discerning what is or is not changed by the 
transformations.

Measurement concepts are closely aligned with transformations 
as children consider iterations of units to form measurement tools. 
This leads to an understanding of how the size of the unit affects 
the measurement count. 

Even though geometry is often not stressed in school mathe-
matics in the same way that number and operations are, the topics 
centered on geometry and measurement clearly link to and sup-
port development across other mathematical areas. Teachers who 
understand how these topics support learning beyond geometry 
can use geometric concepts to support students in building  
stronger knowledge related to other topic areas.




