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Assessment in Action

Introduction
Ann Arden, Ottawa Carleton District School Board, Ontario, Canada
Melissa Boston, Duquesne University, Pittsburgh, Pennsylvania

In this section on Assessment in Action in the classroom, each chapter frames formative 
assessment as an essential classroom practice and presents specific classroom-based strategies 
that can be embedded into teachers’ everyday instructional practices. Formative assessment 
involves activities undertaken by both teachers and students to modify teaching and learning 
activities, with a focus on learning rather than on evaluation, ranking, or judgment (Black 
and Wiliam 1998; Gipps 1994; Sadler 1998). A key aspect of formative assessment is that the 
information it generates is used by both teachers and students to improve learning. 

Formative assessment strategies make students’ mathematical thinking and under-
standing visible, thus serving as methods for “eliciting and using evidence of student think-
ing,” as called for by the National Council of Teachers of Mathematics’ (NCTM) Principles 
to Actions: Ensuring Mathematical Success for All (NCTM 2014). As an example, the chapter 
by Kim and Lehrer describes how “formative assessment talk” generates information to 
support students’ progressions along learning trajectories in ways that are not possible 
using traditional evaluative (e.g., IRE) modes of discussion. In order to elicit and assess 
active thinking rather than passive recall, more diverse and complex assessment tasks and 
strategies are required (NCTM 1995; Shepard 2001). This point is illustrated well in the 
strategies for assessing and supporting children’s understanding (rather than rote memori-
zation) of number facts presented in the chapter by Bay-Williams and Kling. Similarly, the 
chapter by Silver and Smith makes salient the connection between cognitively challenging 
tasks and formative assessment. As Wiliam (2007) points out, “the task of the teacher is not 
necessarily to teach, but to create situations in which students learn” (p. 1087). 

The chapters in this section make explicit connections between planning, instruction, 
and assessment. Their authors describe ways in which teachers can use formative assessment 
to determine next instructional steps “in-the-moment” during a lesson and in planning 
subsequent lessons. For example, Slavit and Nelson’s chapter describes how problem-based 
instruction creates the need for formative assessment strategies and provides a context 
in which assessment and instruction become increasingly interconnected in teachers’ 
daily practice. The chapter by Fennell, Kobett, and Wray provides a variety of formative 
assessment strategies and describes how such strategies can be used to “inform” instruction 
and planning. Each chapter provides a scenario or context to ground and illustrate the 
highlighted strategies, across grade levels (including elementary and middle grades; see 
chapter 15 by Marynowski in part III of this book for formative assessment in secondary 
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classrooms), mathematical content (e.g., number facts, measures of center, and linear relation-
ships), and in multiple contexts (e.g., problem-based learning, learning trajectories, implementing 
cognitively challenging tasks, and general classroom practice). The following paragraphs provide 
summaries of each chapter in this section, specifically highlighting how the chapter presents 
formative assessment in action in the mathematics classroom.

In chapter 1, Integrating Powerful Practices: Formative Assessment and Cognitively 
Demanding Mathematics Tasks, Silver and Smith describe how instructional moves that 
maintain students’ engagement in cognitively challenging mathematical work and thinking 
simultaneously serve the purpose of formative assessment. The lines of research indicating the 
power of cognitively challenging tasks and of formative assessment techniques in supporting 
students’ learning have previously been disconnected; here, the authors bring together these ideas 
and illustrate their interconnectedness in classroom practice: “engineering effective classroom 
discussions, questions, and learning tasks” are instructional moves essential for providing oppor-
tunities for formative assessment (e.g., Wiliam 2011) and for engaging students in cognitively 
challenging mathematical work and thinking (e.g., Henningsen and Stein 1997). To illustrate, 
the authors present the case of an eighth-grade mathematics lesson on linear relationships, set in 
a problem-solving context where students determine the cost of pizzas with different numbers of 
toppings. Prior to the lesson, the teacher selected a cognitively demanding task, anticipated stu-
dents’ strategies, created a monitor chart to identify these strategies during the lesson, and planned 
questions to ask during small-group work and the whole-group discussion. During the lesson, the 
teacher monitored students’ work, asked questions to assess and advance students’ thinking, and 
engaged students in a whole-group discussion. In presenting the case, Silver and Smith provide 
explicit connections between the five practices for orchestrating whole-group discussions (Smith 
and Stein 2011) and formative assessment (Suurtamm 2012). 

In the chapter Developing Fact Fluency: Turn Off Timers, Turn Up Formative 
Assessments, Bay-Williams and Kling call attention to the perils of timed, frequent tests that can 
have potential and long-term impacts on children’s mathematical confidence and view of mathe-
matics. They contrast teaching patterns of “Memorize-Test-Continue” (M-T-C) that can neglect 
reasoning strategies with “Reasoning strategies, Practice, and Monitoring” (R-P-M) that can 
support students as they work toward mastery. The authors distinguish the R-P-M approach as 
shifting the learning focus from memorization to strategy development and meaningful prac-
tice, as well as shifting the assessment focus from timed tests to observations and interviews. 
They argue that this approach can accomplish the mastery and retention of facts that traditional 
approaches have failed to produce. Bay-Williams and Kling suggest five strategies to more appro-
priately assess fact fluency: no longer use time tests, make tests shorter to create time for students 
to reflect on their strategies, have students describe their strategy for solving a problem, include 
self-assessment, and provide teacher feedback that is more detailed than a mere score.

In chapter 3, Using Learning Progressions to Design Instructional Trajectories, Kim and 
Lehrer describe how a fifth-grade math teacher used evidence of students’ learning from a Learn-
ing Progression Oriented Assessment System (LPOAS) to support students’ statistical reasoning. 
This LPOAS involved four elements: construct maps, assessment items, scoring exemplars, and 
lessons. The authors argue this LPOAS supports teachers in designing an instructional path that 
aligns students’ current understandings with a conjectured learning progression. The teacher’s 
knowledge of mathematics is key in this approach where instructional decisions are based on the 
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mathematical substance of students’ thinking. Assessment tasks were used to determine students’ 
current understandings along a progression of three conceptual building blocks. The teacher then 
asked “leveraging” questions and “engineered” formative assessment talk (FAT) based on the 
conjectured learning progression. The authors suggest teachers use a construct map when scoring 
students’ responses to assessment items, identify leverage points that bridge current levels of 
understanding with learning performances, and design questions and supporting representations 
to help students move from their current understandings to those with greater disciplinary scope 
and precision.

In How Changes in Instruction Support Changes in Assessment: The Case of an In-
clusive STEM-Focused School, Slavit and Nelson describe how curriculum and instructional 
choices influence assessment in a grades 6–12 STEM-focused school. In a problem-based learning 
approach, teachers at this school prioritized formative assessment in instructional design. A key 
component of assessment at this school was presentations to authentic audiences, such as local 
business professionals and professors. This required the development of rubrics where teachers had 
important conversations about clarifying the learning goals and criteria for success. At the end of 
the year, students reported positive experiences based on teacher feedback and flexibility in the 
way teachers viewed their learning. The project-focused learning environment changed the way 
teachers viewed assessment, and they felt their new formative assessment strategies made students’ 
learning more visible.

In the final chapter of this section, Classroom-Based Formative Assessments: Guiding 
Teaching and Learning, Fennell, Kobett, and Wray argue for the value of using formative 
assessment as an everyday practice in mathematics classrooms. They present five classroom-based 
formative assessment (CBFA) techniques, validated through classroom use, that teachers can 
implement on a regular basis to guide and inform planning and teaching: observations, interviews, 
“show me,” hinge questions, and exit tasks. The chapter describes each CBFA technique and pro-
vides concrete suggestions for when and how to use the technique in the mathematics classroom. 
The authors describe observations, interviews, and “show me” as informal techniques that could be 
used within any lesson to monitor students’ progress and to help teachers determine the pace of the 
lesson, identify misconceptions, and consider potential next steps. Hinge questions and exit tasks 
are more formal in the sense that the question or item requires careful construction to elicit evi-
dence of students’ understandings of the main mathematical idea(s) of the lesson. Hinge questions 
are open-ended or specially crafted multiple-choice items that can serve as a deciding element for 
determining next instructional steps in planning and teaching. Exit tasks provide written docu-
mentation about each student’s understandings and proficiency. In the chapter overall, Fennell and 
colleagues frame formative assessment techniques as in-the-moment opportunities for teachers 
(and students) to garner, and immediately use, evidence of learning to adapt instruction and meet 
students’ learning needs.

Together, the five chapters in part I on Assessment in Action provide concrete suggestions for 
using formative assessment as an everyday classroom practice. As you read these chapters, consider 
the following questions:

•	 How do teachers connect planning, teaching, and assessment into a seamless cycle of 
instructional moves?

•	 In what ways can teachers elicit and support students’ thinking?
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•	 How are students included in the assessment process?

•	 In what ways does classroom assessment inform both teachers’ and students’ next moves?
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Integrating Powerful Practices: Formative 
Assessment and Cognitively Demanding 

Mathematics Tasks

Edward A. Silver, University of Michigan, Ann Arbor
Margaret S. Smith, University of Pittsburgh, Pittsburgh, Pennsylvania

As students shuffled out of her classroom, Ms. Dyson sat at her desk and reflected on 
what had just occurred in her eighth-grade mathematics class. Here is a portion of her 
reflection: 

The Building a Pizza task worked really well today! There were a few bumps 
at the start, but I was able to get the confused students on track. The class was 
excited when they went to the Domino’s website and saw that the problem was 
real—the price of a topping was not given! Students worked hard and generated 
lots of mathematics—plotting points by treating the number of toppings and 
corresponding cost as ordered pairs, looking for patterns in prices for medium 
pizzas that varied by number of toppings, and forming generalizations to express 
the cost for a pizza with respect to the number of toppings. 

Groups 1, 2, and 5 stated a generalization in words for the total price of a medium 
pizza, but they had trouble expressing it algebraically. Group 4 got the price per 
topping but had trouble writing the equation, initially confusing what was constant 
and what varied. Several groups had difficulty interpreting the graph produced by 
Group 4. Based on what I saw today, Group 3 seems ready to move on, so tomor-
row I will ask them to explore how the generalization they found in part c would be 
affected if we changed the conditions by including two toppings in the base price 
and only charging for extra toppings. Most of the groups need more experience 
with the concepts in context and more practice with writing and graphing equa-
tions to express generalizations, so I will ask them to extend this investigation to 
small and large pizzas.

The first part of Ms. Dyson’s reflection on the lesson is fairly typical of what teachers 
might glean from lessons that “go well,” but the latter part is not at all typical. Even without 
knowing the details of the task, which we will present later, we can see that Ms. Dyson’s 
comments suggest both that she learned quite a lot about her students during the lesson and 
that she was using that information in planning tomorrow’s lesson.

How did Ms. Dyson uncover so much about her students’ mathematical understand-
ings during one lesson? How might her students benefit from the detailed insights she 
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developed about what they know and can do, and about areas where they might need further 
conceptual development or skill practice? In this chapter we consider these questions in relation to 
some recent research on mathematics instruction.

■	Some Relevant Recent Research on Mathematics  
Instruction
As we elaborate below, research on effective mathematics instruction has established two distinct, 
robust findings. One is that students learn mathematics well in classrooms where they have 
regular opportunities to work on cognitively challenging tasks that promote mathematical problem 
solving, reasoning, and understanding, as long as their teachers support their work on the tasks in 
a manner that does not lower the cognitive demand as the lesson unfolds. A second robust research 
finding is that students learn mathematics well in classrooms where teachers employ formative 
assessment techniques to elicit, interpret, and use evidence about what students have learned to 
inform instructional decisions. These evidence-based characterizations of effective mathematics 
teaching have been disconnected in both the research literature and in practitioner-oriented outlets 
in large part because they derive from different perspectives on classroom instruction and from 
distinct lines of empirical inquiry. In this chapter we interweave these distinct characterizations 
to produce an integrated perspective that we believe can inform and support efforts to improve 
mathematics teaching. 

Cognitively Demanding Mathematical Tasks
Mathematics classroom instruction is organized around and delivered through the mathematical 
tasks, activities, and problems found in curriculum materials. For example, the students in all 
seven countries analyzed in the TIMSS video study (National Center for Educational Statistics 
[NCES] 2003) spent more than 80 percent of their time in mathematics lessons working on tasks. 
Thus, students’ opportunities to learn mathematics are determined to a great extent by the mathe-
matical tasks they encounter in the classroom. Though mathematical tasks are a constant presence 
in mathematics classrooms, they also exhibit considerable variation.

Tasks vary not only with respect to mathematics content but also with respect to the cog-
nitive processes they entail. Tasks that offer opportunities for students to sharpen their mathe-
matical thinking and reasoning by requiring them to analyze mathematics concepts or to solve 
complex problems can be considered cognitively demanding or high-level tasks. In the Building 
a Pizza task shown in figure 1.1, for example, no solution path is explicitly suggested or implied, 
and students could use a variety of approaches (e.g., plot the number of toppings and cost as 
points on a graph to find the rate of change, build a table with the given values and interpolate, 
or find the difference in the number of toppings and the difference in the cost and then divide). 
In addition, students must determine and enact a reasonable course of action and justify the 
plausibility and accuracy of their solutions. 

In contrast, cognitively undemanding tasks—low-level tasks that require little more than 
memorization and repetition—offer little or no opportunity to develop proficiency with complex, 
high-level cognitive processes. For example, it is likely that students would expect to solve the 
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Writing Equations task shown in figure 1.1 using a specific, memorized procedure (e.g., the point-
slope form of a line, or a combination of the slope formula and the slope-intercept form of a line). 
Low-level tasks typically require neither decision-making nor justification. 

Building a Pizza Writing Equations 

You and your friends are going to buy pizza from 
Domino’s. From previous orders you know that a 
medium pizza with 2 toppings costs $14.00 and a 
medium pizza with 5 toppings costs $20.00.

a.	 Assuming Domino’s charges the same 
amount for each topping added to a plain 
cheese pizza, determine the cost per top-
ping. 

b.	 If you wanted to order a medium cheese 
pizza, with no additional toppings, how 
much would you expect to pay? 

c.	 Write a general rule you could use to 
determine the price of any medium 
Domino’s pizza.

For each part of the task, be sure to explain how 
you got your answer and why it makes sense.

Adapted from Mathalicious  
(http://www.mathalicious.com/lessons/domino-effect)

For each pair of points, find the rate of change, 
the y-intercept, and the equation of the line 
that passes through the points.

a.	 (3,2) and (7,-4)
b.	 (2,3) and (6,4)
c.	 (1,6) and (3,2)
d.	 (0,-2) and (3,4)
e.	 1,-4) and (-4,7)

Fig. 1.1. Mathematics tasks with different cognitive demands

Deciding to use a high-level mathematics task in a lesson is an important step, but the payoff 
from this decision depends on how the task is enacted in the lesson. Selecting high-level tasks 
for use in mathematics classrooms does not guarantee that the tasks will be used in ways that 
maintain the demand characteristics essential to opportunities for students to learn mathematical 
thinking and reasoning. Research has shown that the cognitive demands of mathematical tasks 
can change as tasks are introduced to students and/or as tasks are enacted during instruction 
(Stein, Grover, and Henningsen 1996). The mathematical tasks framework (MTF) shown in figure 
1.2 models the progression of mathematical tasks from their original form, as they appear in the 
pages of textbooks or other curriculum materials, to the tasks that teachers actually provide to 
students, and then to the tasks as they are enacted by the teacher and students in classroom lessons 
(Stein et al. 2009).

TASKS
as they appear in 
curricular/
instructional 
materials

TASKS
as set up by the 
teacher

TASKS
as implemented by 
students

Student
Learning

Fig. 1.2. The mathematical tasks framework
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The first two arrows in the figure identify critical phases in the instructional life of tasks at 
which cognitive demands are susceptible to being altered. The tasks, especially as enacted, have 
consequences for student learning of mathematics, as is shown by the third arrow in the figure and 
the “Student Learning” triangle that follows it. The features of an instructional task, especially 
its cognitive demands, may be altered as a task passes through these phases (Stein, Grover, and 
Henningsen 1996; Stigler and Hiebert 2004).

Researchers who have used the MTF, and related conceptualizations, as a lens for studying 
mathematics classroom teaching have noted that implementing cognitively challenging tasks in 
ways that maintain students’ opportunities to engage in high-level cognitive processes is not a 
trivial endeavor, especially for teachers of mathematics in the United States (e.g., Henningsen and 
Stein 1997; NCES 2003). Nevertheless, evidence from research conducted in a variety of U.S. 
classroom contexts has found that it is possible for American teachers to do this well, with clear 
benefits for their students. 

Research has found that greater student learning occurs in classrooms where cognitively 
demanding mathematical tasks are used frequently and where high-level cognitive demands are 
maintained throughout an instructional session (Boaler and Staples 2008; Hiebert and Wearne 
1993; Stein and Lane 1996; Stigler and Hiebert 2004; Tarr et al. 2008). For example, in a 
longitudinal comparison of three high schools over a five-year period, Boaler and Staples (2008) 
determined that the highest student achievement occurred in the school in which students were 
supported to engage in high-level thinking and reasoning. Boaler and Staples attribute students’ 
success to the ability of the teachers to maintain high-level cognitive demands during instruction. 
Studies by Tarr and colleagues (2008) and Stein and Lane (1996) found that classrooms in which 
teachers consistently encourage students to use multiple strategies to solve problems and support 
students to make conjectures and explain their reasoning were associated with higher student 
performance on measures of thinking, reasoning, and problem solving.

Formative Assessment 
Another body of research suggests that student achievement is amplified when teachers employ 
formative assessment techniques in classroom instruction. Black and Wiliam (1998) synthesized 
the results of dozens of studies of formative assessment, and they found strong evidence of greater 
student achievement in classrooms where teachers used such techniques. Ehrenberg and colleagues 
(2001) reported that the impact on student achievement of teachers using formative assessment 
as part of instruction was far greater than that obtained by reducing class size. Other empirical 
studies have demonstrated that teachers can learn to use formative assessment in the mathematics 
classroom with positive effects on students’ learning (e.g., Wiliam et al. 2004). Although some 
have pointed to weaknesses and gaps in the evidence base (e.g., Bennett 2011), the preponderance 
of research evidence appears to support the positive influence on student learning of formative 
assessment in classroom instruction.

Formative assessment refers to a process of eliciting and interpreting evidence about what 
students have learned and then using this information to make instructional decisions (Wiliam 
2011, p. 50). In contrast to summative assessment, which involves the evaluation of student 
learning, progress, or achievement to assign grades or appraise programs, formative assessment 
involves assessment for learning—gathering evidence within the stream of instruction about what 
students are doing, thinking, and learning and then using that evidence to inform decisions that 
affect teaching and learning. 
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Many view formative assessment as an essential aspect of effective instruction. In fact, 
Principles to Actions: Ensuring Mathematical Success for All (National Council of Teachers of 
Mathematics [NCTM] 2014) identifies eliciting and using evidence of student thinking as one of 
eight non-negotiable teaching practices critical for successful implementation of ambitious stan-
dards. According to Leahy and colleagues (2005, p. 19), “in a classroom that uses assessment 
to support learning, the divide between instruction and assessment blurs. Everything students 
do—such as conversing in groups, completing seatwork, answering and asking questions, working 
on projects, handing in homework assignments, even sitting silently and looking confused—is a 
potential source of information about how much they understand.” Based on their analysis and 
synthesis of a number of studies of formative assessment in classroom instruction across a variety 
of school subjects, Leahy and colleagues (2005) identified several aspects of instruction that 
characterize effective formative assessment in classrooms, including engineering effective class-
room discussions, questions, and learning tasks; promoting students’ ownership of their learning; 
and encouraging students to be learning resources for one another. 

Engineering effective classroom discussions, questions, and learning tasks involves at least three 
interrelated instructional practices: (1) engaging students in tasks and activities that provide 
insights into their thinking; (2) listening and analyzing student discussions and artifacts inter-
pretatively, not just from an evaluative perspective; and (3) implementing instructional strategies 
designed to engage all students in tasks, activities, and discussions (Wiliam 2011). For this to 
work well, instructional tasks and activities should elicit thinking and reasoning, relate to key 
concepts and skills in the curriculum, and allow students to show what they understand and can 
do. Also, it is important that teachers and students engage in listening “interpretatively” (Davis 
1997); that is, not just listening for the right answers but also listening for evidence about student 
thinking to inform the next instructional steps. In this way, a teacher can obtain evidence about 
how well students are learning important mathematical concepts and skills and detect errors 
or misconceptions that are prevalent in student work, especially those that may interfere with 
learning new concepts or solving related problems. 

Effective formative assessment also means promoting students’ ownership of their learning and 
encouraging students to be learning resources for one another. Providing students with challenging 
mathematical tasks and supporting them to develop persistence in solving such tasks helps students 
develop a sense of self-efficacy that also supports their motivation to tackle difficult mathematics 
topics. Also, teachers can engage students in self-assessment and peer-assessment, with an emphasis 
on listening interpretively as noted above rather than focusing only on right/wrong judgments. 
Classrooms in which students actively listen to their peers’ presentations and explanations can 
be communities in which each student supports the learning of other students in a mutually 
enabling manner.

■	Integrating Formative Assessment with the Use of 
Cognitively Demanding Tasks: The Case of Ms. Dyson
We now return to the question posed earlier in this chapter: How did Ms. Dyson uncover so much 
about her students’ mathematical understandings during one lesson? 

We think the answer lies in the interplay between the two perspectives just reviewed, namely, 
cognitively demanding tasks and formative assessment. First, Ms. Dyson selected a mathematical 
task for her students to work on during the lesson that was—
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•	 cognitively demanding;

•	 accessible to all students, whether they preferred to work with words, numbers, graphs, or 
equations; 

•	 aligned with her goals for student learning (e.g., use concepts of slope and y-intercept in a 
problem context; write an equation to represent the relationship between a dependent and 
independent variable; gain facility in recognizing and expressing a linear function in a table, 
graph, and equation); 

•	 motivating to students—presenting a familiar context and a question that could not be 
immediately answered (even if you went to the Domino’s website!); and

•	 capable of revealing students’ understanding and thinking, especially by including the 
requirement that students explain how they solved the problem and why their solution made 
sense.

Hence by selecting this particular task, Ms. Dyson took an important first step toward 
engineering an effective classroom discussion.

Second, she carefully planned the lesson prior to instruction—anticipating the ways in which 
students might approach or solve the task and generating questions she could to ask to assess 
what the students understood and to advance their understandings. Here is another part of her 
post-lesson reflection:

I learned a lot from listening as students worked in groups on the task, using the monitor-
ing charts I created yesterday. The charts recorded my expectations about what students 
were likely to do and what I could say to get them to think more deeply. I was free to 
watch and listen carefully and then to jot notes about what I saw and heard and to flag 
things that might need follow-up. 

The monitoring charts (see appendices 1.A and 1.B) assisted Ms. Dyson both in preparing to 
teach the lesson and in allowing her to be attentive to students’ thinking as they tried to solve 
the problem. 

In each chart she listed solution strategies that she anticipated students might use, obstacles 
she expected they might encounter, and questions she intended to ask about their methods to 
highlight key mathematical issues or ways she intended to help them navigate around or through 
the obstacles (see the first two columns of the tables in appendices 1.A and 1.B). In so doing she 
illustrated the kind of lesson preparation that is crucial both to using cognitively demanding tasks 
effectively and to supporting a classroom discussion that clarifies and shares learning intentions 
and outcomes. Also, by carefully thinking in advance about likely solution methods and questions 
she might want to pose, Ms. Dyson was preparing herself to support students to persist in solving 
a challenging problem in the face of obstacles they might encounter rather than telling them 
explicitly how to solve the problem and thereby lowering the cognitive demand.

Next, while students worked in groups on the task, she used her monitoring chart to remind 
herself of the questions she wanted to ask students about their solution methods and to keep track 
of what students were doing (see column 3 of the tables in appendices 1.A and 1.B). Her record-
ings on the monitoring chart helped her decide which solutions should be presented during the 
discussion and in what order, key aspects of a solution she wanted to highlight, and who would 
be asked to present each one to the class (see column 4 of the tables in appendices 1.A and 1.B). 
In this way, she increased the opportunities that students would be able to learn from each other 
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during the whole-class discussion. The monitoring chart also helped her identify concepts that 
students were struggling with, to reassign group members so that students have the opportunity to 
work with peers with different strengths, and to keep track of which students had an opportunity 
to present their work to the class. Hence the information on the monitoring chart would be useful 
to Ms. Dyson in making instructional decisions in the current lesson as well as in future lessons.

Finally, the lesson provided an opportunity for students to take ownership of their learning. 
Students initially visited the website and determined that this was an authentic problem. Later, 
by carefully selecting the solutions that would be presented and the students who would do the 
presenting, Ms. Dyson built the lesson upon the thinking of her students and allowed them to be 
authors of their own ideas. Through their discussion of varied solution methods, students com-
pared responses to identify the strengths and weaknesses of different approaches to or explanations 
of a solution, rather than simply relying on the teacher to identify them as right or wrong. Students 
were thus held accountable for reasoning about and understanding key ideas. 

Ms. Dyson’s instructional practice embodies effective use of formative assessment as well as 
what Smith and Stein (2011) have referred to as the five practices for orchestrating a productive 
mathematics discussion. The practices (Anticipating, Monitoring, Selecting, Sequencing, and 
Connecting) are intended to help teachers maintain the cognitive demands of high-level tasks 
through thoughtful and thorough planning prior to a lesson, thereby limiting the amount of 
improvisation needed during the lesson. A lesson enacted using the five practices is similar to 
what Suurtamm (2012, p. 31) describes as a formative assessment approach called the “Math 
Forum,” in which a teacher gains “a strong sense of individual students’ as well as the whole class’s 
understanding of mathematical concepts.” 

■	Coda
We think Ms. Dyson’s lesson offers a vivid example of how formative assessment and the use of 
cognitively demanding mathematics tasks in instruction can be seamlessly integrated. Moreover, 
given recent arguments for the importance of taking a disciplinary perspective when thinking 
about formative assessment (e.g., Bennett 2011; Coffey et al. 2011), we see the integration of these 
perspectives as one way to accomplish that goal. By connecting these two lines of research in 
her own practice, Ms. Dyson provided her students with the opportunity to learn mathematical 
content and to engage in a set of practices that are the hallmark of the discipline, and she also gave 
herself a window into her students’ thinking and a mechanism for instructional decision making 
and improvement. 
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