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T
he current landscape of mathematics and science 
education looks quite different than it did during 
the major curriculum reforms of the late 1980s and 
early 1990s. The reform-oriented curricula gener-
ated during that time embodied an exciting vision 
of classrooms that put student reasoning, problem 

solving, explaining, and justifying at the center. However, 
these curricula typically lacked a basis in fine-grained 
understandings of how student ideas evolved over time for 
each topic addressed in the particular program. This is not 
a criticism of these programs but rather an assessment of 
the state of the field at that time. Since then, research on 
learning trajectories and progressions has developed to a 
point where research-informed curriculum development 
is now possible for more topics and grade levels (Clements,  
2007; Duschl, Maeng, & Sezen, 2011). Furthermore, 
numerous advocates point to the potential for learning tra-
jectories and progressions to help align curriculum, stan-
dards, assessment, instructional decision making, and 
professional development (Confrey, Maloney, & Nguyen, 
2014; Daro, Mosher, & Corcoran, 2011; Duncan & Hmelo-
Silver, 2009; National Research Council, 2007). Indeed, 
learning trajectories and progressions have “captured the 
imaginations and rhetoric of school reformers and edu-
cation researchers as one possible elixir for getting K–12 
education ‘on track’ ” (Shavelson & Karplus, 2012, p. 13).

Although there are historical forerunners (e.g., Gagne’s 
learning hierarchies and the research on levels of sophisti-
cation of children’s addition and subtraction strategies in 
the Cognitively Guided Instruction project; Carpenter & 
Moser, 1984; White, 1974), scholarship explicitly identi-
fied as trajectories or progressions research has recently 
seen a rapid expansion. The timeliness and importance of 
learning trajectories and progressions research is dem-

onstrated by the publication of several books (Alonzo 
& Gotwals, 2012; Clements & Sarama, 2009; Maloney,  
Confrey, & Nguyen, 2014), special journal issues  
(Clements & Sarama, 2004; Duncan & Hmelo-Silver, 
2009), conferences sponsored by the National Science 
Foundation (Learning Progressions Footprint Conference,  
2011; Learning Progressions in Science Conference, 2009),  
and policy reports (Corcoran, Mosher, Rogat, 2009; Daro 
et al., 2011; Heritage, 2008; National Research Council, 
2007) on the topic. The collection of learning progres-
sions created to organize and elaborate the Common 
Core State Standards in Mathematics (CCSSM; Common 
Core Standards Writing Team, 2013b; National Governors 
Association Center for Best Practices & Council of Chief 
State School Officers [NGA Center & CCSSO], 2010) has 
propelled this topic into public awareness by practitioners, 
state education departments, and curriculum developers 
(Achieve, 2015; Yettick, 2015).

One focus of this work has been to craft a universal  
definition of a learning trajectory/progression or to iden-
tify unifying features (Confrey, Maloney, & Corley, 2014; 
Duncan & Hmelo-Silver, 2009; Hess, 2008). For exam-
ple, the National Research Council (2007) characterized 
learning progressions as “descriptions of the succes-
sively more sophisticated ways of thinking about a topic 
that can follow one another as children learn about and 
investigate a topic over a broad span of time” (p. 214). 
Indeed this seems broad and general enough to capture 
most approaches in mathematics and science education.

However, the extensive literature review conducted 
for this chapter revealed a variety of significantly dif-
ferent approaches to learning trajectories and progres-
sions. Although differences in approaches do not seem 
to have been problematized by the field in general, a few 
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We argue that these and other differences are important 
for several reasons. First, a researcher’s stance regarding 
the various dimensions identified above informs the choice 
of a research method, such as cross-sectional interviews, 
one-on-one teaching experiments, or the retrospective 
analysis of classroom data. Second, the audience for the 
LT/P (e.g., teachers, researchers, or policy makers) will 
affect how the LT/P is presented (e.g., whether instruc-
tional tasks or pedagogical actions are a part of the LT/P or 
whether it is focused only on the development of an object 
of learning). Third, the approach taken to LT/P research 
affects the benefits and trade-offs of that work (see the Tax-
onomy of Seven Approaches to LT/Ps section below for a 
detailed discussion of the associated advantages and limi-
tations of each approach). Fourth, clearly articulating one’s 
stance on a variety of dimensions promotes effective com-
munication and helps researchers avoid talking past each 
other. Finally, being aware of the variety of approaches 
used in LT/P research across both science and mathemat-
ics education may open up new avenues for researchers to 
consider.

Consequently, the bulk of this chapter is devoted to the 
presentation of a taxonomy of seven approaches to LT/Ps. 
We named the approaches as follows: (1) cognitive levels,  
(2) levels of discourse, (3) schemes and operations, (4) hypo- 
thetical learning trajectories, (5) collective mathematical 
practices, (6) disciplinary logic and curricular coherence, 
and (7) observable strategies and learning performances. 
The taxonomy does not represent seven conceptions of the 
same phenomenon but rather seven different approaches 
taken by researchers who identify their work as being a 
learning trajectory or progression. By considering a vari-
ety of approaches to LT/Ps, we are not arguing that one is 
better than another. There are benefits as well as tradeoffs 
that each approach entails given the purposes for which 
it was developed. Our point instead is that the historical 
development of LT/P research has arrived at a stage in 
which the “it” underlying an LT/P investigation can no lon-
ger be assumed to be a generally agreed upon construct. 
Rather, the stance researchers take across a variety of 
dimensions should be clarified in reports of research.

Before presenting the taxonomy, we convey the meth-
ods used to arrive at the categories in the taxonomy and to 
locate articles for review. The chapter ends with a section 
called Crosscutting Issues in which we report on efforts to 
validate LT/Ps, use them with teachers, and identify chal-
lenges facing research in this area. Throughout this chap-
ter, it is important to remember that research on LT/Ps is 
not the same thing as research on learning. The extensive 
body of LT/P research that we reviewed does not reflect 
the variety of theoretical perspectives from which research 

important distinctions have emerged in recent scholar-
ship. For example, Empson (2011) notes a distinction 
between a “teacher-conjectured possible progression” and 
a “researcher-documented progression of actual learners”  
(p. 574). Another group of researchers (Ellis, 2014; Ellis, 
Weber, & Lockwood, 2014; E. Weber, Walkington, & 
McGalliard, 2015) distinguish between learning trajecto-
ries, which document the emergence of student thinking as 
it becomes more sophisticated, and learning progressions, 
which document students’ movement through benchmarks 
that are predetermined as a result of researchers’ rational 
analysis of particular content. Though this distinction is  
an important one, the association of it with the terms 
trajectory versus progression is nonstandard. Learning 
trajectory is usually the term of choice by mathematics 
educators and can be traced to a seminal article by Simon 
(1995) in the Journal for Research in Mathematics Educa-
tion. Learning progression is commonly used by science 
educators and can be traced to a 2004 special issue of the 
Canadian Journal of Science, Mathematics, and Technology 
Education. (A notable exception—and one that likely influ-
enced Ellis et al., 2014—is the use of learning progres-
sion in the CCSSM work.) Furthermore, the differences 
in approaches revealed by our literature review do not lie 
cleanly along the trajectory versus progression distinction 
but rather cut across disciplinary boundaries of math-
ematics and science education. Thus, we use trajectory 
and progression interchangeably in this chapter and the 
acronym LT/P to refer to learning trajectory/progression.

The phenomenon being captured by LT/Ps is multidi-
mensional; thus, there are many aspects on which they 
can vary. LT/Ps can have different objects of learning. For 
example, the elements of an LT/P may be, among many 
things, cognitive conceptions (e.g., Battista, 2004), forms 
of discourse (e.g., Jin & Anderson, 2012), observable strat-
egies (e.g., Vermont Mathematics Partnership’s Ongoing 
Assessment Project, 2014b), or textbook tasks (e.g., Wang, 
Barmby, & Bolden, 2015). LT/Ps can focus on the learning 
of individuals (e.g., Steffe, 2004), the emergent mathemati-
cal practices of a collective classroom (e.g., Cobb, McClain, 
& Gravemeijer, 2003), or an intertwining of teaching and 
learning (e.g., Clements & Sarama, 2009). LT/Ps can also 
be rooted in a variety of theoretical perspectives, such as 
Piagetian schemes and operations (e.g., Hunt, Westenskow,  
Silva, & Welch-Ptak, 2016), hierarchic interactionalism 
(e.g., Clements & Sarama, 2014), or Cobb and Yackel’s 
(1996) emergent perspective (e.g., Stephan & Akyuz, 2012). 
And, LT/Ps can vary in scale, from addressing a single con-
cept (e.g., partitive reasoning with fractions; Norton & 
Wilkins, 2010) to spanning multiple topics and grade levels 
(e.g., Smith, Wiser, Anderson, & Krajcik, 2006).
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Our goal in identifying relevant science education 
articles was to inform and extend mathematics education 
research on LT/Ps. Because the condition of an exhaustive 
search was lightened, we proceeded in a different man-
ner. Specifically, we started with the science education 
resources that had been gathered by the organizers of the 
2011 Learning Progressions Footprint Conference, which 
included numerous journal articles and the book ema-
nating from the 2009 Learning Progressions in Science 
Conference (Alonzo & Gotwals, 2012). Examining the 
references of these papers led to additional articles and 
to a search of the Journal of Research in Science Teaching  
and Science Education using the same search terms iden-
tified above. Note also that four of the journals identified 
above publish articles from science education as well as 
mathematics education.

During the initial analytical pass, as we read abstracts 
and skimmed articles, it became clear that there was 
much greater variation in the approach to LT/Ps than had 
previously been reported and that this variation could be 
productively captured through the creation of a taxon-
omy. Thus, a structure for the chapter emerged; we would 
present different approaches to LT/Ps via a taxonomy, 
using specific articles to elaborate and illustrate each 
approach, while discussing the other articles in respec-
tive sections devoted to the validation of LT/Ps, use with 
teachers, and critiques.

To create the taxonomy, we initially sorted the arti-
cles by field—mathematics versus science—because we 
thought that learning progressions in science education 
were fairly uniform and differed significantly from learn-
ing trajectories in mathematics. But that impression did 
not bear up under scrutiny. We soon realized the catego-
ries cut across the disciplines. Using open coding from 
grounded theory (Strauss, 1987), we began with a few 
similar articles that presented LT/Ps as a set of qualita-
tively distinct types of cognition that occur within a hier-
archy of levels of increasing sophistication. We named 
this initial category the “cognitive levels” approach. 
Then we employed the constant comparative method 
of grounded theory (Glaser & Strauss, 1967), assessing 
each new article in terms of the initial category, induc-
ing new categories when needed. To achieve a parsimoni-
ous taxonomy, we refined categories to be broad enough 
to accommodate multiple LT/Ps. At the same time, we 
dimensionalized each category by initially creating a gen-
eral characterization, a list of features, and examples for 
each category. Later we returned to the articles to iden-
tify the research methods that were used, as well as the 
purpose for which the LT/P was developed and its affor-
dances and constraints. As a result of this process, we cre-

on knowing and learning is currently being conducted (e.g., 
see Cobb’s 2007 review of learning theories and philo-
sophical foundations). In particular, Vygotskian, activity- 
theoretic, embodied, and situated perspectives are not well  
represented in LT/P research. Additionally, there have 
been recent contributions to ways of conceiving of think-
ing and learning (e.g., Sfard’s, 2008, commognitive per-
spective, as reviewed in Herbel-Eisenmann, Meaney, 
Bishop, & Heyd-Metzuyanim, 2017, this volume) and to 
specific learning processes (e.g., Norton & D’Ambrosio’s, 
2008, development of the zone of potential construction 
and its comparison to the zone of proximal development), but 
this research has not been framed in terms of LT/Ps (and 
thus is excluded from the review). Finally, we embrace an 
interdisciplinary approach, drawing upon research in sci-
ence education as well as in mathematics education, to 
inform the construction of the taxonomy and to generate 
key examples in several categories. We believe that reach-
ing beyond our domain yields generative examples that 
can beneficially influence approaches to LT/Ps in math-
ematics education.

Literature Review Methods

To identify mathematics education articles from refereed  
journals that present or validate learning trajectories or 
that examine related theoretical issues, we conducted a  
search of the following: Canadian Journal of Science, Cog-
nition & Instruction, Educational Studies in Mathemat-
ics, International Journal of Science and Mathematics 
Education, Journal for Research in Mathematics Education, 
The Journal of Mathematical Behavior, Journal of the Learn-
ing Sciences, Mathematical Thinking and Learning, Math-
ematics and Technology Education, Mathematics Education 
Research Journal, The Mathematics Enthusiast, and, ZDM— 
The International Journal on Mathematics Education. We 
searched according to the following key words: learn-
ing trajectory, developmental, longitudinal, and progres-
sion. Because LT/Ps have not been a focus of attention 
in recent surveys of research in mathematics educa-
tion, we did not restrict the dates for inclusion in these 
searches. As we gathered the articles, we also looked at 
their references to locate additional pieces, and we con-
ducted a search on Google Scholar. These efforts yielded 
numerous conference reports, books, book chapters, 
monographs, policy reports, and dissertations. We con-
strained our focus to the learning of mathematics K–16, 
thus excluding studies of teacher learning and noticing, 
except for reports of the use of LT/Ps with or by teachers, 
which expanded our search to the Journal of Mathematics 
Teacher Education.
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student pointed and counted at imagined squares but  
got lost several times in her counting. She then pointed  
in a somewhat random path (as shown in Figure 4.1b)  
to arrive at an (incorrect) answer of 30 squares. The 
researchers placed this student in Level 1 because she 
did not appear to be able to locate squares by coordi-
nating row and column dimensions in an array (a lack of  
a units-locating process) or compose squares to form 
rows or columns (a lack of an organizing-by-composites  
process).

ated a taxonomy of seven approaches to LT/Ps, which we 
present next.

Taxonomy of Seven Approaches to Learning 
Trajectories and Progressions

Approach 1: Cognitive Levels

Characterization and example. In the cognitive-levels 
approach to LT/Ps, researchers identify qualitatively dis-
tinct types of cognition (typically conceptions or ways 
of reasoning) that occur within a hierarchy of levels of 
increasing sophistication. The LT/Ps speak to the learning 
of domain-specific content, such as linear measurement 
(Barrett, Clements, Klanderman, Pennisi, & Polaki, 2006), 
angle concepts (Mitchelmore & White, 2000), integers 
(Bishop, Lamb, Philipp, Whitacre, & Schappelle, 2014), or 
thermal equilibrium (Clark, 2006). This type of research 
can include weak hierarchies (e.g., Battista, 2004), in 
which cognitive milestones are ranked in order of sophis-
tication but class inclusion relationships are not assumed, 
or strong hierarchies (e.g., van Hiele levels of geometry; 
Burger & Shaughnessy, 1986), in which a particular level 
assumes a student has progressed through all previous 
levels.

As an example of this approach, consider Battista’s 
(2004) LT/P for area and volume measurement. It is an 
integration of results from a series of empirical studies  
(Battista, 1999; Battista & Clements, 1996; Battista,  
Clements, Arnoff, Battista, & Borrow, 1998) and consists 
of seven levels of sophistication in elementary students’ 
two-dimensional and three-dimensional spatial reason-
ing (as described in Table 4.1). As an example of Level 1  
reasoning, consider a student who is shown the 6 × 4 rect-
angle from Figure 4.1a, along with a plastic inch square  
the same size as one of the squares indicated in the rect-
angle. The student is asked to predict how many plastic  
squares it takes to completely cover the rectangle. One  

Table 4.1. Authors’ Tabular Representation of Battista’s 
Learning Trajectory

Cognitive 

level

 

Description

Level 1 Absence of units-locating and organizing-by- 
composites processes

Level 2 Beginning use of the units-locating and the 
organizing-by-composites processes

Level 3 Units-locating process becomes sufficiently 
coordinated to recognize and eliminate double-
counting errors

Level 4 Use of organizing-by-composites process to 
structure an array with maximal composites, but 
insufficient coordination for iteration

Level 5 Use of units-locating process sufficient to correctly 
locate all units, but less-than-maximal composites 
employed

Level 6 Complete development and coordination of both the 
units-locating and the organizing-by-composites 
processes.

Level 7 Students’ spatial structuring and enumeration 
schemes become sufficiently abstract

Note. Adapted from “Applying Cognition-Based Assessment to 
Elementary School Students’ Development of Understanding of Area and 
Volume Measurement” by M. T. Battista, 2004, Mathematical Thinking 
and Learning, 6(2), pp. 185–204.

1 2 3 4 5 6

19 18 17
16 27 28 29 7

20 26
2415 25 30 8

21 22 23
14 13 12 11 10 9

(b)(a)

Figure 4.1. Display presented to students (a) and one student’s subsequent pointing and counting (b). From “Applying 
Cognition-Based Assessment to Elementary School Students’ Development of Understanding of Area and Volume Measurement” 
by M. T. Battista, 2004, Mathematical Thinking and Learning, 6(2), p. 193.
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oped a web-based formative assessment program, called 
Diagnoser (http://www.diagnoser.com/), which identifies  
a large set of facets representative of students’ ideas 
across a variety of topics in physics, biology, and chem-
istry. Diagnoser uses sets of multiple-choice questions  
in which each alternative response is tied to a particular  
facet. Students receive feedback tied to the inferred 
facet as they work. Teachers can access reports of their  
students’ thinking, which in turn can inform the use of 
facet-driven instructional resources, also available on the 
project web site.

One trade-off of the cognitive-levels approach to LT/Ps  
is that the learning mechanisms by which a student uses  
knowledge at one level to construct understanding at a  
higher level are backgrounded or underspecified. Research-
ers sometimes make conjectures regarding such pro-
cesses; however, the methods used do not tend to offer data 
to support or reject particular conjectures. A second trade-
off concerns the method of developing LT/Ps via cross-
sectional interview methods, with most study participants 
being drawn from traditional classrooms. As a result, less 
will be known about the progression of understanding 
that is possible had the students experienced innovative 
instructional approaches.

Finally, E. Weber and Lockwood (2014) contend that 
most LT/Ps have focused on students’ understanding of 
specific mathematical content and have not accounted 
for broader characteristics of that content knowledge 
(what Harel, 2008, calls students’ ways of thinking). For 
example, in the domain of mathematical functions, specific 
content understanding includes the idea that the rate of 
change of the rate of change of a quadratic function is con-
stant. However, a way of thinking may entail different con-
ceptions of covariation, such as focusing on changes in one 
quantity followed by a change in the other quantity versus 
simultaneous changes in both quantities. Similarly, LT/Ps  
have not tended to tackle the development of scientific 
habits of mind or mathematical practices, such as explain-
ing or conjecturing (Empson, 2011). This is beginning 
to change with the presentation of LT/Ps on covariation 
(Ayalon, Watson, & Lerman, 2015; Ellis, Özgür, Kulow, 
Williams, & Amidon, 2015), generalizing (Blanton, Bri-
zuela, Gardiner, Sawrey, & Newman-Owens, 2015), and 
defining (Kobiela & Lehrer, 2015). We next turn to a type 
of LT/P that attempts to identify levels of sophistication in 
another type of practice, namely ways of communicating.

Approach 2: Levels of Discourse

Characterization and example. Rather than focusing  
on cognitive landmarks, the levels-of-discourse approach 

Features. LT/Ps from a cognitive-levels approach typi-
cally include a beginning level or lower anchor marked by 
informal reasoning and an ending level or upper anchor of 
the conventional content targeted by instruction. Addi-
tionally, learners may enter at different levels, jump lev-
els, or fall back to a previous level (Battista, 2011). The 
landmarks within an LT/P are characterized in a vari-
ety of ways by different researchers. One way is in terms 
of mental actions (e.g., use of the units-locating process in 
Battista, 2004, or “coordinating iterated-unit items and 
side lengths” in Barrett et al., 2006, p. 197). A second way is 
in terms of fine-grained ideas or intuitions, what Minstrell  
(2001, p. 373) calls “facets of thinking” (e.g., atoms are 
spherical or an upward sloping graph means the object rep-
resented is going uphill; Clark, 2006; Minstrell, 2000). A 
third approach is to cluster meanings according to types of 
abstraction (e.g., situated angle concepts, contextual angle 
concepts, and abstract angle concepts; Mitchelmore &  
White, 2000). Additionally, some of these LT/Ps include 
only productive conceptions as milestones (e.g., Mitchel-
more & White, 2000), whereas others include misconcep-
tions or partially productive understandings (e.g., Level 1 
in Battista’s trajectory above or Bishop et al., 2014).

Methods. The primary method used to identify  
cognitive-levels LT/Ps is cross-sectional interviews over 
multiple grade levels. For example, Barrett et al. (2006) 
conducted clinical interviews with 38 students across 
grades 2–10. Mitchelmore and White (2000) sampled 
across schools as well as grade levels (grades 2, 4, 6, and 8), 
conducting interviews with 192 students. Consequently, 
the levels in these LT/Ps are “compilations of empirical 
observations of the thinking of many students” (Battista, 
2004, p. 187). Though the researchers may posit that 
instruction plays a key role, in the sense that the levels are 
not assumed to be achieved solely as a natural result of mat-
uration, instruction is backgrounded in the presentation 
of the LT/P. This is due, in large part, to the fact that study 
participants are drawn from cross-sectional studies where 
they encounter different instructional environments.

Purpose, benefits, and trade-offs. A main purpose of 
the cognitive-levels LT/Ps is for diagnostic assessment. 
For example, Battista developed the Cognition-Based 
Assessment (CBA) program, which produced six volumes  
for teachers (across a variety of elementary school top-
ics) articulating how to conduct and use formative assess-
ment that is grounded in a learning trajectory. In the book 
on geometry shapes, Battista (2012) presents the LT/P 
described previously in this section, along with a set of 
assessment tasks with typical student responses to help 
teachers recognize student reasoning associated with 
each cognitive milestone. Similarly, Minstrell (2001) devel-
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argument (Berland & McNeill, 2010), or group discussion 
(Erduran, Simon, & Osborne, 2004). Progress along the  
levels of discourse can thus be thought of as “movement 
towards mastering a secondary Discourse” (Gunckel, 
Mohan, et al., 2012, p. 55).

As an example of an LT/P from this approach, consider 
Jin and Anderson’s (2012) four levels of discourse related 
to narrative accounts of carbon-transforming processes 
(see Table 4.2). The trajectory emphasizes how the stu-
dent communicates about energy rather than the content 
of the account. An instance of Level 1 discourse can be 
seen in the following student’s description of how a baby 
uses food for energy:

Because the food helps make energy for the girl so then she 
can like learn how to walk and crawl and stuff. And then  
it will also help the baby so it will be happy, be not mean and 
stuff. (p. 1164)

Here the student employed a primary discourse to cre-
ate a force-dynamic narrative account of energy’s role in a 
biological process (to explain what the food allows the baby 
to do), without appealing to scientific principles, which 
would have indicated a Level 2 narrative account.

Features. Researchers describe levels of discourse 
in a variety of ways. As in the example given above, levels 
may represent increasing use of a secondary discourse 
as reflected by the narrative accounts that students 
provide about a scientific concept, such as energy in 
socio-ecological systems (Jin & Anderson, 2012), the 
water cycle (Gunckel, Covitt, Salinas, & Anderson, 2012), 
or biochemical processes (Mohan, Chen, & Anderson, 
2009). Other LT/Ps leverage Toulmin’s (1958/2003) model 
of argumentation. For example, Berland and McNeill 
(2010) describe increasingly complex levels of scientific 
argumentation across the dimensions of instructional 

describes increasingly sophisticated ways of communi-
cating. Gee defines discourse as “a socially accepted asso-
ciation among ways of using language, of thinking, and of 
acting that can be used to identify oneself as a member of a 
socially meaningful group or ‘social network’ ” (1991, p. 3).  
Gee differentiates between primary discourse, which is 
acquired within the contexts of home and community, and 
secondary discourse, which is learned in social institu-
tions such as schools and workplaces. Levels-of-discourse  
LT/Ps characterize students’ narrative accounts and argu-
ments along a continuum of sophistication, for which the 
upper anchor is representative of practitioners’ secondary 
discourse practices (e.g., scientists or mathematicians), 
and the lower anchor is representative of informal primary 
discourse practices. Whereas the LT/Ps outlined in the 
cognitive-levels approach are fine-grained with many lev-
els to capture subtle differences in individuals’ cognitive 
abilities, the LT/Ps described in this approach tend to be at 
a macro scale with fewer levels.

Some of the LT/Ps in the cognitive-levels approach 
characterize the levels in terms of misconceptions or the 
lack of some understanding. In contrast, the lower levels of 
levels-of-discourse progressions describe how students’ 
initial narrative accounts serve as a foundation for more 
sophisticated secondary discourse practices. Additionally, 
the LT/Ps describe the primary discourse practices that 
are evident and utilized by students rather than character-
izing the students’ narrative from a deficit perspective. For 
instance, Gunckel, Mohan, Covitt, and Anderson (2012) 
noted that a cognitive-levels trajectory was insufficient for 
capturing the linkages between young students’ and older 
students’ narrative accounts, as well as identifying the con-
nections of both of these to model-based narratives that 
represent scientific literacy. In general, levels-of-discourse  
LT/Ps emphasize the quality and tenor of the narrative 
account of a scientific process (Jin & Anderson, 2012), 

Table 4.2. Authors’ Tabular Representation of Jin and Anderson’s LT/P

Discourse level Description

Level 1: Force-dynamic narrative 
accounts

Students utilize everyday language from their primary discourse to describe events in terms of  
actors, enablers, purposes, and results.

Level 2: Force-dynamic narrative 
accounts with hidden mechanisms

Students’ narrative accounts begin to incorporate a sense of physical necessity that includes some key 
aspects of scientific ideas about energy and represent a slight shift toward a secondary discourse.

Level 3: School science narrative 
accounts

Such accounts leverage secondary discourse resources, including language about atoms, molecules, 
forms of energy, and conservation laws. These include many more scientific facts about matter and 
energy than seen in Level 2.

Level 4: Qualitative model-based 
narrative accounts

Students successfully use energy as an analytical tool in their narrative accounts and utilize scientific 
principles, indicating a mastery of a secondary discourse.

Note. Adapted from “A Learning Progression for Energy in Socio-Ecological Systems” by H. Jin and C. W. Anderson, 2012, Journal of Research in Science 
Teaching, 49(9), 1149–1180.
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ance of vocabulary words (such as energy, force, or mat-
ter) that have contrasting meanings in everyday versus 
formal scientific discourses, because of the centrality of 
narrative accounts in providing scientific explanations, 
or because of the emphasis in science education policy 
documents on helping students participate in scien-
tific discourse (Kuhn, 2010; National Research Council,  
2007, 2012).

Two decades ago, Richards (1991) identified four types 
of mathematics discourse used in different communi-
ties: (1) research math, which is the spoken mathemat-
ics of mathematicians; (2) inquiry math, which is used by 
mathematically literate adults; (3) journal math, which is 
the language of mathematical publications; and (4) school 
math, which includes the discourse of traditional math 
classes. Although there has been research identifying 
changes in the nature of discourse practices in mathe-
matics (e.g., Wood, Williams, & McNeal, 2006), this work 
has not been characterized in terms of LT/Ps. More com-
mon has been the use of Toulmin’s scheme to understand 
students’ argumentation (e.g., K. Weber, Maher, Powell, 
& Lee, 2008); however, when this scheme has been used 
with LT/Ps, it has been in the methodological service of 
establishing collective mathematical practices (which 
we review in Approach 5 below). The closest example 
of a levels-of-discourse LT/P that we could find in the 
mathematics education literature is a recent study that 
presents what Pöhler and Prediger (2015) call a “lexical 
learning trajectory” (p. 1697). In it, the researchers iden-
tify six levels of increasingly sophisticated use of vocabu-
lary related to percent problems, from students’ informal 
language in the everyday register to their extended read-
ing vocabulary in the academic school register.

Approach 3: Schemes and Operations

Characterization and example. Researchers taking a 
schemes-and-operations approach generate a model of 
students’ initial schemes and mental operations (in the 
sense of Piaget, 1950/2001) and infer the modifications 
of students’ schemes over time (Hackenberg, 2014). In 
contrast to the identification of levels (cognitive or dis-
cursive), researchers seek evidence of both the general 
and fine-grained learning processes involved as students 
use prior knowledge as a foundation for constructing or 
modifying their schemes. This research is conducted from 
the theoretical perspective of Piagetian scheme theory, in 
which a scheme is conceived as a researcher’s construct 
used to model students’ concepts (meaning the “goal 
directed regularities in a person’s functioning”; Hacken-
berg, 2010, p. 386). According to von Glasersfeld (1995), a 

context, argumentative product, and argumentative 
process. Although Berland and McNeill’s LT/P charac-
terizes an individual’s level of argumentation, Erduran  
et al. (2004) leverage Toulmin’s scheme to provide an 
LT/P that characterizes the tenor and sophistication of 
argumentation among a group of students.

Methods. Research targeting the creation of an LT/P 
characterizing levels of discourse is typically conducted 
across multiple grade levels. For example, Jin and Ander-
son (2012) collected written data from students in fourth 
grade through high school. Although such research (i.e., 
written assessments given outside of class and collected 
from a cross-section of multiple grade levels) is typical for 
levels-of-discourse progressions, Berland and McNeill 
(2010) conducted research inside the classroom in an effort 
to account for how differences in instruction might affect 
students’ arguments. Researchers often set the upper 
anchor for the trajectory using available standards 
(e.g., the Framework for K–12 Science Education, a stan-
dards guide published by the National Research Council, 
2012), whereas they capture lower levels of the trajectory  
through linguistic analysis of students’ written and oral  
accounts about the topic. For example, Gunckel, Covitt, 
et al. (2012) used written assessments to inform each 
iteration of their learning progression, and Erduran et al.  
(2004) analyzed audio recordings of whole class and small  
group discussions.

Purpose, benefits, and trade-offs. Gee (1991) charac-
terizes literacy as the mastery of a particular discourse 
that is acquired through increased participation in com-
munities where that discourse is common and valued. 
Thus, in a broad sense, LT/Ps in the levels-of-discourse 
approach allow researchers to focus on the degree to 
which learners are participating in a community of prac-
tice (e.g., Erduran et al., 2004; Mohan et al., 2009). By 
analyzing students’ narrative accounts, researchers are 
better able to understand “the pathways that students 
take through the learning progression from their pri-
mary Discourse to a secondary Discourse of scientific 
model-based reasoning” (Gunckel, Mohan, et al., 2012, 
p. 72). In a narrower sense, this research provides a tool 
by which instruction can be aligned with state standards. 
For example, based on their analysis of student data and 
subsequent development of their learning progression, 
Gunckel, Mohan, et al. argue that current instructional 
efforts are insufficient for helping students reach the 
upper anchor.

One trade-off is that framing this approach in terms 
of primary and secondary discourses may resonate more 
with science education than mathematics education 
researchers. Perhaps this is because of the preponder-
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fact, a single scheme may give rise to several different 
mathematical strategies.

As an example of an LT/P from this approach, con-
sider Hackenberg and Tillema’s (2009) research on the 
learning of fraction multiplication concepts by two pairs 
of grade 6 students participating in an 8-month after-
school teaching experiment. We present Figure 4.2 below 
to make several points about the nature of the learning 

scheme consists of three parts: (1) a set of internal condi-
tions that need to be satisfied for the rest of the scheme 
to be triggered (meaning that a person recognizes a situ-
ation as something he or she has encountered before); 
(2) ways of operating, mentally or physically; and (3) an 
anticipation of the outcome of the activity. According to 
Norton and McCloskey (2008), schemes are activated 
holistically rather than step-by-step like a strategy. In 
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Figure 4.2. Authors’ interpretation and illustration of a learning trajectory leading to the general fraction composition 
scheme, as described by Hackenberg and Tillema. Adapted from “Students’ Whole Number Multiplicative Concepts: A Critical 
Constructive Resource for Fraction Composition Schemes” by A. J. Hackenberg and E. S. Tillema, 2009, The Journal of  
Mathematical Behavior, 28(1), pp. 1–18.
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instructional features, such as the interactions between 
researcher and students or the particular tasks posed, 
may be included in the narrative presentation of learn-
ers’ schemes and operations, the focus is on students’ 
reasoning and on the inferences of cognitive structures 
that seem to fit with the regularities in the students’ 
behaviors (as exhibited in talk and written work). Due 
to the fine-grained nature of the analysis, the number of 
participants is typically small (from 1 to 12) and the time 
periods long (often weekly sessions for 2–3 years).

Purpose, benefits, and trade-offs. A key aim of this 
approach is to contribute to basic scientific research 
on the learning of particular content in mathematics 
through microanalysis of the evolution of individuals’ 
understanding. Contributions include the elaboration of 
subtypes of Piaget’s general learning process of accom-
modation (e.g., two of these subtypes are metamorphic 
accommodation and functional accommodation; Steffe, 
1991), content-specific instantiations of elements of 
Piaget’s other learning process of reflective abstraction 
(e.g., the interiorization of multiplication operations; 
Hackenberg & Tillema, 2009), and the articulation of 
important mental operations involved in the learning of 
particular mathematics topics (e.g., unitizing, iterating, 
splitting, and partitioning in the learning of fractions; 
Norton & Wilkins, 2010).

One trade-off is the use of small n, which limits research-
ers’ ability to generalize from a study sample to a popula-
tion. Instead, the main conception of generality present 
in this research is providing useful constructs to other 
researchers (Steffe & Thompson, 2000). A second trade-
off has been a lack of explicit attention to the teacher’s 
pedagogical actions. This may have been deliberate, 
so that the emphasis would be on the logic of children’s 
mathematics rather than on the logic of adult math-
ematics for children (L. P. Steffe, personal communica-
tion, October 28, 2002). There have been a few efforts to 
extend the schemes-and-operations approach by coding 
the types of instructional moves that seem to support 
the construction of students’ ideas (Barrett & Clements, 
2003; Tzur, 1999). However, the presentation of instruc-
tional supports is not usually an explicit and prominent 
component of these LT/Ps, as it is in the next approach.

Approach 4: Hypothetical Learning Trajectory

Characterization and example. Although LT/Ps in the 
first three approaches focus primarily on learners, this 
approach includes instructional supports for learn-
ing and was originally conceived as part of a model of 
teachers’ decision making (Simon, 1995). Specifically, 

trajectory. First, the centerpiece of the trajectory is the 
construction and modification of schemes. For example, 
one scheme in this trajectory is the unit fraction compo-
sition scheme, which involves perceiving a situation as 
calling for taking a unit fractional part of a unit fraction 
of a whole (e.g., finding 1⁄5 of 1⁄7 of one whole), separat-
ing the whole into seven equal parts, partitioning one of 
the sevenths into five equal parts, and then comparing 
the resulting part of a partition to the whole (as 1⁄35 of one 
whole). Second, there is a focus on mental operations, 
such as disembedding, which is the imagistic pulling of a 
fraction from a whole while maintaining the whole (Olive, 
1999). Third, evidence is provided to support an explana-
tion for the students’ evolution of schemes. Specifically, 
the researchers draw upon two resources to identify 
these learning processes (indicated by the ellipses in Fig-
ure 4.2)—students’ mental coordinations (of different 
levels of units) and reflective abstraction (especially the 
upper level of such, which is called interiorization, or tak-
ing the result of activity as something to be operated on).

Features. Schemes-and-operations LT/Ps have been 
identified as the result of research into the learning of a 
variety of topics in mathematics, including whole num-
ber sequences (Steffe, Cobb, & von Glasersfeld, 1988), 
whole number multiplication (Steffe, 1992), fraction 
meanings and operations (Hackenberg, 2010; Norton, 
2008; Olive, 1999; Steffe & Olive, 2010), algebraic rea-
soning (Hackenberg, 2013, 2014), trigonometry (Moore, 
2013), proportional reasoning (Nabors, 2003), calculus 
(E. Weber & Thompson, 2014), and combinatorial rea-
soning (Tillema, 2014).

Because of the shared theoretical perspective of Piag-
etian constructivism, there is less variation among the 
trajectories from this approach than the other approaches 
articulated in this taxonomy. One underlying theoretical 
assumption is that the way students respond to particu-
lar activities and instructional interactions is influenced 
by their existing conceptual structures. Consequently, 
researchers working from this approach often create  
LT/Ps based on epistemic subjects, which refers to the com-
mon operations across people at the same developmental 
level (Beth & Piaget, 1966). Thus, this research would 
not assume a single trajectory for a given domain; rather,  
LT/Ps would vary across different epistemic subjects (i.e., 
students starting at different developmental levels).

Methods. The primary method used in the generation 
of schemes-and-operations LT/Ps is that of the teach-
ing experiment (Steffe & Thompson, 2000), performed 
typically with a researcher-teacher working in paral-
lel sessions with sets of individuals or pairs of students 
in a learning or tutoring environment. Although some 



A Taxonomy of Approaches to Learning Trajectories and Progressions  ◆    83

accurate, and generalizable methods to add and subtract 
multidigit whole numbers . . . [and] understand why the 
procedures work (on the basis of place value and prop-
erties of operations)” (p. 14). Levels of children’s rea-
soning and instructional activities designed to support 
them in achieving each level of thinking are presented in 
a two-column format (see Table 4.3 for an example). This 
approach highlights the context-dependent nature of 
learning; that is, what children learn is sensitive to the 
instructional tasks in which they engage (Ellis, 2014). 
For example, in classrooms dominated by part-whole 
tasks, children are likely to learn to think of fractions in 
terms of counting parts, but in classrooms dominated by 
equal sharing tasks, children are likely to learn to think 
about fractions in terms of multiplicative relationships 
between quantities (Empson, 2011).

Features. A central feature of this approach is the ongo-
ing modification of the LT/P. This characteristic arises 
from the purpose for which Simon (1995) developed the 
notion of an HLT, namely to offer a conceptualization of 
teaching as being informed by a constructivist perspec-
tive on learning. Because constructivism asserts that 
knowing is interpretative in nature (von Glasersfeld, 
1995), the teacher needs to seek information regarding 
how students interpret a learning activity. As a result, the 
teacher revises the activities, goals, and conjectures about 
students’ understandings. However, a critical reader may 
argue that the LT/Ps provided to teachers (e.g., as shown 
in Table 4.3) appear to be preplanned roadmaps (Meletiou-
Mavrotheris & Paparistodemou, 2015). Yet Clements and 
Sarama (2004) write that “a priori learning trajectories 
are always hypothetical. . . . The teacher must construct 
new models of children’s mathematics as they interact  
with children around the instructional tasks” (p. 85).  

Simon introduced the term hypothetical learning trajec-
tory (HLT) to capture the result of a process in which  
a teacher posits a conjecture regarding her students’ 
current understanding of a targeted concept (including 
potential challenges for them) and then develops learn-
ing activities that she thinks will support them in con-
structing more sophisticated ways of reasoning toward 
a particular learning goal. Simon and Tzur (2004) later 
highlighted the importance of and principles for select-
ing tasks that promote students’ development of more 
sophisticated mathematical concepts. Building on this 
work, Clements and Sarama (2004) define learning tra-
jectories as

descriptions of children’s thinking and learning in a spe-
cific mathematical domain and a related, conjectured route 
through a set of instructional tasks designed to engender 
those mental processes or actions hypothesized to move chil-
dren through a developmental progression of levels of think-
ing, created with the intent of supporting children’s achieve-
ment of specific goals in that mathematical domain. (p. 83)

As an example, consider a portion of one trajectory 
from Clements and Sarama’s (2009) book for teachers 
containing an interrelated web of 10 learning trajec-
tories for pre-K to grade 5 across a variety of domains 
including number and operations, measurement, and 
geometry. Each LT/P consists of three components:  
(1) an overarching learning goal, (2) levels of thinking, 
and (3) instructional tasks. For example, the LT/P on the 
composition of number and multidigit addition and sub-
traction is guided by the following goal from Curriculum 
Focal Points (National Council of Teachers of Mathemat-
ics, 2006): “Children develop, discuss, and use efficient, 

Table 4.3. Portion of a Learning Trajectory for Composing Number and Multidigit Addition and Subtraction

Levels of thinking Instructional tasks

Composer to 10. Knows number combinations to totals of 10. 
Quickly names parts of any whole or the whole given parts.

Finger games. Ask children to show 6 with their fingers. Tell their part-
ner how they did it. Then show 6 in a different way. Now make 6 with 
the same number on each hand. Repeat with other numbers and other 
conditions (e.g., “you can’t use thumbs”).

Composer with 10s and 1s. Understands two-digit numbers as 
tens and ones.

Composing 10s and 1s. Show students connecting cubes—4 tens and  
3 ones—for 2 seconds (e.g., hidden under a cloth). Ask how many they 
saw. Discuss. Show cubes. Repeat with new amounts.

Deriver. Uses flexible strategies and derived combinations, 
including break-apart-to-make-10. Can simultaneously think of 
three numbers within a sum and can move part of a number to 
another, aware of the increase in one and the decrease in another.

Addition and subtraction. Present all types of single-digit problems, such 
as “What is 7 plus 8?” Ask students to describe their thinking. Share 
different methods. Sample responses: “7 + 7 = 14, so 7 + 8 is 15” or “7 is 
2 and 5. Add 2 and 8 to make 10. Then add 5 more to get 15.”

Note. Adapted from Learning and Teaching Early Math: The Learning Trajectories Approach by D. H. Clements and J. Sarama, 2009, New York, NY: 
Routledge, pp. 101–104.
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learning-trajectory approach, the starting point in 
teacher planning is the creation of conjectures regarding 
what students understand initially and what they may be 
able to learn next. Instructional tasks are selected, not 
only on the basis of generic task features, such as high 
cognitive demand or student interest, but also because  
of an inferred quality of being able to engender the next 
level of sophistication of student thinking. In turn, hypoth-
eses about student learning are based on the particular 
tasks employed and how teachers organize students’ 
engagement with these tasks.

One trade-off of this approach, at least as it has cur-
rently been enacted, is that explicit conjectures regard-
ing the learning processes that enable students to lever-
age one understanding to develop more sophisticated 
understanding are not typically part of the LT/Ps com-
municated to teachers (Simon et al., 2010). Second, by 
targeting learning goals specified in standards docu-
ments (probably as a means for tapping into goals that 
teachers already value), the LT/Ps don’t speak to what 
is possible when mathematical goals not included in 
current standards are embraced, along with associated 
innovative forms of instruction (Lobato, Hohensee, 
Rhodehamel, & Diamond, 2012). Finally, although these 
LT/Ps include instructional tasks, the next approach 
broadens the instructional supports to include char-
acteristics of the social environment of the classroom, 
such as social norms and sociomathematical norms.

Approach 5: Collective Mathematical Practices

Characterization and example. Whereas the LT/Ps in the 
previous four categories capture the evolution of increas-
ing mathematical or scientific sophistication at the indi-
vidual level, the trajectories in this approach document the 
progress of a community. This line of research is informed 
largely by the theoretical approach called the emergent 
perspective (Cobb & Yackel, 1996), in which individual 
constructs (such as beliefs and conceptions) are coordi-
nated with collective constructs (such as social norms 
and classroom practices). A learning trajectory from this 
approach consists of a “sequence of classroom mathemati-
cal practices together with conjectures about the means 
of supporting their evolution from prior practices” 
(Cobb, 1999, p. 9). Specifically, classroom mathematical 
practices are students’ ways of operating, arguing, and 
using tools that function in the class as if they are taken-
as-shared. The phrase taken-as-shared is used, rather than 
shared, to emphasize that the claim does not pertain to one 
individual’s understanding but rather to ways of operat-
ing that no longer need justification and have become 

This ongoing iterative process of conjecture and revision 
is reflected in the following terminology: Prior to instruc-
tion or analysis a teacher or researcher has a planned or 
hypothetical learning trajectory, whereas the coproduc-
tion of mathematical knowledge during instruction or 
the results of retrospective analysis by researchers is 
often known as an actual learning trajectory (Clements 
& Sarama, 2004; Leikin & Dinur, 2003; Simon, 1995; E. 
Weber & Lockwood, 2014).

Methods. Although Simon originally offered an HLT as 
a teacher-conjectured construct, the LT/Ps of Clements 
and Sarama (2009) and others are a result of research. 
Multiple phases are required due to the need to integrate 
developmental progressions with supports for instruc-
tion. For example, Meletiou-Mavrotheris and Paparis-
todemou (2015) detail a two-phase research method. In 
Phase I, baseline data are collected regarding children’s 
initial concepts in a particular domain via interviews 
and written assessments. An initial HLT is then con-
structed, based on the results of Phase 1 and existing 
research literature, to guide instruction in a researcher-
taught teaching experiment. Ongoing and retrospective 
analysis of the teaching experiment data result in an 
actual learning trajectory. Clements, Wilson, and Sarama 
(2004) report a similar method, but with more phases, 
to develop an LT/P on the composition and decomposition 
of geometric figures. An initial developmental progression 
was created by noting regularities in how several case-
study students interacted with a software version of pat-
tern blocks called Shapes (Sarama, Clements, & Vukelic, 
1996). Instructional tasks were then written that were 
hypothesized to guide children through each of the levels of 
the developmental progression. The activities were pilot-
tested with groups of increasing size (from individuals to 
classroom research with eight teachers), with revisions 
during and after each test. The result was an LT/P, which 
was then validated in an interview study on a larger scale.

Purpose, benefits, and trade-offs. The trajectories in 
this approach serve the function of being an important 
teaching resource. As a result, they have gained consid-
erable attention as a tool for improving mathematics 
instruction (Daro et al., 2011). Their power comes from 
the interrelatedness of a developmental progression of 
children’s ways of thinking and a route through a set of 
instructional tasks. In contrast, many LT/Ps from other 
approaches focus on only one of these components— 
a domain-specific developmental progression (e.g.,  
Battista’s cognitive milestones shown in Table 4.1) or an  
instructional progression (e.g., Stephens & Armanto’s, 
2010, analysis of a Japanese textbook’s progression 
for relational thinking). However, in the hypothetical- 
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by a cluster of normative ways of reasoning. For instance, 
in Practice 3 students compare integers in the form of net 
worths using a vertical number line (VNL). They were ini-
tially given the task of comparing two debts, -$20,000 for 
Paris and -$22,000 for Nicole (see Figure 4.3), and they 
were asked who has a greater net worth. This resulted in 
debate, with one student claiming that Nicole was worth 
more and placing -$22,000 above -$20,000 on a VNL. 
This claim was discussed and rejected, ultimately with 
students coming to the mathematical idea that higher 
negative numbers (in absolute value) were further away 
from zero on the VNL. This idea was not challenged in 
later discussions and, thus, functioned as if taken-as-
shared. Being able to represent numbers correctly on the 
VLN also helped students find the difference between  
the numbers (in this case a value of $2,000) by exploiting 
the gap on the number line.

Features. The nature of mathematical practices that 
researchers have documented has changed over time. 

institutionalized in the microculture of the classroom 
community (Rasmussen & Stephan, 2008). Thus, norma-
tive ways of reasoning are not a feature of an individual 
but rather are a property of the collective.

By a collective, researchers refer not to a majority of 
students in the class, but rather to a quality of a group. An 
everyday life example will illustrate. Consider a married 
couple in which the wife is energetic and scattered while 
the husband is methodical and serious. When they inter-
act as a couple with others, they are quite funny, a trait 
that neither exhibits individually. In a similar way, teach-
ers experience each of their classes as a social entity with 
qualities that are different from other classes and that 
transcend the characteristics of the individual students 
in the class. Cobb and Yackel (1996) maintain that the link 
between collective mathematics practices and individual 
psychological conceptions is indirect but reflexive. This 
means that as ways of operating become accepted into 
the community, they influence, but do not determine, 
individual students’ conceptions. Conversely, the collec-
tive mathematical practices emerge through the sharing 
and negotiation of individually held ideas (Cobb et al., 
2003). In this sense practice is conceived as an emergent 
phenomenon rather than an already-established system 
into which individuals are enculturated (such as Liberian 
tailoring or Mayan midwifery; Brown, Collins, & Duguid, 
1989; Lave, 1991).

As an example, consider Stephan and Akyuz’s (2012) 
LT/P of five classroom mathematical practices for inte-
ger addition and subtraction, presented as the result of a 
classroom teaching experiment with 20 grade 7 students 
in a public middle school, where the first author had been 
a full-time teacher for 3 years. She cotaught the class with 
another teacher who had taught full-time for 10 years. 
Table 4.4 shows an excerpt of three of the five practices, 
each of which is described generally and characterized 

Table 4.4. Three of the Five Classroom Mathematical Practices for Integer Addition and Subtraction Identified  
by Stephan and Akyuz

Classroom mathematical practice Normative ways of reasoning

Practice 1: Interpreting net worth 
as a positive or negative quantity

●  Net worth is a combination of a positive and a negative value (when the assets and debts are both nonzero).
●  When a negative value is greater (in absolute value) than a positive, the combination is negative.

Practice 2: Using zero as a point 
of reference for calculations

●  Referencing zero to determine net worth
●  Referencing zero to compare two net worths
●  Referencing zero to add or subtract integers
●  Cancelling equal positive and negative quantities

Practice 3: Comparing integers 
using a vertical number line

●  Higher (in absolute value) negative numbers are farther away from zero.
●  Structuring the gap between two integers to find the difference

Note. Adapted from “A Proposed Instructional Theory for Integer Addition and Subtraction” by M. Stephan and D. Akyuz, 2012, Journal for Research 
in Mathematics Education, 43(4), pp. 428–464.
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Figure 4.3. Authors’ recreation of students’ use of the 
vertical number line as described by Stephan and Akyuz. 
Adapted from “A Proposed Instructional Theory for Integer 
Addition and Subtraction” by M. Stephan and D. Akyuz, 2012, 
Journal for Research in Mathematics Education, 43(4),  
pp. 428–464.
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systematizing methods proposed by Cobb and colleagues 
(Cobb & Gravemeijer, 2008; Cobb, Stephan, McClain & 
Gravemeijer, 2001). The DCA method is a three-phase 
process in which the unit of analysis in the videorecorded 
classroom data is students’ collective discourse.

In the first phase, researchers generate an argumenta-
tion log, recording the structure of each argument made 
in whole class discussion, using Krummheier’s (1995) 
adaptation of Toulmin’s (1958/2003) model of argumen-
tation. Toulmin’s model breaks each argument into sev-
eral components: (a) a claim (an assertion or conclusion 
put forward publicly), (b) data (the evidence used to sup-
port the claim), (c) a warrant (the logic by which the data 
relates to the claim), and (d) backing (statements that 
further bolster the warrant). In the second phase of the 
DCA method, the argumentation log is used to establish 
normative ways of reasoning when either of two criteria 
are met: (1) when a previously challenged claim no longer 
requires backings or warrants or (2) if a piece of infor-
mation changes its function in the Toulmin model (e.g., a 
statement that was previously a claim later becomes data 
in the core of another argument) and this shift in func-
tion is not challenged. In either case, the reasoning is said 
to function “as if shared” (Rasmussen & Stephan, 2008, 
p. 196). A third criterion was added later, namely when an 
idea is used repeatedly as data or warrant across multiple 
arguments (Cole et al., 2012). Finally, in the third phase, 
the researchers cluster mathematically related normative 
ways of reasoning into a sequence of classroom math-
ematical practices.

Purpose, benefits, and trade-offs. A major benefit of 
this approach to LT/Ps is that it embraces the way that 
most teachers experience their classrooms—as collec-
tives. Teachers know that the character of one class can 
differ from another and that it is possible to character-
ize the mathematical development of each class. Cobb 
and Yackel (1996) trace their own history of moving 
from teaching experiments with individuals to working 
in classrooms. Initially, they tried to account for the con-
ceptual reorganizations of individuals as they interacted 
with the teacher and their peers. Soon the researchers 
realized that they were missing regularities in commu-
nal behavior, both in terms of the obligations and roles 
of students and teachers and in terms of shifts in reason-
ing over time that initially required explanation from stu-
dents but eventually were established as practices that 
no longer needed justification.

They also found that individualistic psychological 
accounts of learning were inadequate for the development 
of instructional theory and design. Specifically, accounts 
of students’ mathematical development as it occurs in the 

Initially, practices were observable actions or strate-
gies, which avoided the mentalistic language of individ-
ual conceptions (e.g., Bowers, Cobb, & McClain, 1999). 
Other researchers expanded this work by describing 
what can function as if shared using the more cognitive 
language of constructed relationships (Roy, 2008), inter-
pretations (Rasmussen, Stephan, & Allen, 2004), mean-
ings (Tobias, 2009), ideas (Stephan & Rasmussen, 2002), 
and disciplinary practices (such as symbolizing; Ras-
mussen, Wawro, & Zandieh, 2015). Additionally, whereas 
earlier work focused on one normative way of acting per 
practice, Rasmussen and colleagues cluster related nor-
mative ways of reasoning as a practice (Rasmussen & 
Stephan, 2008; Rasmussen et al., 2015).

Research has identified the collective progress of K–8 
classrooms engaged in the study of a variety of math top-
ics, including measurement and arithmetic (Gravemeijer, 
Bowers, & Stephan, 2003), integers (Stephen & Akyuz, 
2012), place value (Bowers et al., 1999), and statistics 
(Cobb et al., 2003). The approach has been extended to 
undergraduate mathematics classrooms, for a variety  
of topics in linear algebra and differential equations 
(Rasmussen et al., 2004; Stephan & Rasmussen, 2002; 
Wawro, 2011), as well as for topics in courses for prospec-
tive teachers (e.g., circles, rational numbers, and whole 
number concepts; Akyuz, 2014; Roy, 2008; Tobias, 2009). 
More recently, this approach has expanded to document 
a progression of collective scientific practices for under-
graduate chemistry classrooms (Cole et al., 2012).

Additionally, LT/Ps from this approach uniquely 
include a description of how instructional supports, such 
as tasks, contexts, representations, and computer tools, 
are enacted according to particular classroom norms and 
discourse practices. Thus, work from this approach also 
details other collective constructs, including social norms 
(customary routines of behavior for proper conduct that 
guide the behavior of group members) and sociomath-
ematical norms (rules guiding the community’s behavior 
that are particular to an environment that supports the 
learning of mathematics). For example, in their progres-
sion of classroom mathematical practices in a grade 8 
classroom learning to analyze bivariate data in statistics, 
Cobb et al. (2003) documented two important sociomath-
ematical norms, namely what counts as a different solution 
and as an acceptable argument. They wove throughout the 
presentation of the classroom mathematical practices the 
ways in which these sociomathematical norms appeared to 
support the emergence of those practices.

Methods. To identify classroom mathematical prac-
tices, Rasmussen and Stephan (2008) present the docu-
menting collective activity method (DCA), by extending and 



A Taxonomy of Approaches to Learning Trajectories and Progressions  ◆    87

room at the same time? This could, in turn, push on the 
notion of there being a single trajectory of mathematical 
classroom practices. Finally, in the few studies in which 
individual ways of reasoning are coordinated with col-
lective practices (e.g., Bowers et al., 1999), the analyses 
conducted from the psychological perspective tends not 
to specify cognitive learning mechanisms but rather to 
either establish the appropriation of normative ways of 
reasoning or to document changes in individual students’ 
reasoning as a result of instruction (Cobb et al., 2001).

Approach 6: Disciplinary Logic  
and Curricular Coherence

Characterization and example. LT/Ps from the disciplinary- 
logic-and-curricular-coherence approach are generated 
by reflecting upon experts’ knowledge of the domain, 
synthesizing research from studies of student knowl-
edge and learning, drawing upon scholarly writing on 
the nature and structure of disciplinary knowledge, 
and unpacking the constructs identified as targets of 
learning in standards documents. That is, these LT/Ps  
are typically informed by research versus being the prod-
uct of research (as is the case in each of the previously 
described approaches). LT/Ps of this type provide a 
macro view of how student thinking and proficiency in a 
particular domain may develop over several years. Thus, 
a much longer time frame is used in the disciplinary 
logic and curricular coherence approach than in other 
approaches, with the exception of some of the LT/Ps 
from the hypothetical learning trajectory approach (e.g., 
Clements & Sarama, 2009).

The most prominent examples in this approach are the 
14 LT/Ps produced by the Common Core Standards Writ-
ing Team (2013b). CCSSM, accepted by 43 states, form the 
backbone of these LT/Ps. Research indicates that CCSSM 
represents an increase in cognitive demand, focus, and 
coherence in comparison to the state standards in place 
prior to CCSSM (Porter, McMaken, Hwang, & Yang, 
2011; Schmidt & Houang, 2012). Furthermore, CCSSM 
significantly expands the process standards of the Prin-
ciples and Standards of School Mathematics (National Coun-
cil of Teachers of Mathematics, 2000) into a set of eight 
mathematical practices (e.g., reasoning quantitatively,  
constructing viable arguments, and expressing regularity 
through repeated reasoning).

As an example, consider the LT/P for fractions in grades 
3–5 (Common Core Standards Writing Team, 2013a). It is 
presented in a two-column format, in which the left col-
umn contains a narrative describing the progression of 
ideas and skills regarding fractions that students are 

social context of the classroom informs ongoing instruc-
tional development efforts; in turn, one way to assess the 
viability of an instructional sequence is to document both 
the classroom mathematical practices and individuals’ 
ways of participating in and contributing to them (Cobb, 
2003). Much of the research on LT/Ps in this approach has 
been conducted within the Dutch instructional theory of 
realistic mathematics education (RME). RME is a domain-
specific developmental approach to instructional design 
that specifies several heuristics by which students move 
from informal representations and models for solving 
problems in realistic settings (meaning realizable or imag-
inable by the learner, rather than real world or authentic) to 
more formal conventional and abstract strategies (van den 
Heuvel-Panhuizen, 2003). According to Cobb and Grave-
meijer (2008), an instructional theory in which activities 
and resources are justified explicitly in terms of principles 
and learning trajectories enables other researchers to cus-
tomize and adapt a particular instructional sequence to the 
setting in which they are working; such adaptations can, in 
turn, inform the instructional theory, “thereby making the 
production of design-based knowledge a cumulative activ-
ity” (p. 77).

One trade-off is that the method used to establish 
classroom mathematical practices requires an inquiry-
oriented classroom with a substantial amount of public 
discussion in which the social norms of explaining and 
justifying one’s thinking and agreeing with or debating 
others’ ideas are present. Without these norms the actual 
learning trajectory would simply consist of the teacher’s 
a priori sequence of activities for the class. Furthermore, 
the criterion for the establishment of a mathematical 
practice as the absence of challenging talk is reasonable 
only under the assumption that the teacher and the other 
students are continuing to press other students to react 
to claims that are made in the public space. In more tradi-
tional classrooms the absence of voiced disagreement may 
be attributable to many other factors including the viola-
tion of social norms or lack of engagement (Hall, 2001).

A second trade-off is that this line of research is still in 
its infancy in terms of understanding the complex rela-
tionship between individual interpretations and norma-
tive ways of reasoning (see Tabach, Hershkowitz, Ras-
mussen, & Dreyfus, 2014, as an example of such work). 
A diversity of student ideas is acknowledged through 
use of the metaphor that students participate differen-
tially in classroom mathematical practices (Cobb, 2003). 
However, it is unclear how far this metaphor goes when 
that practice is emergent. Can individual interpreta-
tions be so different from normative ways of reasoning 
that there are actually two or more practices in the class-
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on matter (grades K–8). The science LT/Ps draw upon the 
following standards documents: National Science Educa-
tion Standards (National Research Council, 1996), Bench-
marks for Science Literacy (American Association for the 
Advancement of Science [AAAS], 1993), and Atlas for 
Science Literacy (AAAS & National Science Teachers 
Association, 2001). Most make explicit the intertwining 
of content and inquiry-oriented practices (e.g., Songer 
et al., 2009), and all include learning performances and 
assessment tasks aligned with the progressions (e.g., 
Smith et al., 2006). The fact that the biodiversity and 
atomic structures/electrical forces LT/Ps were validated 
empirically and then revised could productively inform 
the Common Core Math Progressions reviewed above. 
Similarly in mathematics, Bernbaum Wilmot, Schoen-
feld, Wilson, Champney, and Zahner (2011) created an 
LT/P for function representations in grades 6–12, based 
on a literature review by a panel of experts, followed by a 
large-scale validation (details provided in the Validation 
of LT/Ps section).

Purpose, benefits, and trade-offs. One of the chief 
purposes of this type of LT/P is to inform curricular orga-
nization and textbook content so that it is coherent and 
cohesive (Wiser, Smith, & Doubler, 2012). Furthermore, 
these progressions can help teachers understand how 
what they teach can lay the foundation for mathemati-
cal ideas to be developed in later grades—an important 
element of mathematical knowledge for teaching that 
Ball, Thames, and Phelps (2008) refer to as “horizon 
knowledge” (p. 403). An added benefit is that the levels 
identified in the LT/Ps can serve as reference points for 
assessments, thus helping ensure the alignment of curric-
ulum materials, instruction, and assessment (Corcoran et 
al., 2009). Finally, most of the trajectories in this approach 
were written to be accessible to a wide audience, including 
teachers, administrators, teacher educators, test devel-
opers, curriculum designers, parents, and policy makers 
(Daro et al., 2011).

One trade-off is that LT/Ps from this approach can lack 
consistency due to the process of picking and choosing 
ideas from a variety of research that was conducted with 
different goals and from different theoretical perspec-
tives. For example, a key idea developed in the Common 
Core fractions learning progression involves the elabora-
tion of the previously mentioned standard, “Understand 
a fraction a⁄b as the quantity formed by a parts of size 1⁄b.” 
This statement appears to identify a meaning from the 
psychological perspective of a child, rather than being 
a statement of adult mathematics for children; as such, 
it represents a laudable advance over many state stan-
dards in effect prior to CCSSM (Norton & Boyce, 2013). 

expected to engage in across the three grade levels. In the 
right column are the corresponding content standards 
from CCSSM, along with illustrative diagrams. The nar-
rative emphasizes the logical structure of mathematics 
and important disciplinary connections. For example, 
in explaining the meaning of the standard, “Understand 
a fraction a⁄b as the quantity formed by a parts of size 
1⁄b” (NGA Center & CCSSO, 2010, 3.NF.a.1), the writers 
elaborate a connection between whole numbers and frac-
tions. Specifically, in the same sense that 1 is the basic 
building block of the whole numbers, unit fractions are 
the basic building blocks of fractions. For example, the 
whole number 3 can be conceived as 3 iterates of a unit 
interval of 1, and similarly the fraction 3⁄5 can be formed 
by iterating the unit fraction 1⁄5 three times, so that 3⁄5 is 
thought of as 3 one-fifths.

The LT/P also elaborates how ideas build from one 
year to the next. For example, part of understanding frac-
tion equivalence in grade 3 involves being able to express 
1 as different fractions (e.g., as 2⁄2 = 3⁄3 = 4⁄4). In grade 4, 
students use that understanding to convert an improper 
fraction to a mixed number by decomposing the fraction 
into a sum of a whole number and a proper fraction. For 
example, knowing that 1 = 3⁄3, a student can see that 5⁄3 = 
3⁄3 + 2⁄3 = 1 + 2⁄3 = 12⁄3. Finally, elements from the CCSSM 
practice standards are interwoven with the content stan-
dards and illustrated with fraction content in this LT/P. 
For example, specifying the referent (or whole) for a frac-
tion involves the mathematical practice of attending to 
precision. In Figure 4.4 below, if the left square is the 
whole, then the grey shaded area represents 3⁄2 of that 
whole. If the whole is the entire outer rectangle, then the 
shaded area is 3⁄4 of the whole.

Features. In addition to the Common Core Learning 
Progressions, there are several other LT/Ps that were 
created by drawing upon existing research, disciplinary 
structure, and standards. These include progressions on 
biodiversity (Songer, Kelcey, & Gotwals, 2009), atomic  
structures/electrical forces (Stevens, Delgado, & Krajcik, 
2009), matter (Smith et al., 2006), and genetics (Duncan, 
Rogat, & Yarden, 2009). They all describe learning levels 
over a large time scale, from 3 years for the biodiversity 
progression (grades 4–6) to 9 years for the progression 

Figure 4.4. The shaded portion is 3⁄2 of the area of the left 
square but 3⁄4 of the area of the entire rectangle.
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nonetheless represents an important consideration for 
future writers of LT/Ps. In this approach, each level in 
the LT/P is described in terms of observable behaviors, 
strategies, or other learning performances.

As an integrated math/science example, consider work 
by Lehrer and Schauble (2012a, 2012b) to identify a com-
plex K–grade 6 progression on modeling. It consists of 
three interlocking strands: change (in organisms, popu-
lations, and systems), variation (which includes directed 
and random processes that create distributions), and 
ecology (a system of relationships governing the relative 
abundance and distribution of organisms). Each strand 
consists of benchmarks defined in terms of learning per-
formances and illustrated with student examples. Part 
of the change strand is shown in Table 4.5. Each learn-
ing performance is described in terms of an observable 
behavior using action verbs rather than the language of 
mental conceptions.

Features. This type of LT/P typically identifies pro-
ficiency levels in terms of strategies or other observ-
able behaviors. For example, the Vermont Mathematics 
Partnership Ongoing Assessment Project (VMP OGAP) 
produced LT/Ps for (a) multiplicative reasoning, (b) frac-
tions, and (c) proportionality. Each presents three to four 
levels of student strategies, illustrated with examples 
from student work that will resonate with teachers (VMP 
OGAP, 2013, 2014a, 2014b). In other words, the levels 
of proficiency may be seen to interact with other vari-
ables, such as task complexity. For instance, in a pre-K–6 
LT/P on equipartitioning (a foundational construct of 
rational number), Confrey and colleagues present a two- 
dimensional matrix comprised of 16 ordered proficiency 
levels along the vertical axis and several task parame-
ters along the horizontal axis (Confrey & Maloney, 2010; 
Confrey, Maloney, & Corley, 2014). In a similar fashion, 
Sherin and Fuson (2005) offer an LT/P of children’s strat-
egies for single-digit multiplication, for which they 
assert that “strategy use by individuals, in a particular 
circumstance, will be very sensitive to the number-specific 
resources available . . . and will vary across cultural and 
instructional contexts” (p. 348). Thus, Sherin and Fuson 
conceive of growth in strategy development being driven 
primarily by the learning of number-specific computa-
tional resources rather than changes in general cognitive 
capabilities related to number.

Trajectories in this approach differ in terms of assump-
tions made regarding the relationship between cogni-
tion and strategies or other learning performances. For 
example, Steinthorsdottir and Sriraman (2009), in a 
study with Icelandic students using curriculum informed 
by a proportional reasoning trajectory with four levels 

It is consistent with what many researchers call a parti-
tive fraction scheme (Nabors, 2003; Norton & McClos-
key, 2008). However, the Common Core learning pro-
gression did not continue to draw upon similar research 
to articulate how students move to more sophisticated 
understandings, such as a reversible fraction scheme 
(e.g., being able to partition a nonunit fraction a⁄b into 
a parts of 1⁄b), an iterative fraction scheme (e.g., being 
able to produce a whole from any fraction), or the con-
struction of fraction equivalence (Hackenberg; 2013; 
Steffe, 2004; Steffe & Olive, 2010). Instead, fraction 
equivalence in the Common Core learning progression 
is developed by appealing to the disciplinary logic of  
multiplying a fraction by a fraction equivalent of 1 (e.g., 
a⁄b × n ⁄n = a×n ⁄b×n ), which is illustrated in an area model 
with the claim that students will “see” that when the whole 
is partitioned into n times as many pieces, there are n times 
as many smaller unit fraction pieces. The claim of transpar-
ent “seeing” is inconsistent with research demonstrating 
the need for students to construct three levels of units to 
understand fraction equivalence (e.g., Norton, 2008).

A second trade-off is that trajectories aligned with stan-
dards are dependent upon the nature and quality of those 
standards. For example, the previously identified grade 3 
standard for fractions fits firmly in the definition of a math-
ematical concept as the meanings, interpretations, images, 
ideas, connections, ways of comprehending situations, and 
explanations regarding why particular procedures work, 
which can be leveraged productively in students’ math-
ematical development (Lobato, 2014). However, using 
this definition of concept to examine the algebra and func-
tions strands in CCSSM (for grades 6–8 plus high school), 
Lobato found that only 17.5% of the associated content 
standards articulated particular mathematical concepts, 
while an additional 13.5% had a “conceptual feel” (often 
using verbs such as “explain” or “interpret” but lacking 
specificity regarding the particular meanings or connec-
tions desired), leaving nearly 70% of the algebra standards 
focused on skills. Although the development of important 
skills is essential, the underspecification of productive 
meanings and their connection to procedures as general-
izations of reasoning can have a deleterious effect on the 
formulation of LT/Ps, which in turn, shape instruction, cur-
riculum development, and assessment.

Approach 7: Observable Strategies  
and Learning Performances

Characterization and example. We conclude the presen-
tation of the taxonomy with a shorter section devoted 
to an approach that is less distinct from the others but 
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the core of the very successful cognitively guided 
instruction (CGI) professional development program 
(see Sowder, 2007, for a review of the extensive CGI lit-
erature). There was another visible, well-funded project  
at the same time and working in the same domain—the 
Interdisciplinary Research on Number Project, which pro-
duced schemes-and-operations trajectories (Steffe et al., 
1988). History suggests greater saliency using strategies 
rather than schemes as the unit for communication with 
teachers regarding children’s thinking. Indeed, when a 
group of secondary teachers, working with student data 
from a researcher, set out to create an LT/P on exponen-
tial functions, they focused on ordering student strate-
gies for solving exponential tasks (Brendefur, Bunning,  
& Secada, 2014).

A second benefit of describing levels in an LT/P in 
terms of learning performances is increased precision and 
explicitness over the more ambiguous language of cogni-
tive conceptions (a sentiment expressed by a number of 
researchers attending the Learning Progressions Foot-
print Conference sponsored by the National Science Foun-
dation). As a result, LT/Ps in this approach are well suited 
for providing diagnostic or formative assessment informa-
tion to teachers (Petit, 2011). By encapsulating knowledge 
states in learning performances, they also lend themselves 
to the design of measures used to validate learning trajec-
tories (Confrey, Maloney, Nguyen, & Rupp, 2014).

A trade-off is that downplaying the language of under-
standing can leave conceptions underspecified and can 

of strategies (developed by Carpenter et al., 1999), write 
that “there is no consensus on whether the framework 
of Carpenter et al. is simply a classification schema for 
students’ solution strategies or whether the framework  
presents a developmental trajectory” (pp. 7–8). The 
researchers go on to assert that they interpret it as the 
latter, viewing levels of conceptual development as being 
expressed in the strategies that students employ to solve 
problems. Other researchers foreground proficiencies 
but background cognitive conceptions that cut across 
different performance levels (e.g., Confrey, Maloney, 
Nguyen, & Rupp, 2014). Finally, because this type of tra-
jectory may be either a product of research (e.g., Lehrer & 
Schauble, 2012b) or informed by research (in the sense of 
LT/Ps from Approach 6), there is no prototypical method 
that we can report.

Purpose, benefits, and trade-offs. A primary benefit of 
describing the elements of an LT/P in terms of observ-
able strategies and behaviors is the increased power to 
communicate with teachers, making these types of tra-
jectories particularly well suited as tools for teacher pro-
fessional development. As Empson (2011) explains, “We 
know that teachers can learn to differentiate students’ 
strategies and use what they learn about students’ think-
ing to successfully guide instruction” (p. 586). Indeed, 
in an early forerunner to research on learning trajecto-
ries, Carpenter and Moser (1984) created a framework 
of growth in children’s strategies for solving single-digit 
addition and subtraction problems, which later formed 

Table 4.5. Authors’ Recreation of an Excerpt From the Change Strand of the LT/P on Modeling by Lehrer and Schauble

Level 6 of 8: Rate

Describe change as rate or changing rate

Learning performances Examples

6A Coordinate time elapsed with counts or measures of 
change but without expressing the relationship as a rate.

“My plant grew 3 mm between days 5 and 7, and then it grew 7 mm 
between days 8 and 11.”

6B Determine the rate of change by dividing the difference 
between two measurements of one attribute by the dif-
ference in time.

“My plant grew 12 mm in 3 days, so it grew 4 mm per day.”

6C Interpret graph/table of rate of change. Student reads graph as showing that her plant grew 6 mm per week during 
the first week but 9 mm per week during the second. Student concludes 
that rates of growth differ at different points in the plant’s life cycle.

6D Compare rates of change across more than one organism 
and justify reasoning.

Student appeals to graph to claim that one plant grew faster than another 
“overall,” but goes on to explain that there were periods during growth 
when the first plant was growing faster.

6E Coordinate rate description with a qualitative inscription. Coordinate rate graph with pressed plant display.

Note. Adapted from “Supporting Inquiry About the Foundations of Evolutionary Thinking in the Elementary Grades” by R. Lehrer and L. Schauble, 
2012, in S. M. Carver and J. Shrager (Eds.), The Journey From Child to Scientist: Integrating Cognitive Development and the Education Sciences,  
pp. 171–206, Washington, DC: American Psychological Association.
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models typically have been generated either through a 
synthesis of existing literature and domain expertise 
or by cross-sectional studies via written assessments 
or interviews (i.e., they often come from the following 
approaches in the taxonomy: cognitive levels, levels of 
discourse, disciplinary logic and curricular coherence, 
and observable strategies/learning performances).

Second, assessment measures are developed and must 
be related to the levels in the LT/P and to any associated 
instruction. To this end, it is helpful if each level is trans-
lated into an observable performance (in the spirit of the 
observable strategies/learning performances approach). 
Qualitative methods, such as the use and analysis of clini-
cal or think-aloud interviews, can inform the development 
of items for assessments designed to measure students’ 
levels in the trajectory (Confrey, Maloney, Nguyen, & 
Rupp, 2014). Additionally, an outcome space is created, 
which is “the set of categorical outcomes into which stu-
dent performances are categorized for all the items associ-
ated with a particular progress variable” (M. Wilson, 2009, 
p. 721). This can include scoring guides, complete with 
rubrics, exemplars, and the identification of each item with 
a level in the LT/P. Third, data are collected, often on a large 
scale. For example, Confrey, Maloney, Nguyen, and Rupp 
field-tested their assessment items with 4,800 students 
in K–grade 8 in North Carolina. Bernbaum Wilmot et al. 
(2011) administered their assessment with 2,356 students 
in 125 classrooms (grades 6–12). Triangulation may occur 
with selected students also participating in interviews to 
explain their thinking on the paper-and-pencil assessment.

Finally, the data are analyzed using Rasch modeling and 
Wright Maps, which plot students’ proficiency levels on the 
LT/P against item difficulty on the assessment. As an exam-
ple, consider the Wright Map for the functions LT/P from 
Bernbaum Wilmot et al. (2011), shown in Figure 4.5. The 
left-most column shows the six levels of the LT/P identified 
in order (e.g., with Extended Abstract as the most sophis-
ticated level). The right-hand side of the map shows 8 of 
the 12 items on the assessment. The Xs represent the pro-
ficiency of 688 students as distributed across the sample.  
If the estimated order of the levels of difficulty correspond 
to the theoretical expectations embedded in the progres-
sion, then “the theoretical framework as a developmental 
learning progression holds true” (Bernbaum Wilmot et al., 
2011, p. 277). Although the six levels in the LT/P were not 
consistent across all assessment items, the authors con-
cluded that there was sufficient evidence to validate the 
progression, and they used the item information forma-
tively to revise and improve the assessment. Thus, there 
is usually an iterative process of validation and trajectory 
refinement, with each informing the other.

overlook how a single conception can give rise to multiple 
strategies (Ellis, 2014). Also, a correct performance can 
be produced by a nondesirable conception. For example, 
Level 6B in the previously cited LT/P by Leherer and 
Schauble (2012b) states, “Determine the rate of change 
by dividing the difference between two measurements of 
one attribute by the difference in time” (see Table 4.5). 
Thus, the judgment of whether or not a student has con-
ceived of a rate of change is based on the performance of 
dividing two measurements, such as 12 mm ÷ 3 days (to 
arrive at 4 mm per day). However, students can perform 
the arithmetic operation of division without mentally 
conceiving of a multiplicative relationship between the 
two quantities—a necessity for forming a ratio or rate 
(Lobato, 2008; Lobato & Ellis, 2010).

Crosscutting Issues

There are several themes in the literature that cut across 
the different approaches to LT/Ps presented in the taxon-
omy. This section reviews the literature on how research-
ers have validated LT/Ps and how they have studied  
the use of LT/Ps by and with teachers. We conclude with 
a discussion of general critiques of LT/Ps and possible 
alternatives.

Validation of LT/Ps

The most common approach to validating an LT/P involves 
the use of item response theory (IRT) based on Rasch 
models (Kennedy & Wilson, 2007; M. Wilson, 2009;  
M. Wilson & Carstensen, 2007). A benefit of Rasch anal-
ysis is its affordance of providing an estimate of learn-
ers’ proficiency and item difficulty using the same scale 
(for a popular book on this topic, see Bond & Fox, 2015). 
Studies have validated LT/Ps on equipartitioning (Con-
frey & Maloney, 2010; Confrey, Maloney, Nguyen, & 
Rupp, 2014), functions (Bernbaum Wilmot et al., 2011), 
force and motion (Fulmer, 2015), biodiversity (Gotwals  
& Songer, 2013), integration across three facets of 
energy (Lee & Liu, 2009), and carbon cycling (reported 
in Corcoran et al., 2009).

There are roughly four components of the validation 
process using Rasch models. First, there is a construct 
map, which M. Wilson (2009) defines as “a well thought 
out and researched ordering of qualitatively different 
levels of performance focusing on one characteristic”  
(p. 718). This may correspond to the LT/P, or in a particu-
larly complex domain, each level of the trajectory may 
represent a coordination of multiple construct maps. 
Thus, the types of LT/Ps being validated using Rasch 
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Figure 4.5. Wright Map for an LT/P on mathematical functions. From “Validating a Learning Progression in Mathematical 
Functions for College Readiness” by D. Bernbaum Wilmot, A. Schoenfeld, M. Wilson, D. Champney, and W. Zahner, 2011,  
Mathematical Thinking and Learning, 13(4), p. 276.

The power of this type of construct-validation method is 
the empirical confirmation of the ordering of the progres-
sion, the generation of high-quality assessments, and the 
development of a rigorous process of reliably scoring stu-
dents’ work on formative assessments (Bernbaum Wilmot 
et al., 2011). This type of validation requires an impressive 
level of interdisciplinary collaboration and a scale of field 
trials that is difficult to achieve (Confrey, Maloney, Nguyen, 
& Rupp, 2014).

One trade-off is that the Rash model assumes a uni-
dimensional variable in the learning progression (Lee & 
Liu, 2009; see the Critiques and Alternatives Section below 
for an articulation of concerns regarding this requirement). 
Furthermore, the model assumes that students at a par-
ticular level consistently respond to all assessment tasks 
at that level—an assumption that is questioned on both 
theoretical and empirical grounds (Battista, 2011; Steedle 
& Shavelson, 2009). Finally, Stacey and Steinle (2006), in 
a careful analysis of the mismatch between Rasch models 

and their diagnostic test of decimal understanding, argue 
that developing items in a “hierarchy of difficulty to repre-
sent a single underlying ability dimension” (p. 86) fails to 
capture crucial aspects of the nature of student reasoning. 
We turn next to research involving the use of LT/Ps with 
teachers to further explore, among several issues, the types 
of materials and information that would inform teachers’ 
understanding of their students’ progress.

Research on Use of LT/Ps With Teachers

Despite the potential worth of LT/Ps as instructional tools, 
how teachers interpret, use, and create LT/Ps has only 
recently become an object of research attention. One clus-
ter of studies investigated the effect of exposing both prac-
ticing and prospective elementary teachers to the equi-
partitioning learning trajectory (reviewed above in the 
observable strategies/learning performances approach). 
Specifically, P. H. Wilson, Mojica, and Confrey (2013) 
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and (4) student strategies (teachers’ descriptions of stu-
dent solutions from least to most sophisticated). Evi-
dence showed that each of the teachers made use of all 
four progression types and that the progressions were 
embedded within each other.

Finally, a few studies have investigated the nature 
of LT/Ps generated by teachers. Amador and Lamberg 
(2013) conducted case studies with four grade 4 teach-
ers, which involved an extensive series of interviews 
plus regular classroom observations. In contrast to the 
hypothetical learning trajectories of Simon (1995), the 
three veteran teachers formulated testing trajectories. 
The teachers’ knowledge of the content of three high-
stakes tests, along with their beliefs about test prepa-
ration, drove their mathematical goals for students and 
dictated their task selection and instructional decisions. 
In contrast, the novice teacher selected problem-solving 
tasks (versus questions posed in test formats), gathered 
information about students’ understanding, and modi-
fied her planned instruction accordingly. Although she 
was aware of the testing pressure, she dealt with it by 
focusing on the student understanding related to tested 
content. Suh and Seshaiyer (2015) found lesson study to 
be a more hospitable environment for teachers to create 
a hypothetical learning trajectory. Specifically, a vertical 
team of six teachers (in grades 3, 6, and 8) met regularly 
to plan and teach a research lesson on linear patterns and 
representations at each grade level. The lessons were 
rooted in the teachers’ modifications of an initial problem 
involving linear inequalities for different grade levels. 
Working together, the teachers set grade-appropriate 
learning goals and made conjectures regarding student 
ideas, strategies, and conceptual challenges. The verti-
cal teaming provided opportunities for teachers to think 
beyond their grade levels, which was crucial for creating 
a progression of student ideas. The lesson-study environ-
ment supported an emphasis on student thinking as the 
foundation for pedagogical responses and for subsequent 
modifications to the learning trajectory.

Critiques and Alternatives

Researchers have made a number of critical observa-
tions regarding LT/Ps, despite their potential. First, 
issues of equity, diversity, race, language, and cultural 
heterogeneity are not being addressed satisfactorily 
in current LT/P research (Anderson et al., 2012). These 
concerns include how research is framed theoretically, 
who participates in the research, the types of tasks that 
are employed, and the way the work is translated for 
policy makers and practitioners. For example, much of 

examined how professional development with 33 K–2 
teachers and 56 prospective elementary teachers influ-
enced their ability to make sense of children’s thinking dur-
ing clinical interviews. Although less than one half of the 
practicing teachers and one third of the prospective teach-
ers were able to make reasonable inferences regarding the 
children’s thinking before gaining an understanding of the 
equipartitioning learning trajectory, nearly all were able to 
do so afterwards. Additionally, they were able to use chil-
dren’s actions and words as evidence of particular types of 
thinking (versus evaluating whether or not a response was 
correct). P. H. Wilson (2009) then followed 10 of the prac-
ticing teachers into their classrooms and found evidence 
that the LT/P helped teachers select instructional activ-
ities, identify what students needed to learn next, and inter-
act with students in class discussions. The research team 
also investigated the claim that LT/Ps can deepen teachers’ 
content knowledge. In a yearlong professional development 
experience with 24 additional K–5 teachers, the research-
ers found that the teachers did participate in mathemat-
ics content discussions; however, the discussions did not 
occur without the use of learning activities at higher levels 
of the LT/P and the teachers’ participation was mediated  
by their own mathematical knowledge for teaching (P. H. 
Wilson, Sztajn, Edgington, & Confrey, 2014).

Other research has investigated teachers’ interpreta-
tions of LT/Ps embedded in curricular resources. Spe-
cifically, Land and Drake (2014) followed three expert 
teachers (of grades 1, 2, and 4) who were using a reform-
oriented curriculum, Investigations in Number, Data, and 
Space (TERC, 2008). The Investigations units incorpo-
rate several mathematical strands that build upon each 
other. An LT/P for each strand is presented in the teach-
ers’ materials, where evolving student ideas and strate-
gies across grades levels are articulated and illustrated 
with student responses to key instructional activities. 
Given that this curriculum was informed by a synthesis 
of existing research literature, the LT/P fits within the 
disciplinary logic and curricular coherence approach. 
The three teachers also had participated for several 
years in CGI professional development, where they had 
exposure to strategy-oriented trajectories (like those 
from the observable strategies/learning performances 
approach). The researchers found that the teachers con-
ceived of four types of progressions: (1) math subtopics 
(e.g., students represent easy fractions, followed by find-
ing fractions of a group, and then later are able to add 
and compare fractions); (2) instructional activities (e.g.,  
a sequence of increasingly more complex math tasks);  
(3) number choices (e.g., teachers would re-pose tasks, 
using increasingly more difficult number combinations); 
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ers’ progress along a single dimension is a potentially 
misleading simplification (Corcoran et al., 2009). Accord-
ing to Lesh and Yoon (2004), research has demonstrated 
that “mathematical constructs (and conceptual systems) 
develop along a variety of dimensions” (p. 207). As an 
alternative to unidimensional LT/Ps, Thompson, Carl-
son, Byerley, and Hatfield (2014) invoke the metaphor of a 
cloud to make the point that many complex ideas in math-
ematics (such as proportional reasoning) involve parallel 
developments in multiple interacting domains (e.g., mul-
tiplication and division, measurement, fractions, scaling, 
ratio, and covariation). Thinking about the formation and 
evolution of clouds of interrelated ideas has implications 
for instruction and assessment. Specifically, each concep-
tual component of a cloud is a context for exhibiting ways 
of thinking that are related to other components. Instead 
of using Rasch or IRT models to assess students’ progress 
along a single dimension, methods need to be developed to 
“profile the state of a student’s cloud” (Thompson et al., 
2014, p. 15).

Conclusion

The construction of a taxonomy developed from a review 
of the literature on LT/Ps, along with a discussion of cross-
cutting issues and challenges, paves the way for a more 
comprehensive approach to research in this area. By draw-
ing attention to the advantages and trade-offs of each 
approach, we hope to advance a conversation that leads 
to the next generation of approaches to LT/P research. By 
highlighting significant differences in current approaches 
to LT/P research, we hope to help researchers consider 
new ways to conceptualize and present their work. And, 
by encouraging creators of LT/Ps to be explicit about their 
stance on each of multiple dimensions underlying their 
work, we hope to facilitate communication across different 
lines of research.
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