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Chapter

As the NCTM (2000) Content Standards for geometry indicate, ge-
ometry not only is an area of mathematical study in its own right 
but also is connected—through the use of imagery and diagrams 
as well as specific ideas and results—to ideas and problems across 
mathematics. Big Idea 2, which captures the importance of perceiv-
ing and working with invariance across variation, is the primary 
insight that we draw on in chapter 2, where we look at the devel-
opment and connections of geometric thinking both horizontally, 
across other areas of mathematics taught in the high school years, 
and vertically, in the years leading up to and beyond grades 9–12. 

Big Idea 4, which recognizes written proof as the culmina-
tion of the process of arguing and explaining, extends across 
content strands and grades in important ways that are treated in 
separate volumes in the Essential Understanding Series. For details 
on conjecturing, generalizing, and reasoning across mathematical 
contexts and grade levels, see Developing Essential Understanding 
of Proof and Proving for Teaching Mathematics in Grades 9–12
(Ellis, Bieda, and Knuth, forthcoming) and Developing Essential 
Understanding of Mathematical Reasoning for Teaching Mathematics 
in Prekindergarten–Grade 8 (Lannin, Ellis, and Elliott 2011). 

Thinking through invariance can involve reframing questions 
and ways of looking at situations to highlight what is changing and 
what is staying the same despite other things changing. Although 
algebraic work employs the notion of variable (often designated by 
x) to allow working on all instances of something at the same time, x) to allow working on all instances of something at the same time, x
geometry has no corresponding symbol. Even though geometers 
work on whole classes of figures at the same time (e.g., all right 
triangles, all rectangles with a given perimeter, all angles subtended 
by the diameter of a circle) and rarely, if ever, work only on a par-
ticular figure or configuration, the static geometric diagram is not a 
counterpart to the algebraic x.
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DGEs make apparent the specificity and particularity of a 
single instance of a configuration by allowing its deformation into 
another like one at the touch of a mouse. Dragging emphasizes the 
continuity of figures within families subject to the same constraints, 
such as that this point must always lie on that line, and the center that line, and the center that
of this circle must always fall on that perimeter. that perimeter. that

Looking Horizontally at High School 
Mathematics
In keeping with our approach in chapter 1, we have opted to indi-
cate connections that extend across high school mathematics by 
means of two case studies: the case of coordinate geometry and the 
case of trigonometry.

Coordinate geometry
We have chosen to include coordinate geometry as a horizontal 
extension in high school geometry, even though it is often taken as 
an integral part of the geometry strand (as in the NCTM Standards 
[2000]). We have done so because coordinate geometry provides, in 
essence, an algebraic way of working with geometric shapes. In this 
sense, coordinate geometry is not dissimilar to measurement, which 
assigns numbers based on units to attributes of a geometric object 
and involves formulas for relating these numbers to, say, an object’s 
area or perimeter. Coordinate geometry marks every point in the 
plane by an (x, y) coordinate pair and, through this assignment, en-
ables us to work numerically and algebraically with segments (e.g., 
using the distance formula) and angles (e.g., using the slopes of 
lines to determine whether they form a right angle).

A major use of the coordinate system in the high school geom-
etry curriculum is in the representation of transformations. For ex-
ample, it turns the geometric fact that a point and its image, when 
reflected across the y-axis, are equidistant to the line of reflection 
into the algebraic fact that the coordinates of the reflected image 
of a point (x, y) is (–x, y). For special cases, the switch provides nice 
results, though for others (e.g., rotation around a point that is not 
the origin), the relationship between the coordinates of a point and 
its image is far less informative. The use of coordinate geometry 
to work with transformations can provide a good background for 
working with matrices in the context of linear transformations, 
since matrices offer yet another way of representing certain trans-
formations of the plane—a topic that we discuss later in this chapter.

The historical motivation for the coordinate system was to 
channel the computational power of algebra into geometric prob-
lems. A geometric idea could be transformed into algebraic terms 
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that would be easier to work with, and then the result could be 
brought back to bear on the geometric configuration. Consider the 
set of questions that we posed in chapter 1 about the intersection 
of a line with a circle. It seemed visually apparent that this could 
happen only twice, once, or not at all. But how might we prove 
this? One way would be to transfer these objects (the line and the 
circle) into the algebraic frame of systems of linear and quadratic 
equations in x and y whose solution sets lie in the coordinate plane. 
To find the common solutions, we can set two expressions for y 
equal to each other and solve for x. Given that we always obtain 
a quadratic equation (if we believe the algebra), we can show that 
there are, indeed, no real number solutions, one, or two. Taking this 
computation back to the geometric situation, we can now say some-
thing about the line and the circle in general. It would be a loss to 
treat coordinate geometry as a way of moving away from geometry, 
when it can be so useful in working with geometry as well.

Trigonometry
One setting in which triangle similarity is very significant is in the 
definition of the six initial trigonometric functions: sine, cosine, 
tangent, cotangent, secant, and cosecant. The very word trigo-
nometry suggests the “-metry” (measurement) of “trigons” (“three-
angles”), a plausible name for triangles and one that is more consis-
tent with the common naming scheme for most other plane shapes.

Sine and cosine of a given angle are usually specified first, in 
terms of ratios of side lengths of a right triangle containing the par-
ticular angle. So, if the angle is itself the starting place (see fig. 2.1), 
an infinite number of right triangles contain the desired angle. Why 
does it not matter which one we use?

Fig. 2.1. An angle and an associated family of right triangles

Because these triangles are all similar, one to another, the ra-
tios of corresponding sides are always the same. Because all six of 
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the trigonometric functions are defined as side-length ratios, it does 
not matter which right triangle we use. So the whole of trigonom-
etry rests on similar triangles and their properties.

An alternative name for the family of trigonometric functions 
is the circular functions, because deriving them from circles is rela-
tively straightforward. There is an important right triangle that is 
related to the circle as shown in figure 2.2, and it explains where 
two of the six triangular functions’ names come from. The Latin 
verb tango (from which the Argentinian dance derives its name) 
means “I touch,” and a tangent is a “touch-line” of the circle—the 
term that Robert Record proposed. As mentioned earlier, the Latin 
verb seco means “I cut” (and is the source of the name of the 
scissor-like gardening tool secateurs, as well as the geometric term 
sector—the region of a circle cut off by a secant line). So a secant is 
a “cut-line” of the circle. If q names the angle in the right triangle 
at the center of the circle, and if the radius of the circle is 1 unit, 
then the length of the segment shown in color on the tangent line 
in figure 2.2 is tan(q ), and the distance along the secant line from 
the center of the circle to the tangent line is sec(q ) (see the dashed 
segment shown in color in the figure). Notice that these are 
definitions by genesis.

θ

Fig. 2  .2. The right triangle that defines the secant and the tangent, 
using a circle of radius 1 

Inside any circle sits a second right triangle that is similar to 
the first one, as shown in figure 2.3a. This second triangle is more 
commonly drawn in textbooks and is often displayed without 
the circle from which it was generated, as in fig. 2.3c. Applying 
Pythagoras’s theorem to each of these two triangles in turn (for the 
same reason, if the radius is chosen to be 1 unit, sin(q ) and cos(q ) 
are the lengths of the two non-radial sides of the smaller triangle) 
produces two of the common trigonometric identities: 

1 + [tan(q )]2 = [sec(q )]2    and    [cos(q )]2 + [sin(q )]2 = 1

Being familiar with similar triangles—and the length ratio 
properties that are invariant across them—is fundamental to high 
school trigonometry.
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(a) (b) (c)

Fig. 2.3. The similar triangles that give rise to the trigonometric  
definitions

Combining the two perspectives discussed briefly in this sec-
tion, the unit circle centered at the origin gives (cos(q ), sin(q )) as 
the coordinates of one vertex of the smaller right triangle in figure 
2.3a and (1, tan(q )) as the coordinates of the vertex of the larger 
right triangle in figure 2.3a. Using similar triangles, it is possible to 
derive the more common initial definition of tan(q ) as the ratio of 
sin(q ) to cos(q ) as a theorem. Or alternatively, this argument shows 
the equivalence of the two definitions of tan(q ): (1) the length of the 
segment of the tangent line that goes from the point of tangency (of 
the unit circle and the tangent line) to the intersection of the other 
secant line with the tangent line, and (2) the ratio of sin(q ) to cos(q ).

Looking Vertically at School Geometry
We use a different case—that of transformations in grades 6–8  
and in postsecondary mathematics—to illustrate the “vertical”  
development of geometric thinking in mathematics. 

Transformations in grades 6–8
The middle school geometry curriculum, as articulated in NCTM’s 
(2000) Content Standards, provides opportunities for students to 
work with transformations. Students in grades 6–8 often describe 
their work colloquially, using terms such as “flips,” “turns,” “slides,” 
and “zooming.” They describe the new sizes, orientations, and posi-
tions of shapes under these transformations. Such descriptions are, 
for the most part, qualitative, and they remain in the visual reg-
ister. In other words, students in the middle grades work with the 
fact that a “turn” does not change the orientation of a shape or its 
size by using a purely visual apprehension of the shape. If asked to 
identify the transformation linking one shape to its image, students 
draw on visual strategies. For example, given a shape and its ro-
tated image, as in figure 2.4, students can see that one shape is the 
rotated image of the other, and they may be able to explain some of 
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the reasons for this: the shapes are congruent, and the orientation 
has not changed. But these are property-based arguments and not 
definition-based ones.

Fig. 2.4. A shape and its rotated image

Furthermore, given a shape, students may be able to sketch its 
reflected or rotated image. But this can be difficult, since it involves 
working very closely with the properties of the given transforma-
tion. This is particularly true for non-canonical configurations. So, 
for example, students are likely to find drawing the reflected image 
in figure 2.5a much easier then doing so in figure 2.5b, since they 
can use visual approximation to do the former task, but the latter 
requires them to give more attention to the properties of reflection 
(unless they turn the piece of paper around, making the line of  
reflection vertical!).

(a) (b)

Fig. 2.5. Reflecting a shape across a line of reflection

Similarly, students might be able to identify a line of reflec-
tional symmetry that a shape such as a rectangle or a heart has, but 
they will probably find it much more challenging to construct, say, 
the center and angle of rotation in figure 2.4 or the line of reflec-
tion in figure 2.6 (especially since it is oblique).

Fig. 2.6. An oblique line of reflection
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Constructing the line of reflection involves working backward 
from the properties—that is, going from the fact that a point and its 
image have to be equidistant to a line to the idea that the line will 
therefore pass through the midpoint of the segment connecting the 
point and its image. Reflect 2.1 challenges you to identify the center 
of rotation in figure 2.4. 

Reflect 2.1

Specifying the particular rotation shown in figure 2.4 requires identifying both Specifying the particular rotation shown in figure 2.4 requires identifying both 
the center of rotation and the angle of rotation. Try estimating each first. the center of rotation and the angle of rotation. Try estimating each first. 
Which one is easier to identify? What properties of rotation are you using Which one is easier to identify? What properties of rotation are you using 
when you identify each one?  when you identify each one?  

You might begin by recognizing that any point on the pre-
image shape and its corresponding image point must lie on the 
same circle. But there are infinitely many circles whose centers 
pass through the perpendicular bisector of a pre-image point and 
its corresponding image point. So the center must be where all the 
perpendicular bisectors of a pre-image point and its corresponding 
image intersect. Once that point is identified, the angle comes eas-
ily. Can you find a way of identifying first the angle and then the 
center?

The goal of this discussion is to point to the ways in which 
middle school work on transformations focuses mainly on visual 
apprehension and on identifying properties. However, since these 
properties are grasped visually, they are not always available for use 
in constructing images or symmetries.

Because students are familiar with these transformations when 
they enter high school, it is important to offer tasks for which vi-
sual apprehension will not suffice. It may also be necessary for 
students to identify and describe these properties as invariances 
across a range of examples. So, for example, in a dynamic geom-
etry environment, students can become aware of the properties of 
reflection by observing how a shape and its image behave as they 
drag the shape or the line of reflection on the screen. Measurements 
of lengths and angles can help students turn these observations 
into more precise statements (for instance, “The line of reflection 
is the same distance from A as it is from A�”). Construction chal-
lenges, using either straightedge and compass or a DGE, can en-
able students to act on these observations: if the line of reflection 
is the same distance from A as it is from A�, then to find the line 
of reflection, they need to find the midpoint of the segment AA�. 
Construction demands a discursive interaction, and this is why it is 
a crucial part of developing a geometric discourse.
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In high school, the focus is on bringing other means of repre-
sentation to work with transformations (such as coordinates, vec-
tors, functions, and matrices). If students begin this work without 
having developed a language-based understanding of transforma-
tions, then they will be more and more challenged by tasks that are 
resolvable only through an application of definitions.

In middle school, transformations are largely seen as processes 
that turn one shape into another, as opposed to a function—a math-
ematical object. Repeated attention to shape A turning into shape 
B casts A as the initial object and B as the final one; there is a 
directionality—an arrow of time “before” and “after”—and even the 
language of pre-image and (after-)image reinforces this. Although 
perhaps surprising, this means that it can be difficult to think of B 
as an initial object.

This need to recognize reversibility is similar to the situa-
tion encountered in the elementary grades with regard to addition. 
Repeated exposure to statements such as 3 + 4 =  ends up casting 
the right-hand side of the equation as the endpoint of the opera-
tion on the left. This makes it difficult for students to know how to 
handle statements such as  = 3 + 4, or 3 + 4 =  + 2.

In the case of transformations, the difficulty that students 
often have in thinking of B as an initial object becomes evident 
when they are asked to work with compositions of transformations. 
Because B was the reflection of A, B can be hard for students to see 
now as the object to be reflected again into C—not to mention try-
ing to forget B in order to relate A to C! In fact, when working on 
the composition of transformations, the focus is the transformation 
itself and not the shape being transformed. In other words, whereas 
middle school geometry draws attention to the process of turning A 
into B, high school geometry turns the process into an object (“re-
flecting” into “a reflection”) and then does things with that object 
(in this case, composes it). This is a very important shift, which is 
often invisible, since students are quite able to use the words cor-
rectly (such as reflecting and reflection), without using them in the 
same way as the textbook or the teacher.

Teachers need to support this objectification process—namely, 
the process of turning a process into an object—in several ways for 
students to work successfully both with composition and with other 
representations of transformations. One way, which we have already 
mentioned, is to help students develop a more language-based un-
derstanding of the transformations through work with constructions. 
Another way is to change the roles of A and B (so that A is not 
always turning into B) by asking questions such as, “Now that you 
have reflected A to find B, what would happen if you reflected B, 
using the same line of reflection?” or, “B is the result of reflecting A 
across this line of reflection, but A was erased; can you recover it?” 
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Similarly, even before beginning work on composition, which 
focuses on transformations as objects, teachers might allow students 
to undertake a chain of transformations, such as reflecting A to 
obtain B, then rotating B to get C, and so on. Here, the focus would 
still be on the process of transforming, but the chain of transforma-
tions would provide instances of B also being an initial shape in-
stead of always being just an ending shape.

One final way of supporting the process of objectification 
might involve having students work with the collection of sym-
metries of certain shapes. By determining whether—and by how 
much—a given shape can be rotated and superimposed on itself, 
for example, students shift their attention away from the process 
of rotating to the number of symmetries that the shape has. They 
will find that the square (see fig. 2.7a) rotates by 90, 180, 270, and, 
of course, 360 degrees, thus yielding rotational symmetry of order 
4. They will discover that the rectangle appears to have rotational 
symmetry only of order 2 (see fig. 2.7b). Reflect 2.2 invites you to 
explore the rotational symmetries of other shapes. 

(a) (b)

Fi  g. 2.7. Actions illustrating rotational symmetries of a square 
and a rectangle

Reflect 2.2

Explore the rotational symmetry of shapes other than the square and the Explore the rotational symmetry of shapes other than the square and the 
rectangle. Can you find any shapes that have rotational symmetry of order 3? rectangle. Can you find any shapes that have rotational symmetry of order 3? 
What about rotational symmetry of order 5?What about rotational symmetry of order 5?

We made an important choice here in working with the order 
of rotational symmetry—namely, that every shape has at least order 
1 rotational symmetry, given that every shape overlaps itself after 
a rotation of 360 degrees. It would be natural to think a shape that 
has no rotational symmetry should have a rotational symmetry of 
order 0. But since it is convenient to define rotational symmetry 
of order n as rotations by an angle of 360°/n without changing the 
shape of the object, n cannot be allowed to be 0. This provides an-
other small instance of where a definition is affected by a desire.
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Yet more transformations: Linear algebra in 
postsecondary education
There are two main approaches to linear algebra: one is called 
“coordinate-free,” and, we suppose, the other might be called 
“coordinate-full” (or “coordinate-expensive”). Students’ first en-
counter with linear algebra is usually coordinate-full and full of 
matrix manipulations as well; a second encounter (usually in an 
abstract algebra course or possibly an honors linear algebra section) 
involves the study of vector spaces—and linear transformations of 
them—and matrices play a considerably smaller role.

Both types of linear algebra courses can be greatly enhanced 
by the use of geometry, especially in two and three dimensions. 
Earlier work in secondary school with transformations and isom-
etries comes into play, providing both motivation and important 
imagery for what can otherwise, at times, degenerate into a mass of 
specific and uninformative calculations.

Many intricate relations exist among the following related sets 
of ideas: isometries of the plane, 2 � 2 matrices, linear transforma-
tions of the plane, dilations, shears, and affine transformations of 
the plane. Unfortunately, in the short space we have here, we can 
only hint at some of the connections among these ideas and attempt 
to link them back to earlier points in this book and in Developing 
Essential Understanding of Geometry for Teaching Mathematics in 
Grades 6–8 (Sinclair, Pimm, and Skelin 2012).

In what follows, think of a linear transformation as a transfor-
mation of the coordinate plane that preserves lines (i.e., collinearity 
relations) and, in particular, the origin. Examples of these transfor-
mations include rotating the plane around the origin, reflecting it 
across the line y = x, shearing parallel to the x- or y-axis, or dilating 
the plane with the center of dilation at the origin.

If we imagine the coordinate plane, a unit square has four key 
points that form the corners: (0, 0), (1, 0), (0, 1), and (1, 1). Under 
a general linear transformation, these points get mapped to (0, 0), 
(a, b), (c, d), and (a + c, b + d). Notice that the origin always stays 
fixed, as every linear transformation maps the origin to itself. This 
means that neither non-identity translations nor glide reflections 
can be linear transformations, since they have no fixed points. The 
particular cases of rotations about the origin or reflections across 
a line that passes through the origin are linear transformations. 
Translations and glide reflections, rotations about a point that is not 
the origin, and reflections about a line that does not pass through 
the origin are all closely related to linear transformations and are 
examples of what are called affine transformations. An affine trans-
formation is a linear transformation followed by a translation: in 
the case of a pure translation, the linear transformation involved is 
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the identity transformation, which sends every point to itself. (As 
we mentioned in our discussion of Big Idea 4 in chapter 1, the iden-
tity transformation can be seen as a zero rotation or a zero transla-
tion, depending on definitions. But our preference is to see it as a 
zero rotation, not least because it is a linear transformation and has 
a simple matrix representation). 

Notice that while in high school, transformations are typically 
categorized according to whether or not the transformation pre-
serves size and shape; here, however, the categories of linear and 
affine transformations draw on very different properties. In other 
words, classification of isometries as linear or nonlinear transforma-
tions provides a different way to sort isometries from our usual cat-
egories of translations, reflections, rotations, and glide reflections.  
This alternative sorting is similar to, for example, sorting polygons 
into regular or non-regular ones instead of by means of our usual 
names for them (triangles, quadrilaterals, pentagons, and so on). It 
also makes one wonder whether there are other ways to categorize 
these transformations.  

Under any linear transformation, the origin is always mapped 
to the origin, lines through the origin remain lines through the ori-
gin, and, in general, the unit square is transformed to a parallelo-
gram (see fig. 2.8).  We add “in general” to our claim to take care of 
some “monster” examples. Some linear transformations compress 
the whole plane onto a line through the origin, and, in one extreme 
case, the linear transformation whose matrix has all zero entries 
compresses the whole plane onto the origin itself.
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Fig . 2.8. Pre-image (unit square OBCD) and image (parallelogram 
OB’C’D’ ) under a linear transformation

Every linear transformation of the plane (equipped with the 
usual rectangular axes) can be associated with a 2 � 2 matrix, 
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, and the diagram in figure 2.8 indicates that if we know
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