
Challenges: Learning,  
Teaching, and Assessing
Geometry’s roots can be seen in children’s everyday experiences. 
Children can build on these experiences and engage in thinking from 
a mathematical point of view when they develop skill in using math-
ematical practices (Common Core State Standards Initiative [CCSSI] 
2010) and mathematical habits of mind, such as defining, conjec-
turing, experimenting, and proving (Goldenberg, Cuoco, and Mark 
1998) to build mathematical understanding. 

This chapter addresses the challenges of bridging everyday 
experiences and mathematical experiences of geometry and mea-
surement through a series of scenarios and tasks. The tasks involve 
the concept of symmetry. Recall that a symmetry is an isometry 
that maps a figure onto itself. Although this is just one topic in the 
grades 3–5 geometry curricula, our intent is to model how students 
might be engaged in mathematical practices and might develop 
mathematical habits of mind through investigations that draw on 
the teacher’s ownership of the big ideas and essential understand-
ings discussed in chapter 1.

Essential mathematical practices have been articulated in 
various lists and versions. Among these are the Process Standards 
elaborated in Principles and Standards for School Mathematics 
(National Council of Teachers of Mathematics [NCTM] 2000), 
the strands for mathematical proficiency outlined by Kilpatrick, 
Swafford, and Findell (National Research Council 2001), and the 
Standards for Mathematical Practice presented in the Common 
Core State Standards for Mathematics (CCSSI 2010). This chapter 
focuses on the practices of defining, conjecturing, arguing and re-
futing, looking for commonalities and generalizing, and reasoning 
mathematically. This last, more general practice involves students 
in explaining and proving as they use all these practices to develop 
concepts of symmetry and isometry. Although we have named the 
practices as though they are distinct, they are interconnected. We 
separate them only to highlight each one in our discussion.
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Building Definitions and Using  
Counterexamples
Defining is an important activity in mathematics and the primary 
constituent of classification, which is the focus of Big Idea 3. Defining 
is a dynamic practice, as suggested by Essential Understandings 
3a and 3c, and it is closely connected to other mathematical 
practices, such as conjecturing, solving, explaining, and proving. 
Defining involves students in collaboratively building concepts 
through their mathematical experiences, negotiating meanings, 
and clarifying their understanding in their discussions with 
others. 

It is important for children to have the opportunity to engage 
actively in these aspects of defining. Branford wrote forcefully 
on this point in 1908 (quoted by Griffiths and Howson [1974, pp. 
216–17]):

To me it appears a radically vicious method, certainly in geometry, if 
not in other subjects, to supply a child with ready-made definitions, 
to be subsequently memorized after being more or less carefully ex-
plained. To do this is surely to throw away deliberately one of the most 
valuable agents of intellectual discipline. The evolving of a workable 
definition by the child’s own activity, stimulated by appropriate ques-
tions, is both interesting and highly educational.

Branford’s comments imply that defining in geometry does not 
always produce agreement or immediate clarity. Many people are 
surprised to find that there is not universal agreement about all defi-
nitions. For example, are parallelograms best defined as quadrilater-
als with one rotational symmetry or as quadrilaterals with two pairs 
of opposite sides parallel? The answer depends on the nature of the 
mathematical system that one is trying to develop.

When such situations arise, the best way to help young stu-
dents conceptualize an idea may not be immediately clear. In 
chapter 1, the discussion of Essential Understanding 3c considered 
a geometric definition of “straight” not as an a priori axiom but 
instead as successive redescriptions of “straight” across contexts of 
everyday movement in space, such as walking without changing 
direction, inscribing walks on paper, and considering the meaning 
of “straight” on different geometric surfaces. Recall the question 
of what happens to a line drawn on a piece of paper if the paper is 
rolled into a tube (see Reflect 1.30). Instead of telling students to ac-
cept definitions, teachers can involve students in the practice of de-
fining and developing important foundational concepts of isometry 
and symmetry through experience.
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Beginning with familiar occurrences gives students the oppor-
tunity to develop more robust conceptions anchored in experience 
but extended in generality and precision by thinking mathematical-
ly. For example, drawing on the earlier investigation of the meaning 
of “straight,” imagine a class of fourth graders investigating paral-
lelism. Suppose that the students are looking for examples around 
the classroom, and recognizing that the lines on a ruled piece of 
notebook paper are parallel, they suggest a criterion of equal dis-
tance. But then the teacher might ask them about the stripes on the 
flag hanging in the corner: “Can we describe them as parallel lines? 
What if we placed the flag flat on a table? How about when the flag 
is waving in the wind? What if we draped the flag on a cylinder or 
sphere?” If young students are to appreciate the importance of de-
fining terms and the challenge of reaching agreement, they must be 
allowed to formulate their own definitions, experiencing the need to 
clarify proposed definitions, modify them in light of feedback, and 
improve on their initial statements.

This process-based approach to defining suggests the need to 
change the common practice of beginning a new topic of study with 
vocabulary lists and definitions. A naked definition supplied at the 
start of a lesson has no context and thus little or no meaning for 
many students. By contrast, a well-designed problem can lead stu-
dents to play with ideas to see how geometric objects work, to ex-
periment by taking various actions on those objects, and to define 
as a way of clarifying the nature of the objects and actions arising 
during the course of investigation. 

Introducing and Working with  
Reflection Symmetry
The problem in figure 3.1 is designed to introduce reflection sym-
metry. Students’ prior experience may have included working with 
shapes containing parallel sides, but they have not developed a 
definition or solved problems. 

In the statement of the problem, the phrase “look right” is de-
liberately ambiguous, prompting students to explore their own and 
others’ assumptions and interpretations as they solve the problem. 
The dialogue that appears after figure 3.1 shows a discussion of stu-
dents’ solutions to this problem in Ms. Fuji’s fourth-grade class:
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Derrick was making a card for his mom’s birthday. He wanted to 
put lots of heart stickers on it. Derrick looked at the stickers and 
said, “Some of these don’t look right!” 

Which do you suppose were the heart stickers that Derrick 
thought didn’t “look right”? What could Derrick have been 
noticing when he made the comment?

Fig. 3.1. Problem introducing reflection symmetry

Wendy:	 I think Derrick was looking at the hearts 
that aren’t shaped right.

Ms. Fuji:	 Does everyone know which hearts Wendy 
means?

Tyler:	 Yes, the ones with bumps.

Keisha:	 Do you mean bulges?

Wendy:	 I mean the ones that aren’t the same on 
both sides. Hearts have to be the same on 
both sides.

Ms. Fuji:	 Could someone show us where Wendy and 
Tyler might be looking to decide that some 
hearts aren’t the same on both sides?

Keisha:	 [Pointing to the two leftmost, the bottom 
middle, and the top rightmost hearts] Here?

[Wendy and Tyler nod yes.]

Ms. Fuji:	 How did you decide which hearts aren’t the 
same on both sides?

Tyler:	 One side looks too fat or too skinny. 



Challenges: Learning, Teaching, and Assessing	 79    

Ms. Fuji:	 How did you decide about this one? [Points 
to the lower of the two leftmost hearts, an 
asymmetrical heart that might appear to 
some to be symmetrical.] Can anyone think 
of a way we could be sure that this heart 
isn’t the same on both sides?

Jamal:	 We could fold it in half. It should match up 
if it’s the same.

The discussion continued with Ms. Fuji asking Jamal to dem-
onstrate his method for determining whether the sides match. The 
students used Jamal’s cut-and-fold method in carrying out the in-
vestigation and sorting the hearts into two groups. Ms. Fuji helped 
the students relate the action of folding the heart along the vertical 
axis to their sorting decisions. Before the period was over, the stu-
dents decided that by hearts that didn’t “look right,” Derrick must 
have meant the ones that didn’t match up when folded. 

Although neither symmetry nor symmetrical was mentioned by 
name in the discussion, the students gained a lot of experience with 
the concepts. Ms. Fuji’s implementation of the task suggests that she 
knew that the need to classify the hearts as those that “look right” 
and those that do not involves classification and relies on properties 
of symmetry (Essential Understanding 3c). 

As the class continued to work with the topic in the next days, 
they would be ready to understand the term symmetry when Ms. 
Fuji introduced it. This vignette illustrates the power of context and 
experience in the introduction of new terms and ideas. Moreover, 
because Ms. Fuji used the students’ own words early in the discus-
sion to highlight the salient aspects of the experience, the students 
were more likely to make a connection between their experiences 
and the process of defining the term. 

Making Conjectures 
We often form notions of what we consider to be true or how 
something works before we are ready to apply them to every case. 
Conjecturing is serious business involving “formulating and produc-
ing general statements about patterns and relationships and evaluat-
ing their reasonableness” (Lampert 2001, p. 71).

In conjecturing, students articulate conditions or assumptions 
under which they will evaluate a supposition in light of a finding. 
After creating the conjecture, they revise it on the basis of math-
ematical evidence. In classrooms where revising conjectures is ac-
cepted as a normal practice, rather than seen as something that 
only the less capable students need to do, everyone’s assertions are 
regarded as worthy of consideration and subject to question. 
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Using reflection symmetry in classifying
Conjecturing can be used to initiate explorations or can result from 
explorations. Study the task for students shown in figure 3.2 about 
lines of symmetry in quadrilaterals.
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Find any lines of symmetry and any centers of rotation 
symmetry in the quadrilaterals.

Make observations about the relationship between your 
categories and the lines of symmetry in the quadrilaterals 
in that category.

Sort the quadrilaterals below into categories, using as many 
categories as you think necessary. Describe each of your categories.

After solving several problems calling for �nding the 
perimeter of a rectangle, Monique made the following 
conjecture, “I think the measure of the perimeter of a 
rectangle will always be an even number.”

Use your experience with symmetry to make a judgment 
about Monique’s conjecture. Write an explanation of why you 
agree or disagree with Monique’s conjecture. 

Fig. 3.2. Sorting quadrilaterals task

The intent of this task is for students to form conjectures on the 
basis of their observations about the relationships among the cat-
egories that they formed and the symmetries of the quadrilaterals in 
each category. If students place quadrilaterals I and L in a category, 
do they see that both figures have a line of symmetry through the 
midpoints of each pair of opposite sides? Which figures have four 
lines of symmetry? What kinds of figures have two lines of sym-
metry? What kinds of figures have only one line of symmetry? 
Questions like these help students make conjectures about the prop-
erties of the quadrilaterals.
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To extend students’ thinking, you might ask them to add a 
figure that would belong in each of their categories. What kinds of 
problems prompt students to make or test conjectures? Generally, 
problems that generate or involve lots of examples give students 
more opportunities to distinguish between features that vary and 
features that are invariant. When students become aware of an in-
variance, they can begin to describe it, and this leads to formulating 
a conjecture.

Using symmetry in exploring conjectures
The task in figure 3.3 invites students to investigate a given conjec-
ture and to use symmetry in their reasoning. Examine the task, and 
then consider how Mr. Jackson guided his fifth-grade students in 
thinking about it, as shown in the vignette that follows.
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Find any lines of symmetry and any centers of rotation 
symmetry in the quadrilaterals.

Make observations about the relationship between your 
categories and the lines of symmetry in the quadrilaterals 
in that category.

Sort the quadrilaterals below into categories, using as many 
categories as you think necessary. Describe each of your categories.

After solving several problems calling for �nding the 
perimeter of a rectangle, Monique made the following 
conjecture, “I think the measure of the perimeter of a 
rectangle will always be an even number.”

Use your experience with symmetry to make a judgment 
about Monique’s conjecture. Write an explanation of why you 
agree or disagree with Monique’s conjecture. 

Fig. 3.3. Investigating perimeter conjecture task

The students in Mr. Jackson’s fifth-grade class began sketch-
ing rectangles and assigning values to the lengths of the sides. In a 
short time, most students decided that they agreed with Monique’s 
conjecture. However, they had difficulty in using symmetry to make 
their judgments. Mr. Jackson initiated a discussion:

Mr. Jackson:	 So most of you have decided you agree with 
Monique.

Tasha:	 See, every time I got an even number.

Mr. Jackson:	 How about others?

[Students indicate that they too have gotten even numbers 
for the perimeters.]

Mr. Jackson:	 Do you think that will always be true?

Sinclair, Pimm, 
and Skelin (2012b) 
connect invariance 
to refining 
conjectures and 
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theorems.
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[Students call out yes.]

Mr. Jackson:	 What kinds of values did you give the 
lengths of the sides?

[Students call out various odd and even whole numbers.]

Mr. Jackson:	 Think about the numbers you are hearing 
us name and what kind of numbers they 
are.

Alicia:	 Whole ones.

Mr. Jackson:	 Did anyone use any other kinds of 
numbers?

[No one responds. Mr. Jackson waits. Several students look 
down at their papers; some start writing.]

Molly:	 Wait, what if we use 5 1⁄2  units for the 
length?

Mr. Jackson:	 What do you want the width to be?

Sam:	 Three.

The students then found the perimeter of a 3-unit by 5 1⁄2 -unit 
rectangle and revised Monique’s conjecture to include the condition 
that the lengths of the sides have to be natural numbers. Although 
this is not the only condition under which the conjecture is true, it 
was a step in the development of conjecturing for the students. 

However, the students still had not used symmetry to formulate 
a rationale for why the conjecture is true under the right condi-
tions. Mr. Jackson decided to raise the question again when the 
students had more experience with symmetry. Drawing on Essential 
Understanding 1b, he also noted that symmetry offers a geometric 
rationale for the conjecture that a rectangle whose dimensions are 
natural numbers of units always has a perimeter that is an even 
number of units—an idea to which he planned to return in the 
future.

Mr. Jackson listened carefully to his students’ statements and 
made an assessment of their development in conjecturing. He judged 
that the students were more focused on the numbers than on the 
symmetries of the rectangles. He used what they were noticing to 
advance their thinking about a necessary condition for the conjec-
ture to be true.

Arguing, Refuting, Explaining,  
Generalizing
Mathematical practices are interconnected; the distinctions among 
them are indefinite. Arguing, explaining, and generalizing are dif-
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ferent forms of mathematical reasoning. They have a structure that 
follows the students’ process and logic. In mathematics, arguing 
is more than having a different opinion. When one argues, one is 
trying to convince others that something is true. Arguments are 
grounded in contested claims but go beyond conjecture. An argu-
ment begins with the belief that under the stated conditions, a 
particular statement will always be true or a solution will always 
work.

Most students in grades 3–5 tend to reason inductively, relying 
on the examples they find to show that something is true (Ellis et al. 
2012). We can help students go beyond merely producing examples 
by asking them to explain why a particular example is relevant to 
their argument or how the example shows that the argument makes 
sense. The key to prompting viable arguments is to put students in 
the position of explaining why they believe something to be true. 
Positioning students to explain why can result in fruitful investiga-
tions of the structure of mathematical systems.

Finding lines of reflection symmetry
Tasks that elicit common misunderstandings that students have can 
help them reconsider important mathematical ideas. One such com-
mon misunderstanding is the belief that rectangles have four reflec-
tion symmetries, one through each pair of opposite sides and one 
through each diagonal, as shown in figure 3.4.

REFLECT

REFLECT

Fig. 3.4. A misrepresentation of the lines of symmetry in a rectangle

When asked to justify their claim, students might say that a line 
of symmetry “cuts the rectangle in half.” This may be true in some 
sense, but cutting a rectangle in half is not a sufficient requirement 
for a line of symmetry. Experimenting with reflections by using a 
Mira (see fig. 3.5) or a mirror to test lines of symmetry may help 
children use spatial reasoning in powerful ways to make arguments. 
Eventually, considering other types of isometries and thinking about 
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interesting points such as the point of intersection of the diagonals 
could lead to new opportunities to consider symmetry.

REFLECT

REFLECT

Fig. 3.5.  Creating a reflection with a Mira

Reasoning and explaining why things are as  
they are
The final task in this sequence on conjecturing and symmetry is one 
that can be used to prompt students to reflect on concepts embodied 
in the previous tasks or can be offered as an assessment problem. 
Figure 3.6 shows the task.

Fig. 3.6. Symmetry task

For each of the following, draw a four-sided figure 
that has—

a.    exactly four lines of symmetry;
b. exactly three lines of symmetry;
c. exactly two lines of symmetry;
d. exactly one line of symmetry;
e. zero lines of symmetry. 

Describe each four-sided figure that you sketch, and 
explain why it has exactly that number of lines of 
symmetry.

Not only does this problem address much of the content related 
to reflection symmetry in grades 3–5 but it also embodies many of 
the practices highlighted in this chapter. Students can experiment, 
if they need to, and test their conjectures about what type of quad-
rilateral will suit each specification, and they must describe (define) 
their solutions and explain why they fit the conditions.
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Students will not be able to find a four-sided figure with exactly 
three lines of symmetry, as specified in part (b). This characteristic is 
not possible to satisfy, but its presence in the list requires students 
to reason. Giving students a problem that does not have a solution 
can be frustrating if they have not had experience in devising and 
revising conjectures, making and refuting arguments, justifying 
findings, and explaining their reasoning. At the same time, students 
who have been engaging in these practices develop the confidence 
to look at each new problem critically to assess whether the problem 
situation is plausible.

Proving by Systematic Search
Often, ideas about symmetries and isometries are put to use in prob-
lems and contexts that initially may seem far removed from either 
topic. For example, chapter 1 referred to third-grade students who 
were trying to determine all the possible nets of a cube and were using 
isometries to identify equivalent nets. The task was not presented 
as one focused on finding isometries, but isometries turned out to 
be useful tools for considering equivalence. For these third-grade 
students, knowing when to stop generating candidate nets was dif-
ficult. If many people found the same nets, would that mean that 
all possibilities had been found? Note that the need for explanation 
arose from the activity of the students. It did not originate with an 
instruction to “prove that….”

Instead, the problem prompted the students to generate ex-
amples, and often, as noted earlier, having numerous examples 
provides rich opportunities to notice similarities and differences. 
However, the generation of these examples did not resolve the issue 
of knowing when to stop. This dilemma inspired several students to 
abandon a generate-and-test method in favor of a “system” deter-
mined by the number of squares in a column, or “backbone,” of the 
net. 

This method of exhaustive search convinced them that there 
were only eleven different nets. In figure 3.6, the count (the circled 
numbers) is for each unique net with columns of four, three, and 
two squares, so that there are six possibilities for a column of four 
squares, four for a column of three squares, and only one for a 
columns of two squares. The method constitutes an informal proof 
in that it explains the necessity for eleven nets, given the students’ 
definitions of equivalent nets based on isometries and the kinds 
of configurations of squares that constitute nets—and the teacher’s 
awareness of Essential Understanding 1a. This example, along with 
an emerging body of research, suggests that the kernel of thinking 
about proof as explaining why can be cultivated in the elementary 
grades (Stylianou, Blanton, and Knuth 2009; Lehrer and Lesh 2012).

Essential  
Understanding 1a 
Transformation sup-
plies a dynamic basis 
for analyzing and 
describing a variety 
of situations and 
relationships.
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Fig. 3.6. Diagrams and counts used in student-generated informal proof of the 
necessity of eleven nets of a cube
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Conclusion
Geometry and measurement are areas of mathematics with tangible 
forms that originate in everyday experiences of space. These com-
monplace experiences are useful for nurturing mathematical prac-
tices, such as defining, conjecturing, experimenting, and explaining. 
Emphasizing these mathematical practices while you are teaching 
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can give your students an opportunity to “reinvent” geometry (van 
Hiele 1986). Observing and developing visualizing skills, exploring 
and experimenting with properties of shapes, formulating defini-
tions of geometric objects after having gained experience with them, 
and constructing arguments and explanations are all part of the re-
inventing process.

The big ideas focusing on transformation, measurement, and 
classification from chapter 1 transcend the content of geometry in 
grades 3–5.  Teachers familiar with them can draw on the essential 
understandings to guide their work as they help students learn about 
nets and a variety of geometric topics. They also can use them to 
develop, explain, and anticipate new approaches to other topics in 
their mathematics curriculum.




