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Building Equations and Functions
Focus in High School Mathematics: Reasoning and Sense Making (NCTM 2009) stresses the 

importance of reasoning with algebraic symbols, equations, and functions. These skills are precisely 
the ones that cause students so much difficulty in the transition from arithmetic to algebra. Indeed, 
teachers’ assessments of the areas that cause beginning students to struggle are overwhelmingly uni-
form. The following areas often present challenges:
 

Expressing generality with algebraic notation, including function notation1.	

Reasoning about slope, graphing lines, and finding equations of lines 2.	

Building and using algebraic functions3.	

Setting up the appropriate equations to solve word problems4.	

At first glance this list looks like a collection of 
disparate topics. Yet, looking underneath the topics 
and considering the kind of reasoning that would help 
students master them reveals a remarkable similarity. 
A key component of all of these topics is the reason-
ing habit of seeking and expressing regularity in re-
peated calculations.

This habit manifests itself when one is perform-
ing the same calculation over and over and begins to 
notice the “rhythm” in the operations. Articulating 
this regularity leads to a generic algorithm, which is 
typically expressed with algebraic symbols and can 
be applied to any instance and transformed to reveal 
additional meaning, often leading to a solution of the 
problem at hand.

This chapter explores how this habit can be used 
to bring coherence to three topics in the high school 
curriculum:

Building equations to model situations1.	

Finding lines of best fit2.	

Calculating monthly loan payments 3.	

The habit of seeking and expressing regular-
ity in repeated calculations runs throughout 
the specific components that Focus in High 
School Mathematics: Reasoning and Sense 
Making identifies in the reasoning habits that 
it describes. For example, those components 
include—

• identifying relevant mathematical  
	 concepts, procedures, or representations;

•	seeking patterns and relationships;

•	looking for hidden structure;

•	making purposeful use of procedures;

•	organizing the solution, including  
	 calculations. 



26	 Focus in High School Mathematics: Algebra

From Calculations to Equations

Focus in High School Mathematics: Reasoning and Sense Making calls for reasoned solving of 
equations—seeing steps in the solution of an equation as logical deductions. However, before equations 
can be solved, they have to be constructed, by using what that publication calls the meaningful use of 
symbols. Teachers report that many students, even students who are quite skillful in solving linear and 
quadratic equations, have a very hard time building equations that model particular situations.

For example, consider how hard it is for students to set up 
an equation that they can use to solve an algebra word problem. 
Reasons for their difficulties typically include the reading levels 
and the unfamiliar contexts of such problems. Still, there has 
to be more to students’ difficulties than these surface features. 
Consider, for example, the following two problems:

Problem 1: The driving distance from Boston to Chicago is 990 miles. Rico drives from 
Boston to Chicago at an average speed of 50 mph and returns at an average speed of  
60 mph. For how many hours is Rico on the road?

Problem 2: Rico drives from Boston to Chicago at an average speed of 50 mph and 
returns at an average speed of 60 mph. Rico is on the road for 36 hours. What is the driving 
distance from Boston to Chicago? 

The problems have identical reading levels and context. But teachers report that many students 
who can solve problem 1 are baffled by problem 2. A significant body of research can help to ex-

plain this phenomenon (Bransford, Brown, and Cocking 1999; 
Breidenbach et al. 1992; Cuoco 1995; Piaget 1972; Sfard 1991; 
Sfard and Linchevski 1994; Slavit 1997).

Problem 1 can be solved with isolated calculations, as 
shown in figure 2.1. However, problem 2 requires that the stu-
dent encapsulate these isolated individual calculations into a 
coherent process—an algorithm that calculates the time on the 
road from the distance traveled—so that they can invert the 
algorithm (reasoned solving again) to come up with a distance 
that will produce 36 hours.

Teachers of algebra typically 
comment, “My students can 
solve the equations; setting them 
up is the hard part.” 

Problems 1 and 2 and others like 
them make no pretense of being 
rooted in reality. Indeed, their 
puzzle-like quality makes them 
ideal vehicles for developing the 
reasoning habits under consider-
ation. 

Fig. 2.1. Isolated calculations for solving problem 1 
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In this situation, the reasoning habit of “expressing the 
rhythm” in a calculation can be of great use to them. The 
basic idea is for them to guess at an answer to problem 2 
and check their guess as if they were working on problem 
1, keeping track of their steps. The purpose of the students’ 
guess is not to stumble on (or to approximate) the correct answer; rather, it is to help them construct 
a “checking algorithm” that will work for any guess. So, students can make several guesses until they 
are able to express their checking algorithm in algebraic symbols. The following example shows how 
a student might approach this problem; figure 2.1 shows the student’s calculations.

Student:  	 I began by guessing that the distance is 1000 miles. I then divided 1000 by 50 and 
1000 by 60. Then I added the answers together to see if I got 36. I didn’t, so I made 
another guess—950 miles. Let’s see: 950 divided by 50 plus 950 divided by 60. Is that 
36? No, but a general method is evolving that might allow me to check any guess. My 
guess-checker is 

							          .

	 So my equation is

	 or, letting x stand for the unknown correct guess,

In the classroom
In the following vignette, two teachers sort out the dif-

ference between the solution method described for problem 2 
and traditional guess-and-check. Mr. Thomas Gradgrind and 
Ms. Maria Agnesi are talking about their algebra classes. Tom 
is sharing his concerns about a lesson involving the relation-
ships among distance, rate, and time. 

Tom: 	 Maria, I just don’t know what to do. Right 
now in my class we are working on distance-
rate problems. We had already talked about 
the relationship among distance, rate, and time. I then gave students a problem like 
this: “The driving distance from Boston to Chicago is 990 miles. Rico drives from 
Boston to Chicago at an average speed of 50 mph and returns at an average speed of 
60 mph. How many hours was Rico on the road?” Almost every student was able to 
come up with the correct solution. 

Maria: 	 How do you know students understood what they were doing?

Students who solve this problem with the 
aid of a calculator typically hit the “=” 
key very often. 

guess guess
50 60

36+ =?

guess guess
50 60

36+ =

x x
50 60

36+ =

“Guess-and-check” has long been a 
popular method for finding or approxi-
mating solutions to all kinds of prob-
lems. What we present here isn’t quite 
the same—the guesses are just scaffolds 
to help students build equations. The 
real goal is to build a generic “guess 
checker”—the equation that can be 
solved to produce the exact solution.  

,

.
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Tom: 	 When I walked around to see what students were doing, I saw that they were dividing 
the one-way distance by each respective speed and then adding both times to get the 
total hours. I asked students to explain why they were dividing, and they were able to 
talk about d = rt.

Maria: 	 So what exactly is your concern?

Tom: 	 After asking students to determine the total time for the problem, I switched the prob-
lem a bit. I gave students the same speeds as before but told them this time that Rico 
was making a round trip from Fort Lauderdale, Florida, to Reston, Virginia. I asked 
them to figure out the one-way distance between the two cities if the total driving time 
was 38.5 hours. They didn’t even know how to begin the problem. So I ended up just 
telling them how to set up the equation to solve the problem.

Maria: 	 What understanding do you think your students have about the problem?

Tom: 	 None. I gave them a formula of sorts that can help them solve these types of prob-
lems. What else was I supposed to do?

Maria: 	 This is a great opportunity to help students develop as problem solvers while at the 
same time giving them a chance to make meaning out of algebraic symbols. Let me 
show you what I mean. Given two different rates, one each for the trip out and back, 
your students were able to determine the total trip time. Well, have them use this 
method to help solve the second problem.

Tom: 	 I’m not sure that I follow. Students didn’t set up an equation initially, and they clearly 
couldn’t set up an equation for the second problem.

Maria: 	 Suggest to students that they “guess” a distance and use it to check if they are correct 
by calculating if they get the same total driving time.

Tom: 	 But how does guessing help them? I don’t want them to keep guessing and checking. 
It’s not efficient, and they may never get the right answer.

Maria: 	 The “guessing” is just the means for them to develop an algorithm. Have students 
keep track of the steps they are using to check their guess. Here, let’s try one. Begin 
with a guess of 500 miles and conjecture what students will do.

Tom: 	 They will divide 500 by 50 and then divide 500 by 60 and add them together to get 
the total time—just as they did for the initial problem.

Maria: 	 Suggest they try another number for the distance between the cities, like maybe  
800 miles. What will they do?

Tom: 	 The same thing as before. They will divide 800 by 50 and then divide 800 by 60 and 
add them together. Oh, I see what you’re getting at. After a couple of times, students 
can begin to see a pattern. I can coach them to come up with a type of verbal descrip-
tion, like

	

Miles between cities
 mph

Miles between cities
50

+
660

38 5
 mph

 hours= . .
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Maria: 	 Now students can simply replace “miles between cities” with x and they have an equa-
tion where the variables and equation make sense to them. They have also developed a 
method that will come in very handy in the future for setting up equations.

This habit of trying numerical examples until the structure of an algorithm becomes clear cap-
tures a very common process that is a useful tool throughout algebra: we carry out several concrete 
examples of a process that we don’t quite “have in our heads” to find regularity and build a generic 
algorithm that describes every instance of the calculation. As another example, let’s look at how this 
same reasoning can be used to find equations of lines and other curves.

Equations of lines and other curves
Suppose that a student who is new to alge-

bra and comes to it with no formulas is asked 
to find the equation of the vertical line l that 
passes through the point with coordinates (5, 4). 
Students can draw the line, and, just as in the 
word problem example, they can guess points and check to see if they are on l. For example, trying 
some points, like (5, 1), (3, 4), (2, 2), and (5, 17), leads to a generic guess-checker: To see if a point 

is on l, you check that its x-coordinate is 5. This leads to the guess-checker x  5 and the equation  
x = 5.

This method works well for vertical and 
horizontal lines, and even for special lines like 
the one that bisects the first and third quadrant. 
But what about lines for which there is no simple 
guess-checker? The idea is to find a geometric 
characterization of such a line and then to de-
velop a guess-checker based on that characteriza-
tion. One such characterization uses slope.

In first-year algebra, students study slope, and one fact about slope that often comes up is that 
three points on the coordinate plane but not all on the same vertical line are collinear if and only if 
the slope between any two of them is the same. Figure 2.2 shows three points that satisfy this condi-
tion and three points that do not.

Roger Howe (forthcoming) makes a careful 
analysis of word problems, showing how arith-
metic and algebraic approaches can be devel-
oped and used in tandem.

To be completely rigorous, students should 
check that a point is on l if and only if its x-
coordinate is 5. The equation x = 5 is often re-
ferred to as a point tester for l. 

Fig. 2.2. On the left, points A, B, and C are collinear. On the right, they are not.
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In the figure, if we let m(A, B) denote the slope between A and B (calculated as change in y di-
vided by change in x), then the collinearity condition can be stated like this:

Three points A, B, and C that do not all lie on the same vertical line are collinear if and only if 
m(A, B) = m(B, C).

This criterion for collinearity can be used to find the 
equation of a line between two points. Suppose, for 
example, that students are asked to find an equation 
for AB

 

 if A is the point (5, 1) and B is the point (–3, 
6). Imagine again that they have no knowledge of y = 
mx + b or related formalisms. They can reason as fol-

lows: The slope between A and B is − 5
8 , and we can guess at some points C and check to see whether 

or not C is collinear with A and B by checking slopes: 

To prove this characterization of collinearity, 
one needs some facts about similar triangles. In 
figure 2.2, the two triangles on the left are simi-
lar; the two triangles on the right are not. 

C m(B, C) C on AB
� ���

?

(1, 3)
−

3
4 no

(7, 0)
−

3
5 no

(13, –4)
−

5
8 yes

(–6, 7)
−

1
3 no

How might the students check a generic guess, say C(x, y)? They could calculate the slope be-
tween C(x, y) and B(–3, 6), and see if the slope is

 
− 5

8 . The guess-checker is m(B, C)  − 5
8 , or

So an equation of AB
 

 is 

	

From here, the students can simplify the equation to get it into a more standard form.

It is certainly true that algebra students need 
to become fluent in understanding the correspond-
ence between linear equations and their graphs. In 
many applications, they will need to be able to read 
the slope and y-intercept of a line from its equation, 
and given these features, they will need to be able 
to draw a line. 

y
x

−
+

= −6
3

5
8

y
x

−
+

= −6
3

5
8

?

y
x

−
+

= −6
3

5
8

This outline glosses over some important de-
tails that would need classroom discussion. For 
example, the special case when x = –3 needs 
attention, and students should check this result 
against the result obtained when one checks the 
slope from C to A instead of from C to B. 

.

.



Building Equations and Functions� 31

So, why not jump directly to the development of these 
skills without the guess-checking activities? A number of 
reasons support starting with an approach like the one out-
lined here:

Several research studies (Greenes et. al. 2007; 1.	
Goldenberg 1988, 1991) show that students who can 
fluently graph equations like y = 3x + 4 often can’t use 
the equation to see if a given point is on the graph. Building equations from the repeated 
testing of numerical examples reinforces the “Cartesian connection” that a point is on the 
graph of an equation if and only if its coordinates satisfy the equation.

This same reasoning habit can be applied to other equations and their graphs. For example, 2.	
to find an equation for the circle with center C(3, 7) and radius 5, students who are used to 
thinking this way might ask, “How can I check to see if a given point P is on the circle?” 
They might then follow up this question by asking, “Is the distance from P to C equal to 5?” 
Students equipped with the Pythagorean theorem would be able to write down the equation 
from this characterization long before learning about the formula (x – h)2 + (y – k)2 = r2.

The very act of articulating a guess-checking algorithm in a way that can be formulated with al-3.	
gebraic symbols is a skill that will serve students well throughout mathematics and related fields.

Automaticity in graphing is very important. However, 
jumping directly to the automatic applications of methods like 
using “y = mx + b” can disconnect students’ skill in graphing 
equations from the underlying meaning that connects equa-
tions and their graphs.

Students frequently think that  
y = 3x + 4 is a “code” that means 
“put a point at (0, 4), then go over 
1 and up 3, put a point there, and 
then draw a line between these 
two points.” 

Articulating a guess-checking 
algorithm as described will serve 
students well in dealing with 
algebra word problems and area 
formulas. Eventually, students 
should be able to go from a prob-
lem directly to an equation or 
function that models the problem’s 
situation, but jumping directly to 
“problems by type” or rules like 
“let x= ...” or A =

1
2  (b1 + b2)h can 

disconnect the symbols from their 
meaning for students.

Fitting Lines to Data

Imagine a class in which students have developed auto-
maticity with the connection between lines and their equa-
tions. One application of this set of skills is to provide some 
insight into the sometimes-mysterious calculator button that 
calculates the line of best fit for a set of data. After students 
have had appropriate informal experiences with data trends, 
many high school curricula give a definition of a best-fit line 
in a manner such as the following: 

For a set of points x yi i i

n
, ( ){ } =1 , the line of best fit minimizes the sum of the squares of the devia-

tions in y-values. In other words, it is a line with equation y = ax + b so that the sum

y ax bi i
i

n

− +( )( )
=
∑ 2

1

is as small as possible. 

The actual derivation of the a and b that minimize this sum is 
usually left for linear algebra or calculus. However, a little knowl-
edge of quadratic functions (and how to minimize them), along 
with the habit of abstracting from calculations, can take students 
quite a bit further.

Notice that a and b are the 
variables here. Think of the set 
of all possible lines dancing 
through the data, each one with 
its own “badness,” or lack of fit 
(its particular sum of squares of 
deviations in y-heights from the 
data points). The use of dynamic 
geometry software can make this 
image precise (Cuoco and Gold-
enberg 1996).




