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Demystifying Magic Squares

OVERVIEW

Magic squares have fascinated mathematicians for thousands of years, 
dating back to more than 2000 years BCE. References to magic squares 
are found in the historical records of Chinese, Arab, Indian, Japa-
nese, African, and European mathematics. The 16th-century German 
Renaissance artist Albrecht Dürer created a famous engraving in which 
a magic square is prominently displayed on the wall, and even Benja-
min Franklin is remembered for the remarkable magic squares that 
he developed.

In the classroom, magic squares, if they are introduced at all, are most often presented as 
number puzzles, recreational curiosities, or challenge problems outside the mainstream 
curriculum. But magic squares present us with opportunities to combine number sense, 
algebraic reasoning, and problem solving in a context of exploring and making sense of 
interesting, often fascinating, mathematics. This activity opens the gateway to such math-
ematical reasoning by delving into several cases of magic squares, a first foray into a virtually 
boundless area of mathematical thinking and inquiry.

GOALS

	◆ Use algebraic representations and properties of numbers to identify patterns and 
verify properties of magic squares.

	◆ Apply reasoning by processes of elimination, examining cases, and other strategies 
to justify the structure of magic squares.

	◆ Communicate discoveries and justifications in algebraic terms.

	◆ Use logical reasoning to rule out possibilities.

Derived from 
“Demystifying 
Magic Squares” in 
Navigating through 
Reasoning and 
Proof in Grades 9–12 
(NCTM 2008b, 
pp. 22–26).
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12    Activity Gems for the Grades 9–12 Classroom

MATERIALS NEEDED

For each student, copies of the following activity sheets:

	◆ Demystifying Magic Squares

	◆ 3 × 3 Magic Square Grid

	◆ 3 × 3 Magic Square Numbers

	◆ 3 × 3 Magic Squares Recording Sheet

	◆ 5 × 5 Magic Square Grid

	◆ 5 × 5 Magic Square Numbers

	◆ 5 × 5 Magic Squares Recording Sheet

	◆ Albrecht Dürer’s Magic Square

	◆ Benjamin Franklin’s Magic Square

	◆ More than Meets the Eye

Scissors

(Optional) Calculator or access to a spreadsheet program (for calculating sums)

Engage

Introduce this activity by having the students examine the magic 
square presented in problem 1 on the activity sheet Demystifying 
Magic Squares (see figure 1.1). Discuss with them the defining prop-
erties of magic squares and the vocabulary used in describing them. 
Important points of discussion include the following:

	◆ A magic square of size n × n consists of n2 distinct numbers 
arranged such that the sum of the numbers in every row, 
every column, and both diagonals is the same number, called the magic sum. Verify 
that the square in problem 1 on the activity sheet is a magic square, and find its 
magic sum. [34]

	◆ Magic squares are classified according to their size, and a square of size n × n is called 
an order-n square. The example given above is an order-4 magic square.

	◆ Most magic squares use the numbers 1, 2, 3, . . ., n2 as the entries, although that is 
not a requirement. Squares that do use the consecutive numbers 1 through n2 are 
generally known as “normal” magic squares. Note that in the order-4 example, the 
entries are 1, 2, 3, . . ., 16.

The example used in the introduction here is not the only order-4 magic square. In fact, it 
has been shown that 880 distinct normal order-4 magic squares exist, excluding reflections 

FIG. 1.1

A magic square of order 4

1 8 10 15

12 13 3 6

7 2 16 9

14 11 5 4
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ACTI V IT Y 1: Dem ystif yi ng Ma gic Squares    13

and rotations, and as the size of the squares increases, their numbers quickly become mind 
boggling. So we will begin our investigation by considering the smallest possible magic 
square, that of order 3. Problem 2 on the activity sheet gives the placement of the numbers 
1 and 2, as shown in figure 1.2, and asks the students to complete 
the magic square. To facilitate their search, give students copies of 
the activity sheets 3 × 3 Magic Square Grid and 3 × 3 Magic Square 
Numbers. They can cut apart the nine number squares and manip-
ulate them on the grid as they investigate this and subsequent 
problems. The 3 × 3 Magic Squares Recording Sheet will help them 
keep a record of the squares they find as the activity progresses.

Unless students have had prior experience with magic squares, they are likely to approach this 
task using a trial-and-error strategy, so allow sufficient time for them to explore the possibili-
ties and encourage them to keep track of any strategies they may have used. When they have 
completed their squares, ask them to compare their solutions and to describe their methods. 
Did they all find the same magic square? [Probably yes.] What is the magic sum? [15].

Before going on, engage students in a discussion of the questions posed in item 2 of the activ-
ity sheet, beginning with these queries: 

	◆ Why must the magic sum be 15? [The numbers 1 through 9 appear in the square, and 
their total is 1 + 2 + . . . + 9 = 45. If the three rows (or three columns) all have the same 
magic sum, then the total of 45 must be distributed equally across rows (or columns), 
so that each row (column) totals 1/3 of 45, or 15.]

	◆ Explain why 3 cannot occupy the center square. What positions 
are possible for the 3? [The 3 cannot be in the same row, column, or 
diagonal with either 1 or 2, because both (3 + 1 + x = 15) and (3 + 2 
+ x = 15) require that x be greater than 9. The only place that 3 can 
go is in the first column, second row, as shown in figure 1.3.]

	◆ Explain why 4 cannot occupy the center square. What positions 
are possible for the 4? [The 4 cannot be in the same row, column, 
or diagonal with 1 because that would require the third addend to 
be 10, which is not available. There are two possible locations for 
the 4: cells (a) and (b) in figure 1.4. Try each case to determine that 
4 must be located at (a).]

	◆ Why can none of the numbers 6, 7, 8, or 9 occupy the center 
square? [Try each of the numbers in the center square and identify 
a contradiction or impossibility. (See figure 1.5.) For example, 
6 in the center square would require another 6 to complete the 
second row; 7 in the center square would require another 7 to 
complete the second column. Each case leads to a roadblock. Call 
on students to demonstrate and show reasons why each of the 
numbers 6, 7, 8, 9 must be eliminated.]

FIG. 1.2

Complete the magic square

1

2

FIG. 1.3

Place the number 3 in  
the magic square

1
3

2

FIG. 1.4

Place the number 4 in 
the magic square

1
3

2(a)
(b)

FIG. 1.5

Can 6, 7, 8, or 9 occupy 
the center square?

1
3
4 2
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14    Activity Gems for the Grades 9–12 Classroom

	◆ By process of elimination, what number do you conclude must 
occupy the center square? [The center number must be 5. See 
the final solution in figure 1.6. Note that 5 is both the median 
and the mean of the set of numbers used. We will return to that 
observation later.]

We have now found one order-3 magic square. Could there 
be others? The third item on the activity sheet challenges 
students to try to make magic squares, using the numbers 
1 through 9 with magic sum 15, for the six starting positions 
specified in figure 1.7.

Students can use their 3 × 3 magic square grid and numbers 
to explore possibilities for the six cases. They should 
discover that they cannot make squares (a) and (b) magic. 
There is only one solution for square (e), with its two fixed 
starting numbers, whereas squares (c), (d), and (f) each have 
two solutions. All the possible magic squares, together with 
the original square from before, are shown in figure 1.8.

Call on individuals to describe the patterns, similarities, or consistent features that they notice 
among the successful squares. Likely responses include the following:

	◆ In every case, the 5 is in the center cell.

	◆ The 1 is never in the center or in a corner cell.

	◆ The numbers in the corners are always even.

	◆ All the 3 × 3 magic squares are reflections or rotations of one another.

FIG. 1.7

Try to make magic squares with magic 
sum 15

1

(a) (b) (c)

(d) (e) (f)

1

1

1

1

1

2

8    1    6
 3    5    7 

4    9    2 

4    3    8
 9    5    1 

2    7    6

2    9    4
 7    5    3 

6    1    8

6    7    2
 1    5    9 

8    3    4

6    1    8
 7    5    3 

2    9    4

Original R90° R180° R270°

FV FD+ FH FD–

2    7    6
 9    5    1 

4    3    8

4    9    2
 3    5    7 

8    1    6

8    3    4
 1    5    9 

6    7    2

FIG. 1.8

Arrangements of the order-3 magic square

FIG. 1.6

The order-3 magic square

1 68

5 73
9 24
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ACTI V IT Y 1: Dem ystif yi ng Ma gic Squares    15

Let’s examine those observations more closely by looking at all the ways that three distinct 
numbers from the set {1, 2, . . . 9} can total 15:

	 1 + 5 + 9 = 15	 1 + 6 + 8 = 15

	 2 + 4 + 9 = 15	 2 + 5 + 8 = 15	 2 + 6 + 7 = 15

	 3 + 4 + 8 = 15	 3 + 5 + 7 = 15

	 4 + 5 + 6 = 15

We can tally the number of times each digit appears among the addends:

Number 1 2 3 4 5 6 7 8 9

Frequency || ||| || ||| |||| ||| || ||| ||

These results explain why the even numbers, each of which occurs in three combinations, 
must occupy the corner cells where each belongs to one row, one column, and one diago-
nal. Likewise, the odd numbers 1, 3, 7, and 9, which each occur in two of the combinations, 
must occupy the noncorner cells on the sides of the square, where they each belong to one 
row and one column. And we see another reason why 5, with its four tallies, must occupy the 
center position where it belongs to one row, one column, and two diagonals.

An ancient Chinese legend told the story of the Emperor Yu who, around 2200 BCE, was 
walking along the Lo River, a branch of the Yellow River, when he saw a tortoise with a 
unique diagram on its shell.
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16    Activity Gems for the Grades 9–12 Classroom

The diagram, which he called lo shu, is a representation of the order-3 magic square.

For more on the history of magic squares, see Anderson (2001), available at more4U.

Finally, let’s consider the observation that the magic squares in figure 1.8 are all reflections or 
rotations on one another. If we consider the magic square from figure 1.6 to be the “original” 
square, then the other seven can be classified as follows:

	 R
90°

 —rotate the original square 90 degrees clockwise.

	 R
180°

 —rotate the original square 180 degrees clockwise.

	 R
270°

 —rotate the original square 270 degrees clockwise.

	 F
H

 —reflect (flip) over the horizontal axis.

LO-SHU DOTS

The lo shu diagram
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ACTI V IT Y 1: Dem ystif yi ng Ma gic Squares    17

	 F
V
 —reflect (flip) over the vertical axis.

	 F
D+

 —reflect (flip) over the positive-sloping diagonal.

	 F
D–

 —reflect (flip) over the negative-sloping diagonal.

Because all the arrangements shown in figure 1.8 are reflections or rotations of one another, 
the squares are not different. In other words, only one normal order-3 magic square has the 
numbers 1 through 9 and the magic sum of 15.

But this is just the beginning of our investigation.

Explore

Let’s see how much more we can discover about 3 × 3 magic squares by posing some ques-
tions to investigate. To motivate this inquiry, first ask students to solve the two problems 
posed in item 4a on the activity sheet:

1.	 Form a magic square using the entries 5, 6, 7, 8, . . . 13 and find its magic sum.

2.	 Form a magic square using the entries 2, 4, 6, 8, . . . 18 and find its magic sum.

Solutions for the two squares are given in figure 1.9. But each of 
these examples leads to a broader generalization:

	◆ What happens if you add or subtract the same constant in 
every cell of a magic square?

	◆ What happens if you multiply or divide by the same 
nonzero constant in every cell of a magic square?

Suggest that the students use variables to represent the entries in a 3 × 3 
magic square as shown in figure 1.10. They might work in pairs to develop 
and discuss their responses before presenting their reasoning to the class. 
Sample explanations include these: 

	◆ Since a + b + c = S in the original magic square, then adding a 
constant, n, to each cell yields (a + n) + (b + n) + (c + n) = (a + b + c) + 
3n = S + 3n. Likewise, each row, column, and diagonal will total S + 
3n, the new magic sum, and the resulting square is also magic. [In 
question 1 above,  n = 4 and S = 15 + 3 × 4 = 15 + 12 = 27.]

	◆ Since a + d + g = S in the original magic square, then multiplying each cell by n ≠ 0 
yields (a × n) + (d × n) + (g × n) = (a + d + g) × n = S × n. Likewise, each row, column, 
and diagonal will total S × n, the new magic sum, and again the resulting square 
remains magic. [In question 2 above, n = 2 and S = 15 × 2 = 30.]

Magic sum 30

12   5   10

 7    9   11

 8   13   6

16   2   12

 6    10   14

 8   18   4
Magic sum 27

FIG. 1.9

Form two magic squares

a   b   c

d   e   f
g   h    i

FIG. 1.10

Representation 
using variables
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18    Activity Gems for the Grades 9–12 Classroom

In all the 3 × 3 magic squares that we’ve seen so far, there appear to be several relationships 
involving the number in the center cell. Ask the students to describe and prove all the rela-
tionships that they can discover. Here are some properties that they should observe:

“The role of the student is to be actively involved in making sense of mathematics tasks 
by using varied strategies and representations, justifying solutions, making connections 
to prior knowledge or familiar contexts and experiences, and considering the reasoning 
of others.” (NCTM 2014, p.11)

	◆ The number in the center cell is one-third of the magic sum. [We know that the magic 
sum, S, is 1/3 of the sum of the nine numbers a + b + . . . + i. The entry e, in the center 
cell, belongs to four of the row/column/diagonal combinations, which yield (d + e + f ) 
+ (b + e + h) + (a + e + i) + (g + e + c) = 4S. Regrouping terms gives 4S = (a + b + c + d + e + 
f + g + h + i) + 3e = 3S + 3e. Hence S = 3e or e = S/3.]

	◆ The number in the center cell is the mean of the nine numbers making up the magic 
square. [Let the total of the nine numbers be T. We know that S is T/3, and we now also 
know that e is S/3. Thus e = 1/3 (T/3) = T/9, which is the mean of the nine entries.]

	◆ On any row, column, or diagonal, the pair of numbers symmetric to the center cell 
sum to twice the center value, and the center number is the average of the pair. In 
other words, (a + i) = (b + h) = (d + f) = (g + c) = 2e. Since, for example, a + e + i = S and 
e = S/3, then a + i = S – S/3 = 2S/3 = 2e, and e = (a + i)/2. [In the 3 × 3 square, all the 
symmetric pairs total 10.]

Drawing on these observations, we can pose additional questions, such as these from the 
activity sheet:

1.	 �Can the set of numbers {1, 3, 5, 7, 8, 10, 12, 14, 16} be arranged to form a 3 × 3 magic 
square? [No. Using what was proved above, the magic sum would have to be 76/3, 
which is not an integer and clearly not the sum of any three integers from the list. Also, 
the entry in the center cell would have to be 76/9, which is also not an integer and not 
one of the numbers in the set.]

2.	 �Andy claims that if he is given any “start-up” whole number, a, 
for the center of a 3 × 3 square and any whole-number values 
for x and y, he can make the square “magic.” His procedure 
begins as shown in figure 1.11. Complete Andy’s magic square, 
expressing the missing entries in terms of a, x, and y (see 
figure 1.12). Can you use Andy’s method to create a magic 
square if a = 8, x = 3, and y = 2? (See figure 1.13.)

3.	 �Does Andy’s method of creating 3 × 3 magic squares always 
work? Prove or disprove your answer. [Be careful! If x = y, or 
if either x = 0 or y = 0, Andy’s method will not work because 

a + x

a – y a – x

a

a + y

FIG. 1.11

Andy’s start-up square
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ACTI V IT Y 1: Dem ystif yi ng Ma gic Squares    19

the entries in the nine cells will not all be distinct. It is important to specify those 
restrictions: x ≠ y, x ≠ 0, y ≠ 0.]

We have already seen that many mathematical patterns are embedded in the order-3 
magic square. But what will happen with larger squares? Before we explore that ques-
tion, we should note that odd-order squares (such as the 3 × 3 square) will have different 
properties from even-order squares (such as the 4 × 4 square in figure 1.1) because of the 
fact that the odd-order squares contain a single center cell whereas even-order squares 
do not. Therefore, let’s expand our inquiry by considering normal order-5 magic squares 
containing the integers {1, 2, . . . 25} that we can relate to the 3 × 3 square that we have been 
investigating. For this activity, give students copies of the 5 × 5 Magic Square Grid, the 5 × 5 
Magic Square Numbers, and the 5 × 5 Magic Squares Recording Sheet. They can cut out the 
numbers and manipulate them on the grid as they search for magic squares, which they 
can then record on the sheet.

It has been reported that the number of distinct normal order-5 magic squares, excluding 
reflections and rotations, exceeds 275 million. (Gardner 1988, p. 216)

Before students begin searching for magic squares, ask them to predict what the magic sum 
will be. On the basis of what they know from their work with order-3, they should realize that 
the magic sum, S, must equal (1 + 2 + 3 + . . . + 25) / 5 or 325/5 = 65.

In an arithmetic sequence a, (a + d), (a + 2d), . . . [a + (n – 1)d], the total of the first n 

terms is given by T n a a( )
2

n1= +
. In a normal order-n square, the total of the n2 terms is 

T = 1 + 2 + . . . + n( ) n n2 ( 1)
2

2 2

= +
 and S T

n
n n( 1)

2

2

= = +
. For order-5, TT 3322552255 2266

22= =×
 

and S 65325
5= = .

The students can use their grids and numbers to attempt to construct a magic square, 
but it should quickly become obvious that, because of the increased size of the square 
and the greater number of possible 5-addend combinations, trial-and-error is not an 

3 1011

8 97

13 56

FIG. 1.13

Magic square using 
Andy’s method

FIG. 1.12

Andy’s completed square 

a + x

a – x + y a + x – ya

a – y a – xa + x + y

a – x – y a + y
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20    Activity Gems for the Grades 9–12 Classroom

efficient strategy. Fortunately, a number of methods for constructing odd-order squares 
are known, and we will introduce and compare two of the best-known methods in this 
activity. (Interested students can find great delight in researching other strategies as 
follow-up activities later.)

One of the oldest and most popular methods of constructing odd-order squares is the “diag-
onal method” described below. Introduce this to the students and have them use their magic 
square grid and numbers to follow you through the first few steps; then let them complete 
the square on their own. The strategy is as follows:

	◆ Place the number 1 in the center cell of the 
top row. Successive numbers will follow in 
order by moving one cell diagonally up and 
to the right.

	◆ We see immediately that the diagonal 
move will take the 2 off the top of the grid 
(figure 1.14a). When that happens, imagine 
the square being rolled into a horizontal 
cylinder (figure 1.14b) where the bottom row 
wraps around to meet the top row, and the 2 
is placed as shown in figure 1.14.

	◆ Continue the diagonal moves to locate the 
numbers 3 and 4. Once again, the move takes 
the 4 off the grid on the right side. This time, 
imagine the square rolled into a vertical 
cylinder (figure 1.14c) where the left side 
wraps around to meet the right side, and the 
4 is located as shown in figure 1.14.

	◆ The next diagonal move locates the 5 (see figure 1.14a), but the subsequent diagonal 
move takes us to a cell that is already occupied by the 1. When that happens, drop 
down one row and place the 6 under the 5, and then continue the pattern as before.

At this point, stop filling the square and let students place the remaining numbers. When 
they finish, they should check to be sure that all the rows, columns, and diagonals have the 
magic sum of 65. If any do not, backtrack to locate where an error occurred.

We can now examine the 5 × 5 square and compare its properties to those we observed in 
the 3 × 3 square. For example:

	◆ Look again at the 3 × 3 magic square in figure 1.6. Show that, in fact, it conforms to 
the diagonal-move strategy.

4 6

5

1

2

4

3

2

2

1

3

4

(a)

(b)
(c)

FIG. 1.14

The diagonal method for constructing an 
odd-order magic square
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ACTI V IT Y 1: Dem ystif yi ng Ma gic Squares    21

	◆ The number (5) in the center cell of the 3 × 3 square is one-third of the magic sum 
(15); in the 5 × 5 square, the number in the center cell (13) is one-fifth of the magic 
sum (65).

	◆ In both squares, the number in the center cell is the mean of the n2 numbers making 
up the magic square. [5 = 45/9; 13 = 325/25.] The center number is also the median of 
the n2 numbers.

	◆ Every pair of numbers symmetric to the center cell total twice the center value. The 
center number is (n2 + 1)/2 and the symmetric pair sums to (n2 + 1). For the order-3 
square, 5 = (9 + 1)/2 and the pairs total 9 + 1 = 10. In the order-5 square, 13 = (25 + 1)/2 
and the pairs sum to 25 + 1 = 26.

An associative magic square is one in which every pair of numbers symmetrically 
opposite the center cell sum to n2 + 1.

Magic squares that exhibit the property described above are called 
associative (or associated) magic squares. Figure 1.15 illustrates three 
examples of symmetric pairs that total 26. Students should verify that 
all the symmetric pairs in this square share that property.

If every number in a magic square is subtracted from (n2 + 1), we 
obtain another magic square called the complement of the first square. 
Figure 1.16 shows the complement of the square in figure 1.15. Verify 
that it is also an associative magic square. What else do you notice about 
the square and its complement? [The complement is a 180-degree rota-
tion of the first square.]

We have seen that the diagonal-move strategy is effective for construct-
ing an associative magic square, but let’s introduce one more popu-
lar method for building odd-order magic squares and examine its 
outcomes. This method is known as the knight’s move strategy. As 
before, you can demonstrate this to students and have them use their 
magic square grid and numbers to follow you through the first few 
steps; then let them complete the square on their own. The strategy is 
as follows: 

	◆ Place the number 1 in the center cell of the top row. The method gets its name 
because successive numbers will be placed by following what, in chess, is the pattern 
in which the knight moves on the chessboard: in an L-shaped pattern of two cells 
in one direction (horizontally or vertically) and one cell at right angles to that. In 
building this square, we will follow the pattern of moving two squares “up” and one 
square to the right.

FIG. 1.15

An associative order-5  
magic square

17 24 1 8 15

23 5 7 14 16

4 6 13 20 22

10 12 19 21 3

11 18 25 2 9

9 2 25 16 11

3 21 19 12 10

22 20 13 6 4

16 14 7 5 23

15 8 1 24 17

FIG. 1.16

Complement of  
the magic square  
in figure 1.15
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22    Activity Gems for the Grades 9–12 Classroom

	◆ The first knight’s move takes the 2 off the top 
of the grid (figure 1.17a), so we again imagine 
the horizontal cylinder (figure 1.17b) to place 
the 2 as shown.

	◆ Continue the knight’s move to place the 
numbers 3 and 4. This time, the move takes 
the 4 off the grid at the top-right corner 
(figure 1.17a), and we need to imagine both a 
horizontal and a vertical cylinder to locate the 
placement for the 4.

	◆ The next knight’s move locates the 5 
(figure 1.17a), but the subsequent move takes 
us to the cell that is already occupied by the 
1. When that happens, we again drop down 
one row and place the 6 under the 5, and then 
continue the pattern as before.

Pause here to let the students place the remaining 
numbers on the grid. When they finish, they should 
verify that they have a magic square with magic sum 
65. Then check this new magic square for the following 
properties:

	◆ Verify that the square constructed using the knight’s move is 
different from the square constructed by the diagonal method—
that is, the squares are not reflections or rotations of each other.

	◆ Verify that this knight’s move square is associative. (Figure 1.18 
presents three examples of symmetric pairs; students should 
check the rest.)

The knight’s move square also possesses a new property not present in 
the order-5 squares that we have examined so far: It is a pandiagonal 
magic square (also called a panmagic or diabolical or Nasik square). 
In a pandiagonal magic square, all the “broken diagonals” also sum to the magic number. 
Figure 1.19 illustrates four examples of broken diagonals. Note that when the magic square 
is rolled into a cylinder, as above, the broken diagonals spiral around the cylinder. If we make 

4

6

5

1

2

4

3

2

2

1 3

4

(a)

(b)
(c)

FIG. 1.17

Filling a magic square using the knight’s 
move

10 18 1 14 22

11 24 7 20 3

17 5 13 21 9

13 6 19 2 15

4 12 25 8 16

FIG. 1.18

This knight’s move 
square is associative

10 18 1 14 22

11 24 7 20 3

17 5 13 21 9

23 6 19 2 15

4 12 25 8 16

10 18 1 14 22

11 24 7 20 3

17 5 13 21 9

28 6 19 2 15

4 12 25 8 16

FIG. 1.19

Four examples of broken diagonals in a panmagic square
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four copies of the square, as shown in figure 1.20, we see how 
the broken diagonals “straighten out” across the pattern.

A pandiagonal magic square is one in which all the broken 
diagonals sum to the magic constant.

	◆ There are eight broken diagonals in this order-5 
square. Identify them and verify that all eight sum 
to 65.

	◆ Show that the order-5 square from figure 1.15 is not a 
pandiagonal square.

	◆ Show that the order-4 square from figure 1.1 is a pandiagonal square.

These examples allow us to draw the following conclusions:

	◆ A magic square can be associative but not panmagic (figure 1.15, for example).

	◆ A magic square can be panmagic but not associative (figure 1.1, for example).

	◆ A magic square can be both associative and panmagic (figure 1.18, for example). In 
fact, order-5 magic squares are the smallest that can possess both qualities.

But let’s return to the repeated pattern illustrated in figure 1.20. Tiling of the plane forms a 
sort of “magic carpet” from which we can observe one more interesting property of the 5 × 5 
squares constructed using the knight’s move: You can outline any 5 × 5 square on the carpet, 
and it will be a panmagic square. What that also means is that any of the numbers from 1 
through 25 can occupy the center cell of the magic square—although only the square with 
13 in the center will be both associative and panmagic. Note that we have just found 24 new 
order-5 magic squares! The students should check some (or all 25) of the magic squares that 
can be outlined on the magic carpet to verify these assertions.

Extend

 It has been said of pretzels and potato chips that you cannot eat just one. The same is true of 
magic squares once you have had a taste of their intriguing structure and beauty. Although 
your classroom time to spend on demystifying magic squares may be limited, many students 
can find great enjoyment and satisfaction in extending their inquiry into these mathemati-
cally appetizing patterns. Here are some suggestions for individual or small-group projects.

1.	 Construct larger odd-order magic squares, such as 7 × 7 or 9 × 9 or larger, using both 
the diagonal and the knight’s move methods. Examine those squares to see if the 
properties we identified for the 5 × 5 squares extend to the larger squares.

2.	 Other methods exist for constructing odd-order squares in addition to the two 
introduced in this activity. Research some of those strategies and examine the 
properties of the resultant squares.

10  18   1   14  22  10  18   1   14  22

11   24   7  20  3  11  24  7   20  3

17 5 13 21 9 17 5 13 21 9

23 6 19 2 15 23 6 19 2 15

4 12 25 8 16 4 12 25 8 16

10 18 1 14 22 10 18 1 14 22

11 24 7 20 3 11 24 7 20 3

17 5 13 21 9 17 5 13 21 9

23 6 19 2 15 23 6 19 2 15

4 12 25 8 16 4 12 25 8 16

FIG. 1.20

A “magic carpet”
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3.	 Even-order squares are constructed using different strategies than those for 
odd-order cases. Research some even-order strategies and examine the properties of 
the squares they produce.

4.	 The German artist Albrecht Dürer’s engraving Melencholia from the year 1514 
includes a depiction of a magic square hanging on the wall. (Dürer was known to 
have signed his works with his initials and the date. Note that here the two center 
cells of the bottom row contain the numbers 1514, the year it was created, and the 
corner cells in the bottom row, 4 and 1, represent the fourth and first letters of the 
alphabet, D and A, his initials.) That 4 × 4 square, shown in figure 1.21, has been 
described as “super-magic” because of its many patterns. Not only do the rows, 
columns, and diagonals sum to 34, but there are numerous other patterns of four 
squares with the same magic sum. Figure 1.22 provides a glimpse of some of those 
internal patterns. There are more. A copy of the Dürer square is available in the 
appendix (p. 267) and at this book’s more4U page for students who choose to delve 
into its hidden beauty.

5.	 Benjamin Franklin did more than fly kites and study lightning in his free time. He 
also created some amazing magic squares, one of which appears in figure 1.23. This 
one, which he created as a young man, is also known as Franklin’s “little” magic 
square. Franklin would later write in his autobiography:

I was at length tired with sitting there to hear debates, in which, as clerk, 
I could take no part, and which were often so unentertaining that I was 
induced to amuse myself with making magic squares, or circles, or anything 
to avoid weariness. (Pasles 2008, p. 74)

FIG. 1.21

Albrecht Dürer’s magic square
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	 Students can amuse themselves by examining the square 
in figure 1.23 (also in the appendix, p. 268, and at more4U) 
for its numerous patterns of eight squares that total 
260, the magic sum, as well as patterns of four squares 
that total 130, half the magic sum, all contained within 
the given square. They are also encouraged to research 
Franklin’s 16 × 16 magic square and describe all the 
patterns they can discover. Franklin himself once wrote 
in a letter to a friend that his 16 × 16 square was “the most 
magically magical of any magic square ever made by any 
magician” (Pasles 2008, p. 134).

6.	 There are also magic squares that contain within themselves subregions that are 
magic squares in their own right. Three examples are offered here (appendix  
pp. 269–271 and more4U). Students are encouraged to research other squares of 

FIG. 1.22

A sample of patterns in Dürer’s magic square

52 61 4 13 20 29 36 45

14 3 62 51 46 35 30 19

53 60 5 12 21 28 37 44

11 6 59 54 43 38 27 22

55 58 7 10 23 26 39 42

9 8 57 56 41 40 25 24

50 63 2 15 18 31 34 47

16 1 64 49 48 33 32 17

FIG. 1.23

Benjamin Franklin’s “little” 
magic square
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this type, or to attempt to create their own. Figure 1.24 gives hints as to the hidden 
features of these three sample squares with more magic than meets the eye.

Figure 1.24a is an example of a bordered magic square. What can you discover about 
its properties and magic numbers?

Figure 1.24b is an example of a cornered magic square. What can you discover about 
its properties and magic numbers?

Figure 1.24c is an example of a composite magic square, in this case a virtual “magic 
square of magic squares.” Do you recognize any familiar patterns?

“Learners should have experiences that enable them to engage with challenging tasks 
that involve active meaning making and support meaningful learning.” (NCTM 2014, p. 9)

SUMMARY

Magic squares offer an engaging context in which students can search for patterns; build 
number sense; reason algebraically; and describe, represent, and justify mathematical rela-
tionships that go well beyond what is apparent at first glance. One of the most attractive 
features is that engagement with magic squares is virtually unending, inviting students to 
continue to explore and enjoy well beyond the parameters of any classroom lesson or activ-
ity. We hope that many will accept the challenge and enjoy the experience.

(a) (b) (c)

FIG. 1.24

More Than Meets the Eye—some hints
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