
Editorial

Clarifying the Impact of Educational 
Research on Students’ Learning
Jinfa Cai, Anne Morris, Charles Hohensee, Stephen Hwang,  

Victoria Robison, and James Hiebert 
University of Delaware

In our first editorial (Cai et al., 2017), we highlighted the long-standing, critical 
issue of improving the impact of educational research on practice. We took a broad 
view of impact, defining it as research having an effect on how students learn 
mathematics by informing how practitioners, policymakers, other researchers, 
and the public think about what mathematics education is and what it should be. 
As we begin to dig more deeply into the issue of impact, it would be useful to be 
more precise about what impact means in this context. In this editorial, we focus 
our attention on defining and elaborating exactly what we mean by “the impact 
of educational research on students’ learning.” 

Within the educational research community, impact on students has been 
conceptualized and measured in many ways. For example, sometimes impact on 
students has been examined by looking for gains on standardized test scores. Other 
times, impact has been examined through gains on measures using open-ended 
tasks. Sometimes impact on students has been measured by economic indicators, 
such as students’ later-life earnings, or by the contributions individual students 
make to society. Impact can also be defined as empowering students to change 
aspects of their communities or society to be more just and equitable (e.g., Martin, 
Anderson, & Shah, in press). 

As in the first editorial (Cai et al., 2017), we do not claim to have a monopoly 
on the correct characterization of the impact of educational research on students’ 
learning. However, we do believe that the field has sometimes been narrowly 
focused on particular kinds of impact. As educational researchers, a natural ques-
tion to ask is how our research can have not only a greater impact on student 
learning but also a broader impact. We start by sharing findings from a study that 
sparked our thinking—an article by Lindqvist and Vestman (2011) illustrating the 
effects of both cognitive and noncognitive abilities on individuals’ lives.

A Longitudinal Study of Labor Market Success
In a longitudinal study of over 14,000 men in Sweden, Lindqvist and Vestman 

(2011) found evidence that the men’s success in the labor market, defined by their 
employment rates and annual earnings, correlated with both their cognitive and 
their noncognitive abilities. Lindqvist and Vestman examined data from cognitive 
and noncognitive measures for male Swedish military enlistees as well as 
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 subsequent labor market data for these individuals. The enlistees underwent a 
comprehensive, compulsory military enrollment process when they were 18 years 
old, with cognitive ability measured by a four-part military-constructed test and 
noncognitive ability measured by a composite score produced from an individual 
interview with a certified psychologist. The composite score on noncognitive 
ability consisted of ratings on characteristics such as social skills, emotional 
stability, and persistence. Labor market data spanning the subsequent 20 years 
was obtained via tax returns and unemployment compensation rates. 

The study’s findings showed that cognitive ability, though a significant predictor 
of success in the labor market, was hardly the sole factor. Noncognitive abilities 
were also shown to affect future labor market success; in fact, the overall impact 
of noncognitive abilities was greater than that of cognitive abilities. For example, 
a one standard deviation increase in noncognitive score measured at age 18 
predicted a 9% increase in wages 20 years later, compared with only a 5% increase 
in wages associated with a one standard deviation increase in cognitive score (see 
Table 1). Similar differences held for unemployment (a 4.7% decrease vs. a 0.2% 
decrease). Although these differences might appear numerically small, they reflect 
a significant impact.

Looking for Research Impact on What? 
Of course, labor market measures do not constitute a full definition of success. 

We use them here for illustrative purposes to make a point, which is that the field 
would benefit from broadening its collective conception of what it means for 
research to have an impact on students. 

Given our goal of elaborating what we mean by impact, we suggest that this 
study by Lindqvist and Vestman (2011) conveys at least two salient messages. The 
first message lies right at the surface: When we consider impact on students’ 
learning, we must not neglect the broad view of the kind of learning we are 
targeting. When targeting and measuring impact, researchers need to consider 
noncognitive as well as cognitive variables. In the past two decades, attention to 
noncognitive factors, both as predictors and as learning outcome measures, has 
increased in the field of mathematics education research (Middleton, Jansen, & 
Goldin, in press). Looking outside of mathematics education, a number of recent 

Table 1
Percentage Increase in Wages and Decrease in Unemployment for One Standard Deviation 
Increase in Cognitive and Noncognitive Scores 

One SD Increase in
Cognitive Score Noncognitive Score

Wages 5% 9%
Unemployment -0.2% -4.7%
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studies have suggested the importance of noncognitive abilities in predicting a 
wide range of life outcomes, including educational achievement, labor market 
outcomes, health, and tendency to criminality (e.g., Kautz, Heckman, Diris, ter 
Weel, & Borghans, 2014; Roberts, Kuncel, Shiner, Caspi, & Goldberg, 2007). In 
PISA, student outcomes are assessed not only through measures of achievement 
but also through measures of noncognitive aspects such as self-concept, self-
efficacy, and perseverance. Yet there is still room for progress. Indeed, looking 
across the research reports and brief reports that have appeared in JRME over the 
past 20 years, only 10% have attended to noncognitive aspects of students’ expe-
riences.

A second message we can take from Lindqvist and Vestman (2011) is that impact 
need not be measured exclusively through short-term outcomes such as grades 
and other immediate achievement measures. Impact can also be measured using 
long-term outcomes. If a key purpose of education is to prepare students to succeed 
in the paths they choose to take, we must look beyond the outcomes directly 
proximal to the use of curricula and instruction informed by our research. As a 
start, we might consider how we can look beyond the grade bands in which 
research-based curricula are implemented. For example, the LieCal Project studied 
both the effects of the Connected Mathematics Project (CMP) in the middle grades 
while it was being used as well as the effects of the curriculum through the end of 
high school (Cai et al., 2013; Cai, Wang, Moyer, Wang, & Nie, 2011). 

The reasoning behind looking further ahead in the LieCal Project was motivated 
by research studies on the effectiveness of problem-based learning (PBL) with 
medical students (Dochy, Segers, Van den Bossche, & Gijbels, 2003; Hmelo-
Silver, 2004). In that setting, researchers found that PBL students performed better 
than non-PBL (e.g., lecturing) students on clinical components in which concep-
tual understanding and problem-solving ability were assessed. However, PBL and 
non-PBL students performed similarly on measures of factual knowledge. When 
these same medical students were assessed again 6 months or a few years later, 
the PBL students performed better than the non-PBL students not only on clinical 
components but also on measures of factual knowledge (Vernon & Blake, 1993). 
An implication of this result is that the conceptual understanding and problem-
solving abilities learned in the context of PBL appeared to facilitate the retention 
and acquisition of factual knowledge over longer time intervals. 

Given that the CMP curriculum could also be characterized as a problem-based 
curriculum, it made sense to investigate whether analogous long-term results 
might hold with CMP students. Indeed, the LieCal Project found that CMP 
students had significantly higher mean scores on the 10th-grade state test than 
non-CMP students, regardless of the covariables used. In addition, CMP students 
tended to pose more mathematically complex problems and use more abstract 
problem-solving strategies than non-CMP students when they were in the 11th and 
12th grades (Cai, 2014; Cai et al., 2013). 

In the past, there have been cases where mathematics education researchers have 
given some attention to long-term effects through longitudinal studies. For 
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example, Fuson (1997) followed one class of students using an experimental 
curriculum through first and second grades, documenting changes in their arith-
metical thinking over time. Biddlecomb and Carr (2011) studied the development 
of number concepts in 206 children as they progressed from second grade through 
fourth grade. Educational psychologists focusing on developmental disabilities in 
mathematics have also conducted longitudinal studies (e.g., Geary, 2010; Jordan, 
Hanich, & Kaplan, 2003). With respect to teachers, Fennema et al. (1996) followed 
21 primary grade teachers over 4 years of Cognitively Guided Instruction teacher 
development, looking for changes in the teachers’ beliefs and instructional prac-
tices related to building on children’s mathematical thinking. Yet, overall, there 
have been even fewer reports of longitudinal work published in JRME in the past 
20 years than studies involving noncognitive factors—only about 6% of the  
research reports and brief reports involved longitudinal components. 

Despite the examples presented above, the field needs to look at long-term 
impacts far more than has been done before (Shanley, 2016). This is true for both 
cognitive and noncognitive factors and outcomes. Of course, longitudinal studies 
are not a panacea; in addition to the technical and methodological difficulties they 
pose, such studies will not by themselves help us increase the impact of research 
on students. Nevertheless, opening the field’s collective eye to see more broadly 
and further into the future when looking at outcomes is an important step in the 
ongoing effort to improve the impact of research on students. 

Reconsidering the Educational Goals
Broadening the impact of educational research on students to include cognitive 

and noncognitive abilities requires clarifying the educational goals we hope to 
achieve in the first place. Educational goals must be defined before research is 
conducted in support of those goals. It is useful to note that the most broadly stated 
goals in mathematics education, as contained in national standards documents, 
include both cognitive and noncognitive goals. In 1989, for example, the National 
Council of Teachers of Mathematics’ (NCTM) curriculum standards set five goals, 
two of which were noncognitive (that students “learn to value mathematics” and 
“become confident in their ability to do mathematics”). The remaining three were 
cognitive (that students “become mathematical problem solvers,” “learn to 
communicate mathematically,” and “learn to reason mathematically”). More 
recent standards documents, like NCTM’s Principles to Action (2014) and the 
Common Core State Standards for Mathematics (CCSSM; National Governors 
Association Center for Best Practices & Council of Chief State School Officers, 
2010) also identify both kinds of goals. CCSSM, for example, integrates cognitive 
and noncognitive goals in the Standards for Mathematical Practice. The very first 
standard is “Make sense of problems and persevere in solving them,” identifying 
both a cognitive and noncognitive aspect to the standard. 

We interpret the inclusion of cognitive and noncognitive goals in the major 
standards documents as a sign that the field recognizes the importance of these 
goals. The challenge for the research community is to address the full range of 
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goals judged by stakeholders to have value. If the impact of research is to increase, 
a starting premise is that researchers must take seriously all types of learning goals 
when creating and testing hypotheses about the learning opportunities needed to 
help students develop this full range of mathematical competencies. 

As we shift in future editorials from discussing what goals should be targeted 
to how to help students achieve these goals, our focus will shift from identifying 
the learning goals of most value (and shown to matter in the long run) to investi-
gating the learning opportunities needed for students to achieve those goals. Now 
that we have broadened the answer to the question “looking for research impact 
on what?” we will begin exploring answers to the question “looking for research 
impact of what?” As a foretaste of that discussion, consider recent research 
showing that noncognitive characteristics such as persistence, grit, and a growth 
mindset can affect students’ learning in significant, long-lasting, and powerful 
ways (Boaler, 2016; Duckworth & Yeager, 2015; Dweck, 2006; Farrington et al., 
2012). If the mathematics education community routinely measured particular 
noncognitive variables deemed important to mathematics learning and to learning 
in general, it would be possible to look across studies to develop general findings 
related to those variables as well as to understand how they might be harnessed to 
attain both cognitive and noncognitive mathematics learning goals. Future edito-
rials will examine approaches, some unconventional, to conducting and reporting 
impactful research of the conditions under which students can achieve this broader 
range of goals.
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