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F
or many of us, the phrase “teaching 
math online” evokes a vision of teaching 
and learning that is not based in physi-
cal classrooms. Perhaps teachers and 
students are even interacting asynchro-

nously. In math classrooms in the United States, 
the increasing availability of devices (e.g. laptops, 
Chromebooks™, smartphones, and tablets) and 
networks allows students to access the Internet 
quickly and reliably. Imagining the possibilities for 
classrooms is an important responsibility of cur-
riculum developers, district and school-level cur-
riculum supervisors, and classroom teachers.

The authors of this article are on the teaching 
faculty at Desmos®, which offers a free, online 
graphing calculator that runs in the window of 
any modern web browser. In recent years, we have 
been extending this technology—and merging it 
with our pedagogical vision—by developing a suite 
of online classroom activities for use in secondary 
classrooms, with a goal of helping teachers and stu-
dents maximize mathematics learning with digital 
tools. We currently have six dedicated activities 
(mostly for algebra) and two tools—Polygraph and 
Activity Builder—that teachers can configure to 
meet their curricular needs in a variety of topic 
areas. All of this is free to teachers for individual 
classroom use at teacher.desmos.com.

We begin this article by describing our vision 
through the principles our team has articulated 
in our curriculum development work. We then 
describe two activities we have developed that 
make novel use of classroom-based Internet access, 
including examples of the kinds of discourse and 
learning that these activities elicit.

PRINCIPLES
The principles that guide our lesson development 
work include the following: 

•	 Use technology to provide students with feed-
back as they work.

•	 Use the existing network to connect students, 
supporting collaboration and discourse.

•	 Provide information to teachers in real time dur-
ing class.

Feedback
Students often receive feedback from their teach-
ers in the form of answers marked right or wrong, 
or points either added or docked. When students 
receive written descriptive feedback, it comes at 
the expense both of a waiting period and of the 
teacher’s time.

Computers can mark answers right and wrong 
much faster than a teacher can. As a consequence, 
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Online lesson design principles  
help teachers and curriculum 
developers imagine new possibilities 
for classrooms.
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this quick assessment—together with hints—is the 
typical experience many students have of doing 
school math online.

We think electronic feedback should be more 
than hints and corrected answers. Computers can 
provide students with an understanding of the 
implications of their thinking. At a basic level, 
teachers who show students a graph and have them 
infer its symbolic form can then use computer feed-
back to have students check their work by using 
a graphing calculator. When students graph their 
equations, the computer shows them the implica-
tions of their thinking. In such situations, students 
naturally want to make changes in response to 
computer feedback. Maybe the parabola needs to 
shift left, or open a bit more slowly, or open down-
ward. Students respond to the feedback and quickly 
get more feedback on their next attempt. For this 
reason, we refer to this process as iterative feedback.

Iterative feedback is low risk because students 
know they can revise their attempts—not just their 
first attempt, but their subsequent attempts as well. 
Important goals of iterative feedback are supporting 
students in taking intellectual risks and encourag-
ing them to persist. When a student says or thinks, 
“I’ll try again; I can make this better!” iterative 
feedback is doing its job well. Furthermore, when 
an online lesson is constructed to give good itera-
tive feedback, students can respond to a prompt 
as simple as “Just draw (or try) anything.” The 
teacher can trust that this entry will make the task 
accessible to all students while also moving stu-
dents’ mathematical understanding forward.

Collaboration
The increasing availability and quality of Internet-
enabled devices in classrooms—and of Internet 
connections in those classrooms—is something we 
seek to harness in creative ways in our work. Rather 
than using the network for the purpose of connect-
ing individual students to the teacher or to a cen-
tral server, we use it to connect students with one 
another. In our lessons, students can share ideas, ask 
questions of one another, and challenge one another 
in rich and interesting ways. The network facilitates 
showing students the solutions their classmates have 
shared, challenging students with new tasks their 
classmates have designed, and sharing comments 
and solutions for these shared tasks.

Information for Teachers
Classroom-based online instructional platforms 
typically come with dashboards for teachers. These 
dashboards give teachers at-a-glance information 
about the progress of individual students in their 
classes. In many situations, this information is 
broken down by content strand and by proficiency 

level—e.g., if José is proficient at adding fractions 
with common denominators but struggling to write 
the decimal form of fractions, then a green square 
and a yellow square, indicating José’s proficiencies, 
show up on the teacher dashboard’s grid. 

This type of dashboard provides a view of what 
students have mastered, but it does not give teach-
ers insight into how students are thinking as they 
work. A richer dashboard can show a teacher what 
students are doing as they work and allow her to 
move quickly between views of an individual’s 
work and of the whole class. 

When we design a teacher dashboard for a Des-
mos lesson, we ask ourselves these questions:

 •	 What information will a teacher find useful 
while the lesson is going on?

•	 What information will a teacher find useful after 
the lesson is over, as he prepares for the next 
day’s instruction?

We then design the dashboard to capture this infor-
mation and organize it in ways that help teachers 
do their work. 

Information that is useful for teachers during 
the flow of the lesson, and that we strive to make 
quickly accessible in our dashboards, addresses 
the following questions: Who seems to be guessing 
rather than thinking carefully? Who has one of sev-
eral common wrong answers? What different cor-
rect forms of an algebraic expression has my class 
generated so far? 

Answers to these questions help teachers decide 
which students to speak with, when to pause the 
lesson for whole-class discussion, and how to struc-
ture a summary discussion at lesson’s end.

Information that is useful in planning follow-up 
instruction might include the full text of student 
responses that a teacher can skim for the big picture 
of the class’s work or search for use of vocabulary. 

Students receive 
feedback that goes 
beyond “right”  
or “wrong” and  
pre-loaded hints. 
They can interpret 
their mistakes for 
themselves and adjust 
accordingly.
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(We have not incorporated search as a feature, but 
we do display the responses of all students in a 
class on a single page of text, which a browser can 
search easily.)

TWO ACTIVITIES
What do these principles look like when they come 
into being in the form of classroom lessons? In this 
section, we describe two lessons and how each one 
relates to our principles. 

Central Park
 In this activity, students move from estimation 
to calculation to abstraction as they decide how 
to place dividers in a virtual parking lot so that 
each parking space in the lot is the same width. 
If one space is too wide, another will be too nar-
row—resulting in too few spaces and angry drivers. 
Students receive feedback as they watch the cars 
attempt to park. At each phase, students can try 
again by adjusting their answers and letting the 
cars park again.

Students begin by dragging dividers into place—
no numbers, no computation, just estimation. In 
the example in figure 1, the rightmost space is too 
small. The student has received feedback by seeing 
the leftmost car park at an awkward angle to fill 
the large space and by seeing another car unable to 
park at all. Students can try again either by clicking 
“reset” or by moving the dividers.

In later phases of the activity, students calculate 
the width of the parking spaces (see fig. 2) and 
then use variables to describe these widths in mul-
tiple lots of different sizes and with varying divider 
sizes (see fig. 3). The activity is designed so that 
students use increasingly sophisticated tools in pur-
suit of expressing an algebraic relationship—and to 
validate the use of algebraic symbols as timesavers 
in doing repeated computations.

The online delivery of this activity allows stu-
dents to receive feedback that goes beyond “right” 
or “wrong” and pre-loaded hints. Students can 
interpret their mistakes for themselves and adjust 
accordingly. Students usually will not use all
necessary variables (i.e., w and p; see fig. 4). In 
such a case, they may successfully park cars in one 
scenario but fail in the others. 

An important concern with iterative feedback of 
this nature is that students will sometimes guess-
and-check their way to a solution rather than use 
the feedback to provoke rethinking. In the Central 
Park activity, a student may guess 10 feet for the 
width of the parking spaces in figure 2, then get 
feedback that this space is too wide. Such a student 
can guess his way to the correct value without notic-
ing the important relationships between the given 
quantities. In designing this activity, we opted to 

leave this necessary refocusing in the hands of the 
classroom teacher. We give the teacher the informa-
tion she needs to make an instructional decision. In 
this case, the guess-and-check behavior will usually 
result in a student being unable to write an expres-
sion using variables at the appropriate phase. With 

Fig. 1  When the spaces are correctly apportioned, all the cars can park; when there is 

trouble, as shown here, the drivers are aggravated.

Fig. 2  The computation phase follows initial estimation.

Fig. 3  Students generalize by writing algebraic expressions.
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a click, the teacher can see all of the expressions 
her students have written, along with an icon that 
indicates correct and incorrect expressions (see 
fig. 5). We also alert teachers in our planning 
materials that unproductive guessing behavior is 
something to look for in this phase of the lesson 
(see “The Student Experience” at https://teacher.
desmos.com/centralpark/). 

Polygraph
Another activity illustrates our use of networked 
devices to connect students with each other. Poly-
graph is a question-and-answer game played in 
pairs. One student—the picker—selects one object 
out of sixteen that are displayed in a 4 × 4 array. 
Figure 6 shows the challenging rational functions 
version of the game, but there several versions, 
including lines, parabolas, quadrilaterals, and hexa-
gons. The second student—the guesser—asks one 
question at a time, which the picker must answer 
by clicking yes, no, or I don’t know. The goal is for 
the guesser to identify the correct object by ask-
ing about distinguishing features. The graphs are 
shuffled at the beginning of each round and appear 
in different places on each player’s screen, in order 
to eliminate location in the array as a distinguish-
ing feature.

The activity Polygraph emphasizes collabora-
tion. Partners work together to determine the 
correct object. If the guesser makes an error by 
deleting the object chosen by the picker, the part-
ners are instructed to review their questions and 
answers and to discuss (face to face) where they 
went wrong. 

Working together in this way creates a need for 
students to talk about properties of objects—prop-
erties for which they may not yet have names. This 
environment allows students to develop rich 
informal language, which is captured for teach-
ers to use later in discussion and formalizing. 
Herbel-Eisenmann (2002) describes how informal 
“bridging languages” support students in preparing 
to understand and use “official mathematical lan-
guage” in more meaningful ways than approaches 
that begin with formal mathematical vocabulary.

For example, we find students asking questions 
such as these:

• Is your hexagon dented?
• Does your graph have two pieces?
• Is the bottom of your graph on the x-axis?

These are informal ways of talking about 
concavity (of hexagons), branches (of rational 
functions), and vertices (of parabolas) that come 
from the features that students notice. The terms 
dented, pieces, and bottom are examples of bridging 

Fig. 4  The expression shown will result in an error because it does not account for 

the varying width of the dividers.

Fig. 5  Student names in this example are fi ctitious; the work 

is representative of the variety seen in actual classrooms.



 Vol. 110, No. 4 • November 2016 | MATHEMATICS TEACHER  263

language that supports students in describing and 
formalizing features of these mathematical objects 
prior to learning the official mathematical terms 
for them. The question-and-answer collaborative 
interface built into Polygraph elicits these ideas and 
terms—and captures them for the teacher—from 
many more students than could participate in a lin-
ear, whole-class discussion.

It is worth noting also that this approach is for-
eign to print textbooks because they lack a built-in 

mechanism for progressive disclosure. Printed pages 
tend to put the most formal level of math thinking 
together with the least formal (often omitting infor-
mal ways of thinking altogether). In the cases of 
those print textbooks that do explicitly recognize and 
value student-generated informal vocabulary—such 
as the Connected Mathematics curriculum (Lappan et 
al. 1998) that Herbel-Eisenmann studied—the work 
of noticing, capturing, and capitalizing on this lan-
guage is left up to the teacher. A carefully designed 
online lesson can do some of the work of capturing 
this language, making it easier for the teacher to 
capitalize on it. Further, online activities can be 
structured to disclose progressively. In Polygraph, 
we ask students to describe parabolas informally 
and later offer the formal vocabulary to describe the 
properties students have noticed.

This process can offer new insights to teachers 
and open new mathematical avenues for study. 
When a College Algebra class played the rational 
functions version of Polygraph, the teacher noticed 
students asking questions such as these:

• Does your graph have more than one piece?
• Does it have more than one line?
• Is your graph broken?
• Are there any holes in your graph?

Fig. 6  In a game played in pairs, one student picks a graph and the other asks yes or no questions in an effort to fi gure out which graph 

was selected. Here, Loran’s answer caused Sophia to eliminate the graph Loran had picked, and the game ended.

This environment 
allows students to 
develop rich informal 
language, which is 
captured for teachers 
to use later in 
discussion and 
formalizing.
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SUMMARY
Our principles for online instruction may be quite 
different from current orthodoxy, which calls for 
individualization and atomization of skills. We 
believe in the power of combining quality provoca-
tions, robust tools to connect students, and skilled 
teachers to help students build mathematical under-
standing, vocabulary, and skill.

We hope that these ideas are infectious and inspi-
rational and that they help to improve the conversa-
tion about the possibilities of educational technology 
in mathematics classrooms. Our development work 
continues, with information necessary for getting 
started at teacher.desmos.com and learn.desmos.com.
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Fig. 7  While students wait for a partner between rounds in 

“Polygraph,” they see questions that their classmates have 

asked while playing the game.

Standard approaches to rational functions in 
College Algebra and similar courses focus on iden-
tifying the existence and location of vertical asymp-
totes. For students in this particular class, the verti-
cal asymptotes were less immediate features of the 
graph than the number of branches the graph com-
prised. The student identified as Loran in figure 6 
has chosen a rational function with three branches 
(names have been changed). Loran’s partner Sophia 
has asked whether the graph has “more than one 
line.” When Loran answered “no,” Sophia elimi-
nated that graph and the game came to an end. This 
miscommunication led to a face-to-face conversa-
tion in which Loran and Sophia worked out what 
each understood by Sophia’s question about lines. 
In turn, this conversation prepared these students 
for the teacher to introduce the term branch. 

To further contribute to the collaborative nature 
of the concept and vocabulary development in this 
lesson, students see questions, between rounds, that 
other students asked as they played (see fig. 7). This 
feature helps both informal and formal vocabulary 
be spread among students as the rounds proceed. 
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