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Mathematics Teacher 
Educator: An Opportunity to 
Share, Verify, and Improve 
Practitioner Knowledge
Margaret S. Smith
Editor, Mathematics Teacher Educator

Mathematics Teacher Educator is the first journal 
dedicated specifically to issues in mathematics teacher 
education, providing a much-needed forum for support-
ing and improving the practice of educating teachers of 
mathematics. As the Editorial Panel articulated in the 
call for manuscripts (http://www.amte.net/publications/
mte), the mission of Mathematics Teacher Educator is “to 
contribute to building a professional knowledge base for 
mathematics teacher educators that stems from, develops, 
and strengthens practitioner knowledge. The journal pro-
vides a means for practitioner knowledge related to the 
preparation and support of teachers of mathematics to be 
not only shared but also verified and improved over time. 
The journal is a tool to build the personal knowledge that 
mathematics educators gain from their practice into a 
trustworthy knowledge base that can be shared with the 
profession.” 

Building a trustworthy knowledge base for mathemat-
ics teacher education requires that manuscripts convey 
more than stories of practice, however compelling. They 
must describe a problem or issue in mathematics teacher 
education with which readers can identify; the methods/
interventions/tools that were used to explore or address 
the problem or issue; and the means by which these 
methods/interventions/tools and their results were studied 
and documented. In addition, manuscripts must be con-
nected to the existing knowledge base in mathematics 
teacher education, grounded in theory and/or previously 
published articles, provide evidence of the effectiveness 
of the intervention being described beyond anecdotal 
claims, make explicit the specific new contribution to our 
knowledge base, and provide sufficient detail to allow for 
verification, replication in other contexts, or modification 
by subsequent authors. 

The articles in this first issue of MTE provide both rich 
illustrations of these criteria and solid examples of the 
types of problems and issues that are sure to be of interest 
to practitioners who contribute to the preparation and 
professional development of pre-K–grade 12 preservice 

and in-service teachers of mathematics (e.g., mathemat-
ics teacher educators, mathematicians, teacher lead-
ers, school district mathematics specialists, professional 
developers). Although the articles share these general 
characteristics, they differ along several dimensions: the 
nature of the issue or problem being addressed, the con-
text in which the intervention was enacted, and the level 
and experience of the teachers participating in the work. 
The descriptions that follow provide a brief summary of 
the articles, highlighting the three key dimensions along 
which they vary. 

In the opening article, “Mathematics Preservice Teach-
ers Learning About English Language Learners Through 
Task-Based Interviews and Noticing,” Anthony Fernandes 
describes the use of task-based interviews in a content 
course focused on geometry and measurement to help 
preservice middle school teachers develop an awareness 
of the challenges that English language learner (ELL) stu-
dents face and the resources on which they draw as they 
learn mathematics and communicate their thinking in 
English only classrooms. He provides evidence that in ad-
dition to developing awareness, preservice teachers also 
adopted strategies that were aligned with best practices 
for teaching ELLs outlined in the literature.

In “The Role of Writing Prompts in a Statistical Knowl-
edge for Teaching Course,” Randall E. Groth describes 
the use of writing prompts to help preservice elementary 
teachers (K–8) enrolled in a content course focused on 
statistics develop statistical knowledge for teaching (SKT). 
He provides evidence that preservice teachers developed 
SKT as well as knowledge of introductory college-level 
statistics.

In “Capitalizing on Productive Norms to Support Teacher 
Learning,” Laura Van Zoest and Shari L. Stockero describe 
the results of a study they conducted with both preser-
vice and in-service secondary mathematics teachers to 
determine the extent to which teachers’ experiences and 
learning in an initial methods course had long-term ef-
fects on their professional practice. The authors argue that 
explicitly cultivating professional norms impacts teachers’ 
knowledge and habits of practice. Specifically, cultivating 
professional norms improves teachers’ own mathematical 
understanding, particularly the specialized content knowl-
edge needed for teaching; supports teachers in learning 
to view and analyze classroom practice in productive 
ways; provides teachers an experiential basis for thinking 
about fostering productive norms in their classrooms; and 
helps teachers to develop professional dispositions that 
support continued learning from practice. 

EDITORIAL
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In “The Content-Focused Methods Course: A Model for 
Integrating Pedagogy and Mathematics Content,”  
Michael D. Steele and Amy F. Hillen posit the creation of 
hybrid courses that focus on developing specific math-
ematical content (in this case functions) in the context 
of a methods course with the intent of helping teachers 
developed more integrated knowledge of content and 
pedagogy. In the specific example provided, preservice 
and in-service teachers with elementary, secondary, and 
special education backgrounds collaboratively engage 
in a course that is designed around three key principles, 
which the authors argue are generalizable to a wide 
range of teacher education settings. 

In the final article in this issue, “Using ‘Lack of Fidelity’ 
to Improve Teaching,” Anne K. Morris describes how 
variations in the implementation of lesson plans can serve 
as a source of information for improving curricula. She 
draws on her observations of two instructors of a con-
tent course for preservice elementary teachers (K–8) and 
identifies significant variations and positive adaptations in 
the lessons that lead to increasingly rich lesson plans that, 
she argues, can move toward building an accumulated 
knowledge base in teacher education.

Although these five articles represent diversity along sev-
eral dimensions, as with any finite set of exemplars, they 
do not begin to exhaust the possibilities for articles that 
would be suitable for MTE. For example, none of the ar-
ticles focuses on professional development for in-service 
teachers, delivery systems other than face-to-face meet-
ings, or field experiences for preservice teachers. As the 
collection of MTE articles grows over time, it is expected 
that a wider range of issues, contexts, and populations 
will be addressed. 

Because one of the goals of the journal is to build a 
knowledge base for the field, submissions that deliberate-
ly build on prior published work are encouraged. Care-
ful descriptions of how previous methods/interventions/
tools have been modified and the comparison/contrast to 
earlier reported results should be articulated. 

Please consider contributing to the journal by writing an 
article or serving as a reviewer. As you can see by the 
authorship of the articles that appear herein, authors have 
a range of experience (assistant professors to full profes-
sors), are at different types of institutions, are housed in 
different departments, and have different areas of exper-
tise. What they have in common is a passion for teacher 
education and the motivation to share their work with 
colleagues in order to improve the practice of teacher 
education. 

author

Margaret S. Smith, Department of Instruction and Learn-
ing, University of Pittsburgh, Pittsburgh, PA 15260;  
pegs@pitt.edu
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Mathematics Teacher 
Educator: A Milestone in the 
History of the Association 
of Mathematics Teacher 
Educators
Marilyn Strutchens
President, Association of Mathematics Teacher Educators

The Association of Mathematics Teacher Educators 
(AMTE) is excited to serve as a co-partner with the 
National Council of Teachers of Mathematics (NCTM) 
in publishing Mathematics Teacher Educator (MTE), a 
practitioner journal for mathematics teacher educators, 
which will serve as a milestone in the history of AMTE. 
The mission and goals of MTE, listed below, support our 
members and our organizational goals.

Mathematics Teacher Educator will contribute to 
building a professional knowledge base for math-
ematics teacher educators that stems from, de-
velops, and strengthens practitioner knowledge. 
the journal will provide a means for practitioner 
knowledge related to the preparation and support 
of teachers of mathematics to be not only public, 
shared, and stored, but also verified and improved 
over time. (hiebert, Gallimore, & Stigler, 2002). 
(www.nctm.org/publications/ 
content.aspx?id=28143)

Furthermore, mathematics teacher educators are the 
intended members of the audience for Mathematics 
Teacher Educator, with practitioner broadly defined as 
anyone who contributes to the preparation and profes-
sional development of pre-K–12 preservice and in-service 
teachers of mathematics. Mathematics teacher educators 
include mathematics educators, mathematicians, teacher 
leaders, school district mathematics experts, and others.

AMTE is the largest professional organization focused on 
mathematics teacher preparation and has approximately 
900 members. The goals of AMTE are to promote  
(1) effective mathematics teacher education programs and 
practices; (2) communication and collaboration among 
those involved in mathematics teacher education;  
(3) research and other scholarly endeavors related to 
mathematics teacher education; (4) professional growth of 
mathematics teacher educators; (5) effective policies and 
practices related to mathematics teacher education at all 

levels; and (6) equitable practices in mathematics teacher 
education, including increasing the diversity of mathemat-
ics teachers and teacher educators. 

The February 2012 annual meeting of the AMTE culmi-
nated a yearlong 20th anniversary celebration. One of 
the celebratory moments was the announcement that 
the first issue of Mathematics Teacher Educator would 
be published in 2012. MTE will help AMTE to address 
several of its goals. First, MTE will help AMTE to meet its 
goal of promoting effective mathematics teacher educa-
tion programs and practices by publishing articles that 
showcase evidence-based programs and practices and 
describe how mathematics teacher educators and their 
partners developed them. By highlighting the voices of 
practitioners, the journal will enable them to share their 
personal struggles and how they overcame them to move 
the programs and practices forward, enabling others to 
gain insight as to what they may face in taking on similar 
endeavors.

AMTE’s second goal of fostering communication and col-
laboration among those involved in mathematics teacher 
education can also be enhanced by MTE. Articles pub-
lished in MTE can serve as catalysts for practitioners to 
discuss issues of practice, such as developing mathemat-
ics courses that help secondary preservice teachers de-
velop mathematical knowledge for teaching (Conference 
Board of the Mathematical Sciences, 2012) or providing 
professional development for teachers to help them to 
effectively implement the Common Core State Standards 
for Mathematics (CCSSI, 2010).

Third, articles published in MTE will assist in the goal 
of supporting the professional growth of mathematics 
teacher educators. With the existing economic condi-
tions, mathematics teacher educators are afforded fewer 
opportunities to travel to conferences. Thus, MTE will be 
an increasingly important venue for providing mathemat-
ics teacher educators with opportunities to learn about 
the experiences of their colleagues from around the coun-
try. They will gain perspectives from those colleagues 
about what they implemented, how, and the results. 

As a past series editor for AMTE’s monograph, I am 
excited about the potential that the journal has for our 
members and other constituents. Our monograph series 
was only available to members and initially focused on 
specific topics. In the last series, the call was more gen-
eral, and a broader array of issues related to practice was 
discussed. However, we welcome the opportunities that 
will come with the publishing of MTE. The members of 
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AMTE and others will have an ongoing venue to submit 
practitioner articles for mathematics teacher educators, 
and they will also have the opportunity to build commu-
nities of practice around issues of importance to the field. 

Moreover, MTE will eventually become a part of the JS-
TOR collection, which will make articles more accessible 
than they were in the monograph. The JSTOR collection 
is “a not-for-profit service that helps scholars, researchers, 
and students discover, use, and build upon a wide range 
of content on a trusted platform of academic journals, 
primary sources, and books” (JSTOR, n.d.). Also, the elec-
tronic nature of the journal will make it possible to link 
articles that build on each other and to other resources. 
While we feel that the monograph series has largely 
served its purpose, we may still have some special focus 
monographs in the future.

As I stated earlier, AMTE is excited to be a co-partner 
with NCTM in publishing MTE. The leadership of both 
organizations felt that it was perfect timing in that both 
organizations were thinking about developing the same 
type of journal at the same time. Even though our initial 
needs may have been different, I think that we have cre-
ated a journal that will meet the needs of both organiza-
tions. As we launch our first issue, I would like to person-
ally thank the editors, members of the editorial panel, 
and the reviewers who have made this first issue of MTE 
a reality. 

references
Common Core State Standards Initiative (CCSSI). 2010. 

Common Core State Standards for Mathematics. 
Washington, DC: National Governors Association 
Center for Best Practices and the Council of Chief 
State School Officers. http://www.corestandards.
org/assets/CCSSI_Math%20Standards.pdf.

 Conference Board of the Mathematical Sciences. (2012). 
The mathematical education of teachers II: Draft 
for public discussion. Retrieved from http://www.
cbmsweb.org/MET2/MET2Draft.pdf

Hiebert, J., Gallimore, R., & Stigler, J. (2002). A knowledge 
base for the teaching profession: What would it 
look like, and how can we get one? Educational 
Researcher, 31, 5, 3–15.
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Mathematics Teacher 
Educator: The Evolution of a 
New Journal
J. Michael Shaughnessy
Immediate Past President of the National Council of 
Teachers of Mathematics

In the past decade, there has been a growing interest 
in the role that practitioners play as stakeholders in and 
coproducers of professional knowledge and of research 
knowledge in mathematics education (Kieran, Krainer, & 
Shaughnessy, in press). Although the wellspring of profes-
sional knowledge and craft wisdom of teachers has been 
sparsely tapped in previous decades, there are now signs 
from all over the world that teachers are playing an in-
creasingly important role in research on the teaching and 
learning of mathematics (Bednarz, 2004; Fernandez & 
Yoshida, 2004; Herbel-Eisenmann & Cirillo, 2009; Huang 
& Bao, 2006; Jaworski et al., 2007; Makar & O’Brien, in 
press). A recent conference brought together practitioners, 
teacher educators, and researchers in mathematics educa-
tion to develop a research agenda that will provide closer 
links between research and practice (NCTM, 2010). 

Concurrent with the growing interest in incorporating 
practitioner perspectives into research and development 
in mathematics education, there has been an increased 
awareness in the field of the need to systematically grow 
our research knowledge base on the professional devel-
opment of mathematics teachers and on the education 
of prospective mathematics teachers. We need to better 
document and share what we learn from the education 
of prospective and practicing mathematics teachers. The 
impact of many mathematics education in-service proj-
ects and effective advances in preservice mathematics 
teacher programs have rarely been adequately shared with 
the field, in part because there have not been outlets to 
encourage the publication of such work. In the past, what 
is known about effective preservice and in-service math-
ematics teacher development has tended to have been 
gleaned from isolated studies rather than from a systematic 
program of research. To counter this trend, Weiss (1999) 
provided guidelines for the evaluation of professional 
development efforts in mathematics teacher education. 
Recent work has begun to identify and synthesize elements 
of effective professional development in a systematic way 
(e.g., Darling-Hammond, Wei, Andree, Richardson, & 

Orphanos, 2009; Desimone, 2009; Guskey & Yoon, 2009; 
Sztajn, Marrongelle, & Smith, 2011). 

These new emphases in the work of mathematics educa-
tors—forming research partnerships with practitioners and 
investigating the education of preservice and practicing 
mathematics teachers in a more scientific and evidence-
based manner—have had a growing influence on the 
thinking of both the National Council of Teachers of 
Mathematics (NCTM) and the Association of Mathematics 
Teacher Educators (AMTE). 

In the fall of 2009, discussions about the possibility of cre-
ating a new journal focused on the practice of mathematics 
teacher education began to percolate in discussions at the 
National Council of Teachers of Mathematics. The Edito-
rial Panel for the NCTM practitioner journal for secondary 
teachers, Mathematics Teacher (MT), had been receiving 
an increasing number of strong manuscripts dealing with 
issues around the preparation of preservice teachers and 
on the professional development of in-service teachers. 
However, many of these manuscripts did not fit the charge 
and purpose of MT, a journal of mathematics and mathe-
matics teaching for secondary teachers. These articles were 
also different from the usual types of research articles in 
many mathematics education research journals. As discus-
sions continued, it became clear to NCTM that there was 
a growing need in the mathematics education community 
for an entirely different kind of professional journal than 
the Council had in its portfolio. 

Around the same time that NCTM was brainstorming the 
possibility of starting a new journal for teacher educators, 
the Association of Mathematics Teacher Educators formed 
a task force to study the efficacy of launching a new 
professional journal quite similar to the kind of journal that 
was being considered by the NCTM Board of Directors. In 
January 2010, representatives from the leadership of AMTE 
and NCTM met to discuss the possibility of a collaborating 
to create such a journal. A task force consisting of mem-
bers of both AMTE and NCTM was formed to study the 
matter more deeply and to provide further information and 
recommendations on whether to pursue a joint journal ef-
fort, and if so, how to proceed. In the summer of 2010, the 
task force submitted a formal motion to the boards of di-
rectors of NCTM and AMTE to cosponsor the creation and 
publication of a new journal. The motion to create a new 
journal was approved by both the boards, an initial Edito-
rial Panel was formed, and the first editor was appointed 
for a new journal, Mathematics Teacher Educator (MTE). 

COMMENTARY
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The MTE was created, among other reasons, to build 
a professional knowledge base in mathematics teacher 
education that stems from practitioner knowledge. The 
journal will provide a means for practitioner knowledge 
related to the preparation, support, and development of 
mathematics teachers to be made public, shared, stored, 
verified, and improved over time—necessary conditions 
for practitioner knowledge to provide a solid foundation 
for professional knowledge (Hiebert, Gallimore, & Stigler, 
2002). Through MTE we hope to increase our profes-
sional and research knowledge about teacher education, 
through accounts of exemplary preservice and in-service 
mathematics teacher education programs; in reports of 
effective classroom pedagogical strategies; with studies 
of effective ways of developing the content knowledge 
and pedagogical content knowledge of preservice and 
in-service teachers; and eventually, through scholarly 
reviews of materials and resources for the mathematical 
education of teachers.

The National Council of Teachers of Mathematics 
is thrilled to cosponsor this new journal, Mathemat-
ics Teacher Educator, together with the Association of 
Mathematics Teacher Educators. We believe that MTE 
is uniquely positioned to encourage the publication of 
scholarly work that will enable the profession to system-
atically investigate critical issues around the prepara-
tion of preservice mathematics teachers as well as the 
professional development and leadership development 
of in-service mathematics teachers and teacher leaders. 
Over time we envision a growing body of work that will 
draw upon the best of what we can learn from practi-
tioner knowledge to help inform and continually update 
best practices for preparing future mathematics teachers 
and for developing and strengthening existing mathemat-
ics teachers. With focused effort to build and extend 
these knowledge bases, we hope to be able to improve 
the recruitment, education, and retention of excellent 
mathematics teachers for many future generations of our 
students.
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Anthony Fernandes
University of North Carolina—Charlotte

This article describes the 3rd cycle of an 
intervention in a mathematics content 
course that was designed to foster awareness 
among middle school mathematics preser-
vice teachers (PSTs) of the challenges that 
English language learner (ELL) students face 
and the resources they draw on as they learn 
mathematics and communicate their think-
ing in English-only classrooms. Pairs of PSTs 
engaged 2 different ELL students in a video-
taped task-based interview using 4 measure-
ment tasks. Following each interview, the 
PSTs wrote a structured report guided by 
Mason’s (2002) framework of noticing. The 
results of the intervention indicated that the 
PSTs went beyond awareness of ELLs’ needs 
and challenges and also adopted strategies 
outlined in the literature that were aligned 
with best practices for teaching ELLs. The 
article also discusses the potential of the 
intervention and how it can be used by other 
mathematics educators. 

Key words: Preservice teacher education, Task-based 
interviews, Noticing, English language learners

The U.S. population of English language learners (ELLs) is 
growing, and there is a great need to prepare all math-
ematics teachers to work with these students (Bunch, 
2010; Lucas & Grinberg, 2008). Between 1980 and 2009, 
the ELL student population experienced a growth spurt, 
rising from 10% to 21% of students (National Center for 
Education Statistics, 2010). However, specific prepara-
tion of teachers to work with ELLs has not kept pace with 
this growth. The National Center for Education Statistics 
(NCES) reported that out of the 41% of teachers who 
had ELLs in their classrooms, only 13% of those teach-
ers received ELL-specific training (NCES, 2002). In their 
study of 417 teacher preparation programs, Menken and 
Antunez (2001) found that less than 17% prepared pre-
service teachers (PSTs) to work with diverse students, a 
category that includes but is not limited to ELLs. This lack 
of teacher preparation persists despite the growth in ELL 
population (e.g., Christian, 2006; Gandára & Maxwell-
Jolly, 2006; Márquez-López, 2005). 

This article reports on the third cycle of an intervention 
that I, as the instructor of a mathematics content course, 
carried out to support PSTs’ work with ELLs in their future 
classrooms. This intervention provided multiple experi-
ences for the PSTs to participate in task-based interviews 
(Goldin, 2000) and develop their observation skills 
through a framework of noticing (Mason, 2002). PSTs 
became more aware of the challenges that ELL students 
face and the resources that they draw on as they learn 
mathematics in English-only classrooms. Further, through 
the interviews, the PSTs also developed concrete strate-
gies for assisting ELL students, which will be useful in 
their future classrooms. 

Language Demands for ELLs

De Jong and Harper (2005) pointed out that the perva-
siveness of language in human activity leads to a ten-
dency for teachers to look “through” language rather than 
“at” it. In the case of mathematics, there is a tendency to 
assume that it is universal and, as a consequence, that it 
involves minimal linguistic challenges for ELLs (Barwell, 
2005; Walker, Ranney, & Fortune, 2005). Further, teachers 
may assume that “good teaching,” with little or no modifi-
cation, is enough to reach all students, including ELLs (de 
Jong & Harper, 2005). However, extensive research has 
illustrated the connection between language and math-
ematics, and the impact that language has on the teach-
ing, learning, and assessment of mathematics (e.g., Bailey, 
2007; Barwell, 2005; Clarkson, 2007; O’Halloran, 2005; 
Schleppegrell, 2004, 2007; Veel, 1999). I highlight a few 
aspects of the language demands that ELLs encounter as 
they learn mathematics in English-only classrooms. Note 
that even though non-ELLs face similar demands, the cog-
nitive load is magnified for ELL students as they learn new 
content in a language they are still learning (Campbell, 
Adams, & Davis, 2007).

Cummins (2000) provides a useful distinction between 
the everyday conversational language that students 
encounter on a regular basis and the academic language 
that they encounter in school subjects such as mathemat-
ics. One part of the academic language consists of the 
register—the unique lexical and grammatical features that 
students can draw on in a content area to make meaning 
(Halliday, 1978). The mathematics register includes lexical 
aspects such as vocabulary that is unique to mathemat-
ics (e.g., words such as coefficient and denominator) and 
other everyday terms that have specialized meaning in 

Mathematics Preservice Teachers Learning About 
English Language Learners Through Task-Based 
Interviews and Noticing
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mathematics (e.g., rational and difference; Bailey, 2007; 
Pimm, 1987). The latter can prove confusing to ELLs, who 
are learning English and the content at the same time 
(Bailey, 2007; Garrison & Mora, 1999; Lager, 2006). 

Besides the challenge of lexical aspects, the mathematics 
register also includes unique grammatical features such 
as the use of the nominal group to pack information into 
a sentence (Veel, 1999). For example, “the volume of a 
rectangular prism with sides 8, 10, and 12 cm” (Veel, 
1999, p. 197) consists of the elaboration of the noun 
prism. The prenumerative qualifier—the volume of—en-
dows the prism with the mathematical attribute of vol-
ume; the classifying adjective—rectangular—subclassifies 
the prism into the existing taxonomies; and the qualifier—
with sides 8, 10, and 12 cm—restricts the range of mean-
ing of the prism. The use of complex nominal groups, like 
the one described, allows more information to fit into a 
sentence, thus increasing its lexical density (Eggins, 2004; 
Schleppegrell, 2004, 2007; Veel, 1999). 

There is a further expansion of linguistic demands in cur-
rent reform (NCTM, 2000; NGA Center & CCSSO, 2011) 
classrooms, as students are expected to master discourse 
features such as making conjectures, justifying their solu-
tions, building on other students’ ideas, and presenting 
solutions as part of the classroom community (Bailey, 
2007; Moschkovich, 2002). 

The Use of Task-Based Interviews in 
Teacher Preparation
The discussion up to this point highlights the need for 
PSTs to be aware of the linguistic aspects that affect the 
teaching and learning of mathematics to ELLs (Fillmore & 
Snow, 2005). This awareness justifies adapting mathemat-
ics instruction to accommodate the needs of ELLs. For 
example, ELL students may benefit from explicit instruc-
tion and modeling of the discourse features in mathemat-
ics (Khisty & Chaval, 2002). Informal discussions with 
PSTs from the mathematics content courses that I taught 
revealed that they had minimal opportunities to interact 
with ELLs in prior educational experiences. Generally, the 
PSTs tended to view mathematics as being universal and 
minimally language intensive, and as involving symbols 
that could be transferred across languages (e.g., 1 + 1 = 
2 was the same whether you spoke Spanish or English). 
However, they accepted that word problems could pose 
linguistic challenges for all students, not only ELLs. It is 
also important to note that mathematical notation and 
procedures may be different for recent immigrant stu-
dents in their home country (Perkins & Flores, 2002). 
Research has shown that PSTs who are not aware of the 
role that language plays in the teaching and learning of 
mathematics are less likely to make linguistic modifica-

tions in their classrooms to accommodate ELLs (Lucas, 
Villegas, & Freedson-Gonzales, 2008). Based on my 
experiences with the PSTs from the content courses, and 
the needs engendered by the changing demographics in 
mathematics classrooms across the country, I wanted the 
PSTs to become aware of the resources ELL students draw 
on and understand the challenges that these students face 
as they learn to communicate mathematically in English-
only classrooms. 

There were two major factors that prompted the use of 
task-based interviews (Goldin, 2000). First, engaging in 
task-based interviews allowed the PSTs to go beyond the 
correct answers to problems to understand the students’ 
thinking (Goldin, 2000). In the process of interviewing 
students, the PSTs were able to interact with students 
and observe the possible impact of language on students’ 
mathematical performance and the resources students 
drew on to communicate their thinking. My own research 
with task-based interviews revealed the rich nature of ELL 
students’ mathematical thinking when they were provided 
with the appropriate support and asked probing questions 
during the interview (Fernandes, Anhalt, & Civil, 2009). I 
conjectured that with appropriate support, the PSTs could 
replicate this experience, which in turn would ground their 
thinking about the influence language has on the teaching 
and learning of mathematics for ELLs. 

Second, the research literature recommends that PSTs 
learn through direct experience. In multicultural educa-
tion, direct experiences such as cross-cultural immersion 
and tutoring students from diverse backgrounds have had 
a positive influence on the beliefs that predominantly 
White PSTs hold about these students (Gay, 2002; Giroux, 
1988; Grant & Secada, 1990; Nieto, 2000; Sleeter, 2001; 
Sowa, 2009; Waxman & Padrón, 2002; Zeichner & 
Hoeft, 1996). Griego-Jones (2002) found that PSTs who 
had tutored ELL students held beliefs that were in line 
with the research about second language learning. This 
idea has also been demonstrated in mathematics educa-
tion. Opportunities to learn about children’s mathematical 
thinking positively influenced PSTs’ initial beliefs about 
mathematics teaching (Ambrose, 2004; D’Ambrosio & 
Campos, 1992; Vacc & Bright, 1999). 

Noticing

In addition to providing PSTs with direct experiences, re-
search on teacher development also recommends the in-
corporation of reflection (Loucks-Horsley, Stiles, Mundry, 
Love, & Hewson, 2010; Mewborn, 1999). Without this 
component of reflection, the experiences could simply 
serve to reinforce deficit beliefs that PSTs have regarding 
diverse students (Grant, 1991; Grant, Hiebert, & Wearne, 
1998). Based on two prior cycles of this intervention in 
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previous semesters (this article reports on the third cycle), 
I observed that even though the PSTs reflected on their 
interactions with the ELL students, they focused on the 
strategies that the students used to solve the problem. Al-
though this is consistent with the typical use of task-based 
interviews, in this intervention their focus was redirected 
toward the linguistic aspects of the interactions with the 
students. Mason’s (2002) framework of noticing was used 
in the third cycle to focus PST attention on the com-
plete mathematical communication within the interview. 
Mason pointed to noticing as being key to professional 
development and the first step toward action, stating that 
people learn through experience, and this causes people 
to react in habitual ways. These habitual ways of interact-
ing with others influence people to classify others and 
react stereotypically to situations before they realize it. 
This appeared to be the case with the PSTs.

In previous cycles of the intervention, PSTs had a tenden-
cy to make a quick judgment and classify the student’s 
strategy as correct or incorrect. This quick judgment of 
the student’s attempt to solve the problem prevented 
PSTs from exploring the possible reasons why the student 
produced that solution. By slowing down their judgments 
about the ELL students’ solutions, the PSTs could open up 
opportunities to notice possible linguistic challenges that 
the ELL students faced and the resources they used. 

Mason suggests that professional noticing is about being 
sensitive and becoming systematic without acting auto-
matically. In his book Researching Your Own Practice: 
Discipline of Noticing (2002), he outlines processes 
through which one could become more sensitive. For the 
purposes of this intervention, I focused on one process, 
the creation of accounts. He describes two forms of 
recording what we notice: accounts-of and accounts-
for. Accounts-of refers to recording an event as it would 
be seen and felt by another observer, by paying careful 
attention not to involve emotion or judgments. Making 
a judgment could mean that we have labeled something 
too fast, and this could blind us to new interpretations. 
To account-for something means offering “interpretation, 
explanation, value-judgment, justification, or criticism” 
(p. 40). By writing accounts-of, the observer leaves things 
open. He or she and others can revisit the incidents at a 
later stage and make interpretations. 

The intervention included the use of this process of ac-
counts as a starting point to develop PSTs’ sensitivity to 
noticing linguistic aspects during interviews. Additionally, 
the intervention included my feedback on the process; 
I reviewed the PSTs’ accounts and provided them with 
alternative interpretations. These points will be elaborated 
further in some of the sections below.

The Intervention 
The intervention consisted of a semester-long project 
in four phases (see Figure 1), which was integrated into 
content courses I taught for middle school mathematics 
PSTs. The intervention described in this article was the 
third cycle conducted in a geometry and measurement 
course. Topics in this course included perimeter and area 
of two-dimensional shapes, surface area and volume of 
three-dimensional objects, and proofs in Euclidean ge-
ometry, including parallel lines, triangle congruence, and 
properties of various quadrilaterals. There were 32 PSTs in 
total, 10 males and 22 females; however, 1 female student 
dropped the course after conducting the first interview. I 
did not consider her report as part of my analysis. There 
were 20 Caucasians, 7 African Americans, 3 Hispan-
ics, and 1 Middle Eastern student. All the students were 
in the second or third year of the teacher preparation 
program, which contained a special mathematics strand 
for PSTs who expressed an interest in teaching the middle 
grades (Grades 6-8). Four out of the 31 students had also 
participated in the second iteration of the intervention in 
a previous course. 

Phase one (Figure 1) consisted of one class period that 
was used to introduce the project, engage the PSTs in 
solving the four measurement tasks, watch two video 
clips of a researcher interviewing ELL students, and craft 
an interview script. The second phase involved pairs of 
PSTs interviewing individual ELL students from a group 
of fifth and sixth graders at a local intermediate school. 
A Flip video camera (Cisco) was given to each pair to 
record the interview. The recording was used to assist 
PSTs with the written report they submitted after each 
interview. The PSTs interviewed a second ELL student 
and submitted another report in the third phase. This 
interview was also recorded with a Flip video camera. 
Finally, the fourth phase involved the PSTs sharing what 
they learned from this interview in a class discussion. The 
sections below will outline the selection of tasks and the 
four phases of the intervention. 

Selecting Tasks

The four NAEP measurement tasks (Figure 2) were chosen 
based on prior research and the potential they had to 
foreground various linguistic challenges for ELL students. 
Since NAEP does not report performance data about 
ELLs, I used NAEP data on Hispanic students to guide 
the selection of tasks. Though the data are not entirely 
aligned, this strategy seemed reasonable, as 79% of the 
students in the Hispanic category are ELLs (McKeon, 
2005). 
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Feedback

Figure 1. Phases of the intervention.

PHASE 1

PSTs watch
videos of 
researcher

PSTs solve tasks  ➜ PSTs design 
interview script

1 class period 

PHASE 2

PSTs conduct interview 1 in a     ➜ 
2 week window

PSTs submit 
report 1

PHASE 3

PSTs conduct interview 2 in a     ➜ 
2 week window

PSTs submit 
report 2

PHASE 4

Class discussion about interview 
experience (1 class period)

Feedback

Feedback

➜

Lubienski (2003) pointed out that the biggest difference 
between Whites and Hispanics on the eighth-grade NAEP 
mathematics exam was in the content area of measure-
ment, and this was the motivation to choose that topic for 
the interview tasks. Based on the Lubienski article, I as-
sumed that tasks (shown in Figure 2) for which there were 
“big” differences between the performance of Whites and 
Hispanics (as shown in Table 1) could possibly reveal in-
teresting linguistic challenges for ELLs with proper probing. 
Interviews I had previously conducted with ELL students 
(Fernandes, Anhalt, & Civil, 2009) revealed linguistic 

Figure 2. The interview tasks.

Task 1: The Triangle and Square problem

If both the square and the triangle above have the 
same perimeter, what is the length of the side of the 
square?

Task 2: The Area Comparison problem
[The following cutouts of N (square) and P (triangle) are 
provided with the problem. Note that the height of P is 
the same as the side N and the base of P is twice the 
side.]

Bob, Carmen, and Tyler were comparing the areas of N 
and P. They each conclude the following:

(a) Bob:  N and P have the same area

(b) Carmen:  The area of N is larger

(c) Tyler:  The area of P is larger

Task 3: The String problem
Brett needs to cut a piece of string into 4 equal pieces 
without using a ruler or other measuring instrument. 
Write directions to tell Brett how to do this.

Take 4: The Tile problem
How many square tiles, 5 inches on a side, does it take 
to cover a rectangular area that is 50 inches wide and 
100 inches long?

4 7

9

table 1
NAEP Performance Data on the Four Interview Tasks 

 
task

 
Year

Grade 
level

difficulty (easy,  
medium, hard)

Percentage correct:  
White vs. hispanic

The Triangle and Square 
problem

1996 4 Hard 29, 14

The Area Comparison 
problem

1996 8 Hard 34, 15

The String problem 1996 4 Hard 6, 2

The Tile problem 2009 8 Hard 19, 9
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challenges. For example, for the Triangle and Square 
problem, when an interviewed student read the “if-then” 
conditional clause, she was not able to solve the problem 
because of her focus on the word “if”; she claimed that it 
was possible that the triangle and square did not have the 
same perimeter. 

The second factor for choosing the tasks was to ensure 
that there was a blend of problems that used differ-
ent modes of presentation, challenged ELL students on 
various linguistic facets, and also allowed them to use 
diverse resources to explain their mathematical think-
ing. For example, even though the Area Comparison task 
was considered a “hard” eighth grade problem in NAEP 
(task 2 in Table 1), it included cutouts that the students 
could manipulate to explain themselves orally. A writ-
ten explanation could prove more challenging. The Area 
Comparison problem would provide opportunities for the 
PSTs to contrast students’ verbal explanations with their 
written solution. The String problem and Tile problem 
(tasks 3 and 4 in Figure 2) could pose linguistic challenges 
because they contain a complex clause (e.g., “into four 
equal pieces without using a ruler or other measuring 
instrument”) and an embedded clause, (e.g., “square tiles, 
5 inches on a side”), which would have to be unpacked 
by the students to successfully solve the problems. In the 
case of the String problem, similar to the Area Compari-
son problem, the students could use concrete materials 
(i.e., an actual string) to display their thinking, which 
would again allow the PSTs to contrast the students’ oral 
solution with their written work. 

Phase 1: Developing the Interview Script and Pre-
interview Preparation 

The PSTs were introduced to the project during the first 
week of the semester. I outlined the goal of the project, 
which was for PSTs to develop an awareness of the chal-
lenges that ELL students faced when learning mathematics 
in English-only classrooms and the resources that these 
students used to communicate mathematically. During 
the same class period, the PSTs solved the interview tasks 
on their own, and there was an in-class discussion about 
possible challenges that ELL students could encounter 
when they solved the same problems. In these initial dis-
cussions, the PSTs pointed to possible mathematical chal-
lenges that the students could face, such as not knowing 
how to find the area or perimeter of a shape. In terms of 
linguistic challenges, the PSTs pointed mostly to vocabu-
lary (e.g., students not knowing the meaning of “measur-
ing instrument”). Because the PSTs had never interviewed 
students, I presented examples of a researcher interview-
ing two ELL students about the Triangle and Square prob-
lem. One of the clips highlighted the challenge that an 
ELL student had with the “if-then” conditional clause and 

the probing questions that the researcher asked to clarify 
the student’s thinking. I also discussed my own experi-
ence with interviewing students and additional challeng-
es, such as confusion between area and perimeter. 

After our discussion, the PSTs brainstormed in their 
groups and developed an interview script for the four 
problems that encompassed possible scenarios that could 
play out during the interview. In the feedback that I pro-
vided, I emphasized that the purpose of the interview was 
not only to determine if the students could get the correct 
answer but also to understand their thinking and, if nec-
essary, to provide them with appropriate scaffolding so 
that they could eventually solve the problem. In keeping 
with Moschkovich’s (2002) ideas of viewing the resources 
that students bring to the classroom as assets rather than 
liabilities, I encouraged the PSTs to also accept gestures 
and drawings as an integral part of the students’ explana-
tion of their thinking process. 

Phase 2: The First Interview and Report

The PSTs completed the first interview in a two-week 
window. They visited the intermediate school (fifth and 
sixth grade) and interviewed ELL students selected by 
the English as a Second Language (ESL) teachers. Each 
interview was conducted by a pair of PSTs, one acting 
as the interviewer and the other responsible for setting 
up the camera and taking notes. The latter PST could 
also ask questions if he or she felt the need to do so. For 
those PSTs that did not have a partner, I provided filming 
support. The PSTs began by introducing themselves and 
the project to the ELL student; they were encouraged to 
have an informal discussion with the ELL student to make 
him or her feel comfortable during the process. The PSTs 
provided the student with the first task and allowed some 
time for the student to solve the problem independently. 
Once the student indicated that he or she had finished, 
the PSTs engaged him or her in an interaction to under-
stand the student’s solution and probe him or her further. 
In some cases, the PSTs began this interaction earlier, if 
the student asked a question about the task that he or she 
was reading. Because the school placed time constraints 
on the activity, the PSTs engaged the students for 40-45 
minutes and in some cases skipped the fourth task (the 
Tile problem). 

After the interviews, the PSTs were required to submit 
a detailed report with guiding questions (see Figure 3) 
based on Mason’s (2002) constructs of providing ac-
counts-of and accounts-for. The guiding questions were 
designed to spur the PSTs to notice aspects of language 
that may have influenced the mathematical performance 
of the student. The accounts-of questions related to 
detailed descriptions of what the student did on his or 
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her own and what he or she did with assistance (ques-
tions 1 and 2). Once the PSTs answered these for each of 
the four tasks, the accounts-for questions (questions 3–7) 
required them to take a more holistic view and go back 
over their descriptions of the four (or three) completed 
tasks and notice patterns in aspects that were challenging 
to the student, the resources that the student employed, 
and the student’s use of concrete materials, communica-
tion, and writing. Further, the “other” questions required 
PSTs to make inferences about the support that ELL 
students would need in the classroom and what they 

learned about the teaching and learning of mathematics 
to ELL students. 

For some questions (e.g., 3 and 4), where there was a 
chance that the PSTs could overlook the linguistic aspects 
of the student’s responses, I explicitly asked them to 
consider the language in addition to the mathematics. 
I provided the guiding questions to the PSTs before the 
interview to help them prepare probing questions ahead 
of time. The goal of working within this structured frame-
work was to maximize the PSTs’ opportunities to focus on 
linguistic aspects that arose during their interactions with 
the students. 

Note that the guiding questions themselves would not 
elicit accounts-of or accounts-for; it was through the 
process of instructor feedback and PSTs reworking their 
written reports that the descriptions and evaluations 
would come to resemble accounts-of and accounts-for 
as described by Mason (2002). The guiding questions are 
useful to the instructor to assist the PSTs in moving their 
writing in this direction by emphasizing descriptions for 
the first set of questions and emphasizing evaluations and 
judgment for the second set. 

Phase 2: Feedback on the First Report

The PSTs submitted their reports electronically for feed-
back and grading. The reports were graded based on four 
criteria: detailed descriptions, quality scaffolding, insightful 
reflections, and depth of language issues covered. These 
criteria were shared with the PSTs before they conducted 
their first interview. The PSTs were required to provide 
details of how the interview unfolded so that another 
person, if he or she was present, could confirm the details. 
Thus the PSTs were to avoid making judgments about the 
student’s statements and were instead instructed to report 
on what happened and what was said in detail. The qual-
ity of scaffolding criterion examined whether the PSTs’ 
questions were leading rather than getting the student to 
grapple with the problem. Insightful reflections referred 
to the quality of the responses for questions 3–10. More 
weight was given to claims that were backed up in the 
descriptions. Finally, I examined the linguistic issues that 
the PSTs discussed in their answers to questions 3–10. 

I first provided the PSTs with feedback on their reports 
and asked most of them to add more detail or to justify a 
statement with an example. In some cases, I watched part 
of the videotape together with the PSTs, and we jointly 
discussed areas where they could provide more detail 
and talked about possible linguistic issues that they might 
consider for further analysis. I later graded the reports 
after they had a chance to reflect and incorporate my 
feedback. 

Figure 3. Guiding questions for the reports.

Accounts-of

1. What did the student do on his or her own? 
Provide details. 

2.  What support did you provide, if any, after the 
student worked on the problem independently? 
Provide details about the scaffolding process 
that you may have used. 

Accounts-for

3.  In your opinion, what did the student find 
challenging about these questions? Provide 
evidence from your descriptions for each task 
and consider both the mathematics and 
language. 

4.  In your opinion, what strengths and resources 
did the student bring to the problems? Provide 
evidence from the descriptions and consider 
both the mathematics and language. 

5.  Note any other comments about the student’s 
thinking or language or your interaction with 
the student.

6.  Comment on the presence of concrete 
materials (cutouts, graph paper, string, etc.) 
and drawings in the problems. Did they help or 
hinder the student? What role do you see 
concrete materials and drawings playing in 
ELLs’ learning of mathematics? Why? Provide 
details. 

7.  Comment on the student’s writing for ques-
tions that required written responses. Provide 
details.

Other

8.  In your opinion, what sort of support would this 
student need in the classroom to understand 
and do well in math? Explain with examples. 

9.  Overall, what did you learn about ELL students’ 
mathematical thinking and teaching mathemat-
ics to ELL students? Elaborate at least three 
points in detail. 

10.  What was your biggest surprise in the 
interview?
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The reports allowed me to focus on their descriptions, 
assist with their interpretations, and provide suggestions 
on improving their second interview. This was a key part 
of the intervention. For example, if a PST mentioned that 
a student did not understand the concept of area, I asked 
the PST to think about other ways that the student could 
express his or her understanding of area besides the use 
of a formula, such as pointing to the area of the table or 
floor, shading area in a figure, or using graph paper. By 
accepting a broad range of student approaches, some of 
which may not seem “mathematical” (according to the 
PSTs) at the outset, the PSTs could appreciate the stu-
dents’ thinking and understand linguistic challenges and 
how the students were using resources in conjunction 
with speech to make meaning and partake in mathemati-
cal practices (Moschkovich, 2002). 

Phases 3 and 4: Second Interview and Report and 
Experience Sharing

Because most of the PSTs were interviewing students 
for the first time, the second iteration allowed them to 
have richer interactions and improve their probing of 
the student based on what they learned from the experi-
ences in the first interview. Based on the feedback from 
the first report, the PSTs refined their interview script 
and interviewed a different ELL student toward the end 
of the semester. Once again they submitted a report that 
I graded, and in some cases I asked them to revise their 
reports. As a conclusion to the project, the PSTs shared 
something new that they had learned about the teaching 
and learning of mathematics to ELL students during an 
in-class discussion. The next section discusses the impact 
of the intervention. 

Impact of the Intervention

The major goal of the intervention was to build awareness 
among the PSTs of the challenges that ELL students face 
and the resources that ELL students draw on to communi-
cate their mathematical thinking. To document the impact 
of the intervention with respect to this goal, I initially 
focused on the PSTs’ responses to questions 3, 4 and 9 
(see Figure 3). I created a separate document that com-
piled each of the 31 PSTs’ responses from both reports for 
these three questions and used this as the starting point 
for examining the impact of the intervention. I specifi-
cally looked at the linguistic challenges that the PSTs 
described and the resources the PSTs mentioned that 
the ELL students used in connection to these challenges. 
I triangulated these points with their responses to other 
questions, particularly the descriptions they provided in 
response to questions 1 and 2. I also examined portions 
of the videotape where they were interacting with the ELL 
students to ensure that their interpretation was grounded 
in their interactions. Further, I had close interactions with 

all the PSTs during the project, and during the feedback 
process I clarified my interpretation of their statements. 

The following sections will describe the challenges (un-
derstanding the questions and writing) and the resources 
(using concrete materials to assist with communication) 
reported by the PSTs. Further sections will discuss what 
the PSTs reported on learning through the task-based 
interviews and the few cases where prior deficit beliefs 
about ELLs were reinforced. 

Linguistic Challenges

All 31 PSTs brought up the linguistic challenges that the 
ELL students faced during the interviews. In particular, 
these challenges arose in students’ understanding of the 
questions and explaining their thinking in writing. 

Understanding the Question

By allowing the ELL students to initially work indepen-
dently on the task, the PSTs noticed challenges students 
faced in understanding the question. Some ELL students 
read the problem multiple times, others asked for the 
meaning of words that were unclear, and some guessed 
at what the question was asking by using portions of the 
problem that they understood. In some cases, the PSTs 
helped the students understand the question by getting 
them to read and explain the different parts back to them. 
By doing so, the PSTs were able to isolate parts of the 
question that were challenging to the students and assist 
them with the language. In some cases, especially for the 
Triangle and Square problem, the ELL students were able 
to solve the task with assistance, and this convinced the 
PSTs that the ELLs were challenged with the language in 
the question. One PST wrote, 

i learned that Ell students’ difficulty with lan-
guage does affect their math [performance], but it 
does not affect their mathematical thinking. the 
student i worked with had difficulty understand-
ing the language of the question. . . . But, once 
the student understood the question she was able 
to mathematically think correctly and figure out 
the answer to the question. 

The PST observed that assistance with the language in a 
question could make a difference in whether the student 
used an appropriate procedure to solve the problem. In 
the String problem, a number of PSTs observed that the 
ELLs were not using the whole string to form four equal 
pieces. On further probing, they linked the linguistic 
challenge to the phrase “a piece of string,” which the 
ELLs assumed to mean a part of the string that was pro-
vided. In these cases, the students were able to rectify 
their solution method based on the assistance they got 
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from the PSTs. One PST asked the ELL student to think 
of the string as Twizzlers© (a type of candy) that had to 
be divided among four friends. This scaffolding from the 
PST helped the ELL student understand the problem and 
then solve it. 

The PSTs noticed the challenge for the students in the 
Tile problem lay in the phrase “five inches on a side,” 
which they tended to ignore or misinterpret in their solu-
tion. For example, one ELL student ignored this phrase 
and counted all the squares on the graph paper that was 
offered. The PSTs also pointed to the numerous pieces of 
information that the students had to coordinate to solve 
the problem. For example, one PST wrote, “He had to 
work with inches, tiles, a small square, a big rectangle. 
He also had to figure out how all of them were connect-
ed in order to find the final answer.” In the Tile problem, 
where the students were required to integrate the infor-
mation and determine the mathematical approach they 
would take for a solution, most of the PSTs reported the 
challenges facing the student as both linguistic and math-
ematical. After observing how ELL students grappled with 
understanding the questions, some PSTs suggested that 
the questions could be modified with simpler language to 
ensure that the ELL students understood them. 

Writing

The PSTs noticed that the ELLs were challenged by 
explaining their thinking in writing, and some preferred 
just an oral explanation for their solution strategy. In most 
cases, the PSTs mentioned that students’ written work 
was difficult to understand. Besides commenting on the 
incorrect spelling and grammar, the PSTs noted that the 
ELL students tended to write the way they spoke: “…and 
cut like two of the pieces….” This is common because 
students are familiar with spoken communication and 
draw on this resource for their writing if they have not 
been introduced to various genres of writing and ways of 
presenting their ideas (Gibbons, 2002). 

Some PSTs commented on the structure of the sentences 
that the students used and reported that these were “run-
on sentences”. This referred to sentences which made 
use of conjunctions to chain their ideas: “Well, first take 
each end of the string and connect them, then take the 
other end that the string made and connect it to the two 
ends of the string, you then would cut the pieces of each 
end.” Again, the use of chained clauses are characteristic 
of early writers who need explicit instruction to develop 
academic writing using more condensed clause structures 
(Schleppegrell, 2004). 

In the case of the String problem, many PSTs were suc-
cessful in getting the student to rethink their written 

explanation to achieve clarity by using the string to work 
through the steps and illustrate to the ELL students that 
their oral solution did not match their written instructions. 
This prompted the students to correctly modify their 
writing to match the sequence of steps that they used to 
cut the string. Further discussion of the use of concrete 
materials is described in the next section.

Resources

In their discussion about the resources that ELLs used dur-
ing the interview, concrete materials featured prominently 
in solving the problem and communicating their solution. 
The use of concrete materials, such as the string and the 
cutouts, were especially useful for the students for whom 
providing a coherent written solution was challeng-
ing. These students could use the materials, along with 
informal language, to demonstrate their solution. One PST 
says, 

i can’t stress enough how helpful the string and 
the cutouts were for [student name]. She used the 
cutouts to solve the area problem. not only did 
they help her solve it, but they were a big factor 
in her communicating how she did it. . . . Where 
her writing was a little confusing, she was able 
to demonstrate using the string very clearly. . . . i 
think the availability of concrete materials to aid 
in understanding and communicating are vital for 
these [Ell] students and should be used exten-
sively in the classroom. 

Note that, even though the PSTs thought that the use of 
concrete materials would be beneficial in work with ELL 
students, there were some who noticed that just providing 
the concrete materials was not enough and some sup-
port also was required. For example, in the Tile problem, 
a PST noticed that the ELL student assumed the square 
on the graph paper represented a tile with unit dimen-
sions instead of 5 x 5, the dimensions specified in the 
problem. The PST had to help the student use the graph 
paper to appropriately represent and solve the problem. 
Overall, most of the PSTs reported that the concrete 
materials were a resource that ELL students employed to 
understand and communicate their thinking. The con-
crete materials also opened opportunities for the PSTs to 
understand the ELLs students’ thinking and in some cases, 
such as the String problem, got them to modify or revise 
their solution. 

What PSTs Learned From the Interviews

Based on their interview experience, most PSTs conclud-
ed that language could prove to be a challenge for ELL 
students. In the words of one PST, 
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[the Ell] is learning a new language and learning 
a new concept (math) and that is a lot for a child 
to do together. it’s like double the work. 

Here the PST seems to understand that ELL students who 
are learning the content and the language at the same 
time face an added cognitive load (Campbell, Adams, & 
Davis, 2007). Most PSTs discussed adjustments that they 
would make to their mathematics class to account for 
the extra cognitive load that the language posed for the 
ELL students. For example, the PSTs reported that they 
would allow ELL students more time to process informa-
tion, slow down their speech, and integrate strategies 
that would help the students with reading and writing 
the content. For example, one PST recommends that 
“reading, writing, and math are all covered in [the math] 
class,” and goes further in stating that teachers should 
provide opportunities for students to integrate aspects of 
the language as they learn the mathematics content. Such 
opportunities could take the form of having students read 
the mathematics problem, interact with peers as they 
solve the problem, and provide a written explanation of 
their thinking. Thus the PSTs went beyond being aware of 
ELLs’ needs and challenges to learning specific strategies 
that aligned with the research on best practices for work-
ing with ELLs. 

The PSTs also reported that there was a lot of diversity 
among the ELL students that they interviewed and thus 
mentioned that they would avoid making “sweeping 
generalizations” in their future encounters with this group 
of students. For example, some PSTs mentioned that 
they would be careful not to automatically conclude that 
ELL students struggled with mathematics. After conduct-
ing the interviews and interacting with the ELL students, 
many PSTs were surprised that the students could speak 
English, as they assumed that the students would have 
difficulty speaking. However, in some cases, the PSTs 
assumed that students’ conversational proficiency meant 
that these ELL students were no different from non-ELL 
students: “I don’t know if you could really call these kids 
ELL students because it seems like they already know the 
language fluently.” These PSTs seemed to assume that 
fluency in conversational language automatically meant 
proficiency in academic language.

Reinforcing Beliefs

The interviews, in a few cases, seemed to reinforce prior 
beliefs that PSTs had about mathematics being universal. 
This was usually the case when ELL students successfully 
solved the problems with minimal assistance with the 
mathematical concepts. One PST expressed this idea as 
“two plus two is four no matter what language or dialect 
you speak.” This particular PST had experience teaching 

algebra in eighth grade and did not consider the linguistic 
assistance he provided the ELL student to be linguistic 
assistance. Rather, he considered it to be mathematical 
assistance that he would provide to ELL and non-ELL stu-
dents alike. For example, in the Tile problem, when the 
student struggled to understand the phrase “five inches 
on a side,” he used the cutout from the Area Comparison 
problem to demonstrate the dimensions of the tile. Later 
he used the cutout to illustrate how the tile would cover 
the rectangular area, which prompted the student to suc-
cessfully work out the number of tiles that covered the 
space. In our interactions, he explained that he provided 
such assistance to non-ELL students as well; thus, ac-
cording to him, this illustrated a mathematical challenge 
rather than a linguistic challenge. As such, he reiterated 
that mathematics was universal and that the same issues 
that challenged ELL students also challenged non-ELL 
students. Having such a belief ignores the fact that ELL 
students face an additional cognitive load because of the 
language (Campbell, Adams, & Davis, 2007).

Deficit beliefs about ELLs, such as “ELL students typi-
cally haven’t had proper schooling before arriving here 
and generally do not receive proper help at home,” were 
expressed by a few PSTs who interviewed students who 
needed a lot of prompting to solve the problem. Howev-
er, in these cases, I also observed that the PSTs expected 
the students to express their mathematical knowledge 
in very narrow ways that fit with how they themselves 
would solve the problem. For example, for the Tile prob-
lem, one PST expected the student to use division to find 
the number of tiles. Initially the PST provided graph paper 
that the student used to work out the total number of tiles 
by simply multiplying the number of actual squares along 
the length and width of the sheet and ignoring the dimen-
sions of the tiles in the problem. Instead of attempting to 
build on the student’s approach, the PST tried to funnel 
the student toward the use of division. When the student 
struggled to do so, it seemed to reinforce the PST’s deficit 
beliefs about ELL students. 

Deficit beliefs about the use of native language were 
reported by two PSTs, who assumed that the students 
were taking a long time to work out the problems due to 
having to translate between English and Spanish. How-
ever, there was no overt evidence of this in the video-
tapes of the interviews. One of these PSTs concluded that 
translating back and forth would be “extremely taxing” on 
the student. In essence, these two PSTs’ comments in the 
report seemed to view the native language as a hindrance 
for the student’s mathematical performance rather than 
an asset that could be used in the classroom. The PSTs 
statements imply that “taking longer” indicates a lack of 
understanding—again expressing a narrow view of what 
it means to know and do mathematics. Research has 
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 established that ELLs may take a little longer in calcula-
tions; however, this does not reflect their level of math-
ematical understanding (Moschkovich, 2010). 

Others Using the Intervention

Although the intervention took place in a content course 
for middle school PSTs, it is flexible enough to be inte-
grated into various mathematics content and methods 
courses and can be used to help PSTs notice the linguistic 
issues that arise in the mathematics curriculum and how 
ELL students negotiate them. The interview tasks can 
consist of NAEP questions that relate to the topics being 
discussed and share some of the characteristics with the 
tasks that were used in this study. The instructor can pilot 
some of the tasks in interviews with ELL students to deter-
mine which ones have the potential to benefit the PSTs in 
their interviews. 

Further, the instructor will need some assistance from 
the schools. In this intervention, the ESL teachers at the 
school obtained parental permission on my behalf (for 
videotaping), identified the ELL students to be inter-
viewed, and coordinated the PSTs’ visits during the two-
week window for each interview. The ESL teachers went 
even further and outlined their program and how ELLs 
were classified and answered specific questions that the 
PST may have had. 

Because most PSTs are new to conducting task-based 
interviews, a significant amount of time is invested at 
the beginning of the project helping the PSTs write 
detailed descriptions and notice linguistic aspects in the 
videotape. In my case, I spent time reading the reports, 
viewing the videotapes, providing the PSTs with appro-
priate feedback on their reports, and in some cases also 
viewing sections of the videotape together with the pairs. 
I found that the PSTs also learned from informal interac-
tions among themselves as they shared experiences of 
what worked and what did not work with each other. 
For example, one PST shared how he pretended not to 
understand the questions and thus encouraged the ELL 
student to elaborate and explain the questions and the 
mathematical thinking to him in great detail. In the future, 
I plan to incorporate these interactions into the structure 
of the intervention by building in more discussion time 
during class. Knowledge of the basics of systemic func-
tional linguistics (e.g., Eggins, 2004) is also essential in 
understanding the linguistic complexity in the formulation 
of problems and how this may impact ELL students’ com-
munication of their mathematical thinking. 

PSTs tend to need more assistance in probing students 
during the interview and providing detailed descriptions 
in their reflections at the beginning of the course; as they 

gain experience over time, they get better. The four PSTs 
who participated in the second and third cycles of the 
intervention showed improvement in their probing. For 
example, one of these PSTs was able to reframe the String 
problem using a scarf that the student was wearing. The 
PST first complemented the student on the attractive scarf 
and then asked her to imagine how she would divide it 
equally with three other friends who wanted to have the 
same scarf but could not purchase the same one at the 
mall. By reframing the problem this way, the PST could 
get at the student’s understanding. I noticed this flexibility 
in the PSTs’ probing as they gained more experience with 
the interviews. The level of detail that the PSTs provided 
in their descriptions were more aligned with Mason’s 
notion of accounts-of as they made fewer statements 
that were evaluative or could not be verified by another 
observer (if one was present). 

Discussion

Overall, the interview experience along with the compo-
sition of accounts and feedback from the instructor have 
the potential for helping PSTs notice the linguistic chal-
lenges that ELL students face and resources that they use 
to communicate mathematically. The guiding questions, 
based on accounts-of and accounts-for, serve to focus 
PSTs on the linguistic aspects of students’ responses. The 
potential for noticing is maximized initially when the 
instructor uses the PSTs’ descriptions to provoke further 
thinking about the possibilities in the student work. This 
allows the PSTs to look beyond the familiar methods to 
solve the problems; probe students appropriately; and 
notice the challenges of understanding the questions and 
the resources, including gestures, drawings and concrete 
materials, that ELL students use to build meaning that 
goes beyond speech. Videotaping the interview allows 
the instructor and the PST to recall incidents and inter-
pret them in new ways. The videotape is also useful in 
bringing to the fore incidents, especially those involving 
linguistic issues, that may not be captured in the initial 
descriptions as the PSTs may not consider them impor-
tant. The continued informal interactions with the instruc-
tor over the course of the project also add to the PSTs’ 
overall learning. 

The interview experience goes beyond fostering PSTs’ 
awareness to developing concrete strategies that assist ELL 
students and are aligned with best practices advocated 
in the research. Some of these strategies include isolating 
linguistic challenges in the wording of a question, us-
ing concrete materials and drawings to help the students 
understand the problem and communicate their thinking, 
adapting speech, providing more time for the students to 
work on the problem and communicate their thinking, 
and analyzing and critiquing the students’ written  
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work—all skills that will be useful in PSTs’ future class-
rooms for teaching all students. 

In his review of research on how to prepare mainstream 
secondary content-area teachers to work with ELLs, 
Bunch (2010) emphasized the need for integrating the 
focus on language and content so that the teachers have 
the “opportunity to understand the language demands in 
their own lessons” and can “capitalize on the linguistic 
resources that ELLs already bring to the classroom, and 
create instructional settings that expand students’ access 
to content learning and development of language and 
literacy” (p. 374). The task-based interviews, along with a 
framework of noticing can provide the needed integration 
of the content and the language so that PSTs can notice 
the linguistic challenges that ELLs face and the resources 
that they draw on to communicate their thinking. The ul-
timate aim of teacher preparation is not to prepare expert 
teachers, but to prepare teachers who can continually 
learn from their teaching (Hiebert, Morris, Berk, & Jansen, 
2007). Developing their skills of interviewing and noticing 
can help teachers continually learn from all their students. 
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Teachers of grades Pre-K-8 are charged with 
the responsibility of developing children’s 
statistical thinking. Hence, strategies are 
needed to foster statistical knowledge for 
teaching (SKT). This report describes how 
writing prompts were used as an integral part 
of a semester-long undergraduate course 
focused on building SKT. Writing prompts 
were designed to help assess and develop the 
subject matter knowledge and pedagogical 
content knowledge of prospective teachers. 
The methods used to design the prompts are 
described. Responses to a sample prompt 
are provided to illustrate how the writing 
prompts served as tools for formative assess-
ment. Pretests and posttests indicated that 
prospective teachers developed both SKT 
and knowledge of introductory college-level 
statistics during the course. It is suggested 
that teacher educators employ and refine the 
prompts in their own courses, as the method 
used for writing and assessing the prompts is 
applicable to a broad range of statistics and 
mathematics courses for teachers. 

Key words: Statistical knowledge for teaching, Mathemat-
ical knowledge for teaching, SOLO Taxonomy, Writing 
prompts, Formative assessment

Current scholarship in teacher education reveals the com-
plexity of the knowledge needed by teachers. Subject 
matter knowledge alone is not sufficient. The Learning 
Mathematics for Teaching (LMT) project characterized 
mathematical knowledge for teaching (MKT) as consisting 
of two primary elements: subject matter knowledge and 
pedagogical content knowledge (Hill, Ball, & Schilling, 
2008). Pedagogical content knowledge helps teachers 
make subject matter comprehensible to students. It has 
been described as a “special amalgam of content and 
pedagogy that is uniquely the province of teachers, their 
own form of professional understanding” (Shulman, 1987, 
p. 8). Components of subject matter knowledge and 
pedagogical content knowledge hypothesized by the LMT 
project are shown in Figure 1. 

This report describes how I used writing prompts in a 

semester-long undergraduate course devoted to building 
prospective Pre-K-8 teachers’ subject matter knowledge 
and pedagogical content knowledge for teaching statis-
tics. In this article, I use the term “statistical knowledge 
for teaching” (SKT) rather than MKT to acknowledge 
statistics and mathematics as distinct disciplines (Groth, 
2007; Moore, 1988). For example, many statistical activi-
ties, such as study design, survey question design, and 
measurement, have substantial nonmathematical com-
ponents (Rossman, Chance, & Medina, 2006). Although 
the LMT model explicitly focuses on MKT, research-
ers have found it to be of use in describing SKT as well 
(Burgess, 2011). The degree of overlap between the two 
disciplines makes it feasible to ground the discussion of 
SKT in a theory of MKT (Groth, 2007), and the methods I 
describe for designing and assessing writing prompts are 
not restricted to use in statistics courses. Some specific 
examples of subject matter knowledge and pedagogical 
content knowledge for statistics will be discussed next.

Subject Matter Knowledge

Subject matter knowledge includes common content 
knowledge, specialized content knowledge, and knowl-
edge at the mathematical horizon (Hill, Ball, & Schilling, 
2008). Common content knowledge is that which is re-
quired in teaching as well as in other professions. Examples 
include knowing how to compute and interpret frequently 
used measures of center and spread, understanding the 
idea of random sampling, and recognizing variability as a 
central object of study in statistics (Groth, 2007).

The Role of Writing Prompts in a Statistical 
Knowledge for Teaching Course

Figure 1. Hypothesized components of subject matter 
knowledge and pedagogical content knowledge (Hill, Ball, & 

Schilling, 2008, p. 377).

Subject Matter Knowledge Pedagogical Content Knowledge
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Specialized content knowledge is that which is unique 
to teaching. It allows teachers to select representations 
to make subject matter comprehensible. For instance, 
hat plots produced using dynamic statistics software 
(Konold & Miller, 2005; Figure 2) are not conventional 
data displays, but they provide a useful intermediate 
step between reading dot plots and box plots (Watson, 
2008). Children often have difficulty interpreting box 
plots because they condense the data to display summary 
statistics rather than showing individual values (Bakker, 
Biehler, & Konold, 2005). Hat plots address this difficulty 
because they are generally displayed above plots show-
ing individual values, as in Figure 2. By examining both 
representations simultaneously, students can begin to un-
derstand how individual values contribute to a more con-
densed display. The median is initially not included in a 
hat plot to avoid another intuitive difficulty: in a box plot, 
the median is usually closer to one of the quartiles than 
the other, even though the same number of data points 
resides within each quarter of a box plot (Watson, Fitzal-
len, Wilson, & Creed, 2008). Hat plots allow students 
to initially focus on the more intuitive idea of “modal 
clump” (e.g., the middle 50% of the data is highlighted in 
Figure 2), which connects to children’s tendencies to par-
tition data into low, middle, and high categories (Konold 
et al., 2002). Once students understand how a display 
can condense data and partition it into groups, adding the 
median to a hat plot showing the middle 50% of the data 
can complete the transition from dot plots to box plots. 
The hat plot representation, therefore, can be considered 
an element of specialized knowledge because it helps 
make box plots comprehensible, and it was invented to 
serve this purpose rather than to be widely used among 
those outside the teaching profession.

Horizon knowledge helps teachers understand how 
activities done during a given lesson foreshadow more 

advanced ideas to be studied later on. For example, 
elementary school students work on describing popula-
tions (e.g., students in their classroom) using descriptive 
statistics and graphs, but a transition to using samples to 
make inferences about larger populations must eventu-
ally be made. Teachers who have horizon knowledge 
of formal statistical inference can pose questions that 
prompt students to think about the extent to which data 
from one class may generalize to a larger population (e.g., 
all students in school or all students in the country). They 
can also look for opportunities to emphasize ideas that 
comprise the foundation for formal inference, such as 
sample size, randomness, sampling variability, and bias 
(Ben-Zvi, Gil, & Apel, 2007). As they do so, teachers can 
bring students progressively closer to techniques of formal 
inference by gradually formalizing their early statistical 
investigations.

Pedagogical Content knowledge

Pedagogical content knowledge includes knowledge of 
content and students, knowledge of content and teaching, 
and knowledge of curriculum. Each component marks 
out a type of knowledge needed specifically for tasks 
related to teaching. 

Knowledge of content and students can be described 
as “content knowledge intertwined with knowledge of 
how students think about, know, or learn . . . content” 
(Hill, Ball, & Schilling, 2008, p. 375). This type of knowl-
edge allows teachers to anticipate difficulties students 
will have in learning a subject and address them when 
planning and implementing lessons. Research provides 
a fair amount of information about developmental levels 
through which Pre-K–8 students are likely to pass as they 
learn statistics and probability. Jones et al. (2000) mapped 
levels of thinking one can expect from elementary school 

Figure 2. Representing a data set for number of candies per student 
with a dot plot and hat plot.



Randall E. Groth 25

students in regard to describing, organizing, represent-
ing, and analyzing data. Mooney (2002) did the same 
for middle school students. One of the key insights from 
these studies is that students often use their own idio-
syncratic strategies to handle data before progressing to 
conventional methods. Knowing about common student 
strategies can help teachers anticipate potential inroads 
and obstacles in developing students’ statistical thinking.

Knowledge of content and teaching entails having a 
repertoire of content-specific strategies for teaching con-
cepts. For instance, it is beneficial for teachers to know 
how to help students understand the arithmetic mean 
as a fair share and as a balance point. To portray the 
mean as a fair share, students can be given snap cubes 
to represent the numbers of a given object belonging 
to each person in a group. The cubes can then be piled 
together and redistributed so that everyone has the same 
amount (if the total number of cubes is not a multiple of 
group size, distributing fractional amounts of a cube can 
be discussed). The amount each person receives is the 
mean. To help students understand mean as a balance 
point, teachers can give students data on the number 
of pets each student in a class has. Sticky notes can be 
used to construct a dot plot of the data set, and students 
can move all of them to the mean value of the data set. 
To preserve the original mean, they can experiment with 
ways to rearrange the sticky notes so the balance point 
remains at the original mean. In doing so, they produce a 
number of data sets that all have the same mean (Franklin 
et al., 2007). 

Knowledge of curriculum suggests knowing the struc-
tural characteristics of curricula. One part of developing 
curriculum knowledge can be coming to understand 
different philosophies underpinning Pre-K–8 curricular 
materials for teaching statistics. Several reform-oriented 
curriculum series funded by the National Science Foun-
dation (NSF) are based on principles of inquiry-oriented 
instruction that may be unfamiliar to prospective teach-
ers whose school experiences were more traditional in 
nature (Senk & Thompson, 2003). Lloyd and Behm (2005) 
found that when presented with reform-oriented curricu-
lum materials, prospective teachers tended to gravitate 
toward traditional-looking elements of the texts rather 
than inquiry-oriented ones. Understanding the purpose 
and benefits of inquiry-oriented instruction enables teach-
ers to implement innovative curricula with fidelity to the 
intentions of the curriculum designers.

The Statistical Knowledge for Teaching 
(SKT) Course
I used the Learning Mathematics for Teaching (LMT) con-
ceptualizations of subject matter knowledge and peda-

gogical content knowledge as starting points in designing 
a one-semester SKT-focused course for prospective Pre-
K–8 teachers. The use of the LMT framework prompted 
me to go beyond just common content knowledge goals 
for the course. Although common content knowledge is 
important, it is ideally developed in tandem with other 
types of subject matter knowledge and pedagogical 
content knowledge. An immediate implication of the 
LMT framework is that it is not adequate to ask prospec-
tive teachers simply to solve mathematics and statistics 
problems in such a course, even if those problems focus 
on conceptual understanding (Hiebert & Lefevre, 1986) 
and have high levels of cognitive demand (Smith & Stein, 
1998). Therefore, I set out to design course experiences 
that required engagement with all aspects of the LMT 
framework.

The core teaching strategies used in the course and  
their connections to the LMT framework are shown in 
Figure 3. Inquiry-oriented statistics activities relevant to 

Figure 3. Connections between core instructional strategies 
and the LMT framework.

Inquiry-oriented 
statistics 
activities 

relevant to 
grades 

Pre-K−8

Descriptions of 
children’s 

thinking about 
statistics in 

readings from 
teacher-
oriented 

journals and 
cases

Informal 
conceptual 

introduction to 
statistical 
inference 
through 

simulation

Common 
content 

knowledge

Specialized 
content 

knowledge

Horizon 
knowledge

Knowledge 
of content 

and 
students

Knowledge 
of content 

and 
teaching

Curriculum 
knowledge



26 SKT Writing Prompts 

grades Pre-K–8 were selected from the required course 
textbook (Perkowski & Perkowski, 2007) and other 
sources (e.g., Burns, 2000; Rossman & Chance, 2008; 
Scheaffer, Gnanadesikan, Watkins, & Witmer, 1996). The 
required textbook integrated activities from NSF-funded 
curricula (Senk & Thompson, 2003). These activities 
were intended to build conceptual understanding of 
statistics (common knowledge) while also providing 
ideas for teaching specific content (knowledge of content 
and teaching) and an introduction to inquiry-oriented 
curricula (curriculum knowledge). To supplement and 
extend the inquiry-oriented activities done in class, I 
selected readings from Teaching Children Mathematics 
and Mathematics Teaching in the Middle School. These 
readings, as well as two classroom cases I selected from 
Discovering Mathematical Ideas (DMI) (Russell, Schifter, 
Bastable, Konold, & Higgins, 2002), helped build knowl-
edge of content and students by providing descriptions of 
children’s thinking about statistics. They also helped build 
specialized knowledge by introducing representations 
suitable for making content understandable to children 
(e.g., hat plots) and common knowledge by prompting 
readers to think conceptually about core statistics content 
(e.g., choosing between mean and median to describe 
data). Near the end of the semester, a unit introducing 
formal inference was included. The unit used materials 
described by Garfield and Ben-Zvi (2008) to provide an 
intuitive foundation on the meaning of sampling distribu-
tions, hypothesis testing, and confidence intervals through 
simulation. It was included in the course to foster horizon 
knowledge by providing a sense of statistical content 
studied beyond the Pre-K–8 curriculum and to build com-
mon content knowledge of inference ordinarily included 
in college-level statistics courses.

This report will focus in-depth on writing prompts used 
in conjunction with the course readings from Teaching 
Children Mathematics and Mathematics Teaching in the 
Middle School. The relationships among statistics content, 
the selected readings, and supporting course activities 
are shown in Table 1. Although the writing prompts were 
used in conjunction with most of the statistical topics 
included in the course, they were not used for all. Spe-
cifically, units on bivariate data and inference were not 
accompanied by articles and writing prompts. However, 
writing prompt sets did comprise more than 60% of the 
homework assignments for the course.

Writing Prompts in the SKT Course

I chose writing as a means to help prospective teachers 
analyze the teacher-oriented journal articles because it 
encourages learners to place organizational structures on 
their thinking (Vygotsky, 1987). As a self-reflective activ-
ity, writing supports learners’ metacognition, enabling 

them to select and employ appropriate problem-solving 
strategies (Pugalee, 2004). Writing about a text can also 
help support generative reading of it. Generative reading 
involves applying background knowledge to interpreta-
tion of a text, thinking about relationships among ideas 
within a text and across texts, and identifying important 
concepts (Borasi, Siegel, Fonzi, & Smith, 1998).

Figure 4 provides an overview of the design and use of 
writing prompts in the SKT course. I wrote five prompts 
for each article. (The full set of writing prompts is avail-
able. See “Supplement: Assignments.” Prompts addressed 
both subject matter knowledge and pedagogical con-
tent knowledge. Some of the questions in the prompts 
required literal reading, and others required generative 
reading. As I read responses to the prompts, I had both 
summative and formative assessment purposes in mind. 
I used a rubric to assign summative scores to each set of 
writing prompts, and I examined responses to selected 
prompts in more depth to gain insight about adjustments 
to the course to help advance prospective teachers’ learn-
ing. It should be noted that although the process outlined 
in Figure 4 was developed in a statistics course for pro-
spective elementary school teachers, it is not necessarily 
restricted to a single subject area or grade band. Details 
about the process are provided in the remainder of this 
section. 

Each of the writing prompts was designed to address 
one or more of the six components of the LMT frame-
work described earlier: common knowledge, specialized 
knowledge, horizon knowledge, knowledge of content 
and students, knowledge of content and teaching, and 
curriculum knowledge (Hill, Ball, & Schilling, 2008). Six 
types of questions described by Day and Park (2005) 
were used within the prompts to encourage active read-
ing: literal comprehension, reorganization, inference, 
prediction, evaluation, and personal response. Examples 
of each type of prompt and their alignment with the LMT 
framework are provided in Table 2. Literal comprehen-
sion questions are those that can be answered directly 
from a portion of the text. The remaining five types of 
questions require generative reading. Reorganization 
questions require piecing together information from 
various parts of the text. Inference questions go beyond 
literal reading of the text to prompt students to draw on 
background knowledge and experiences while reading 
to formulate a response. Prediction questions involve 
extending a text by drawing on knowledge obtained from 
reading it. Evaluation questions prompt readers to express 
reasons for agreement or disagreement with a portion 
of the text. Personal response questions prompt readers 
to express their feelings about the text and its content. 
Some writing prompts contained more than one of the six 
types of comprehension questions, and some also were 
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table 1
Relationships Among Statistical Content for SKT Course, Readings, and Supporting Course Activities

Statistics content Selected readings Sample supporting course activities

Sampling techniques “How do students think about statistical sam-
pling before instruction?” (Jacobs, 1999)
“Capture and recapture your students’ interest in 
statistics” (Morita, 1999)

Completing “Random Rectangles” activity (Sche-
affer, Gnanadesikan, Watkins, & Witmer, 1996) 
to establish the distinction between random and 
subjective sampling and to compare distributions 
of statistics produced by them.

Types of data “Statistics in the elementary grades: Exploring 
distributions of data” (Franklin & Mewborn, 
2008)
“It’s a fird! Can you compute a median of cat-
egorical data?” (Leavy, Friel, & Mamer, 2009)

Discussing classroom cases from Developing 
Mathematical Ideas series (Russell, Schifter, 
Bastable, Konold, & Higgins, 2002) to become 
familiar with how children tend to organize both 
quantitative and categorical data. 

Representing data “Reflecting on students’ understanding of data” 
(McClain, 1999)
“Students’ interpretations of misleading graphs” 
(Harper, 2004)
“The representational value of hats” (Watson, 
Fitzallen, Wilson, & Creed, 2008)

Analyzing hat plots and box plots with Tinker-
Plots (Konold & Miller, 2005) and Fathom (Finzer, 
2002) to understand how a hat plot serves as a 
transitional representation between a dot plot and 
a box plot and to analyze how changes in a data 
set correspond to changes in accompanying box 
plot and hat plot graphical representations.

Measuring center and 
spread

“Mean and median: Are they really so easy?” 
(Zawojewski & Shaughnessy, 2000)
“Statistics in the middle grades: Understanding 
center and spread” (Kader & Mamer, 2008)

Solving problems from Connected Mathematics 
(Lappan, Fey, Fitzgerald, Friel, & Phillips, 2004) 
to understand the mean conceptually and to 
become familiar with the structure and goals of 
reform-oriented mathematics curricula.

Theoretical and 
experimental prob-
abilities

“Predictions and probability” (McMillen, 2008)
“Providing opportunities to learn probability con-
cepts” (Tarr, 2002)
“Enriching students’ mathematical intuitions with 
probability games and tree diagrams” (Aspinwall 
& Shaw, 2000)

Completing “Numbers on a Line” activity (Burns, 
2000) to compare theoretical and experimental 
probabilities for rolls of a pair of dice using a 
physical simulation. The physical simulation set 
the stage for computer-based simulations that 
took advantage of technology to run a large num-
ber of trials and analyze the resulting distribu-
tions.

Analyzing distributions “Proportional reasoning: Lessons from research 
in data and chance” (Watson & Shaughnessy, 
2004)

Describing shape, center, and spread of distribu-
tions of numbers of orange candies in a sample in 
an activity from Workshop Statistics (Rossman & 
Chance, 2008)

table 2
Sample SKT Writing Prompts

 
Sample writing prompt

 
article

reading comprehension 
question types

relevant Skt  
components

In your own words, explain how snap cubes 
can be used to determine the arithmetic 
mean of a set of quantitative data.

Franklin and Mewborn 
(2008)

Literal comprehension Knowledge of content 
and teaching

How are hat plots similar to box-and-whisker 
plots? How are they different?

Watson, Fitzallen, Wil-
son, and Creed (2008)

Reorganization Specialized content 
knowledge

On p. 438, the authors commented in regard 
to item 3, “This type of item assesses stu-
dents’ conceptual understanding of mean.” 
Explain what the authors may mean by “con-
ceptual understanding.” How is it different 
from other types of understanding?

Zawojewski and 
Shaughnessy (2000)

Inference Curriculum knowledge
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 designed to assess more than one of the six components 
of SKT, as illustrated in Table 2.

The writing prompts served as summative assessments in 
that they were assigned homework grades. I graded the 
sets of writing prompts along five dimensions: inclusion 
of required information, clarity and organization, concise-
ness, depth of thought, and evidence of understanding. 
The rubric used to grade each set is shown in Figure 5. 
Prospective teachers were shown the rubric before com-
pleting the assignments. Along with giving them a sense 
of how the assignments would be graded, the rubric 
allowed me to provide feedback and assign grades in an 
efficient manner. 

Grading with the rubric was only the first stage in my 
analysis of responses. I analyzed responses to prompts 
that elicited a wide range of thinking in more depth by 
using the Structure of the Observed Learning Outcome 
(SOLO) taxonomy (Biggs & Collis, 1982; Biggs & Tang, 
2007), which has been gainfully employed in several 
studies of statistical thinking (e.g., Groth & Bergner, 2006; 
Jones et al., 2000; Mooney, 2002; Watson & Moritz, 
2000). Figure 6 shows a diagram summarizing the SOLO 
levels of response observed for a prompt. It is based on a 
visual model devised by Biggs and Collis (1982). Figure 6 
shows that prestructural responses draw on information 
not directly relevant to a task. Unistructural responses 
draw on a single relevant aspect, and multistructural 
responses draw on more than one aspect. Relational-level 

responses include connections among relevant aspects, 
and extended abstract responses include aspects beyond 
those required for a successful response. It should be not-
ed that using the SOLO taxonomy does not limit one to 
identifying only five levels of response. Pegg and Davey 
(1998) theorized that the middle three SOLO levels form 
a repeating cycle that can be extended indefinitely. The 
depth of analysis provided by using SOLO was valuable 
for the purpose of formative assessment, as the levels of 
response to writing prompts indicated potentially fruitful 
adjustments to the course.

the design and assessment of a Sample 
Skt Writing Prompt
In order to illustrate the design and assessment of writing 
prompts in the SKT course, a sample prompt is described 
next. This extended example details the design of the 
prompt, a SOLO analysis of the responses, and use of the 
formative assessment information gained from the SOLO 
analysis to inform instruction. 

Design of Prompt

A writing prompt to support the SKT learning goal of 
distinguishing between experimental and theoretical 
probability was assigned with an article that provided an 
overview of activities intended to facilitate the implemen-
tation of NCTM’s (2000) data analysis and probability 
standards for grades Pre-K–8 (Tarr, 2002). One of the  

table 2—Continued

 
Sample writing prompt

 
article

reading comprehension 
question types

relevant Skt  
components

Why did Eric, Paloma, and Kenji each have 
different estimates for the number of fish in 
the population of Lake Amanda? How much 
variability in student estimates do you think 
you would have if you had 25 students in 
your class? Why?

Morita (1999) Reorganization, prediction Common content 
knowledge

On p. 417, the author claimed, “They (the 
students) have formulated on their own this 
fundamental idea in statistical inference: 
larger samples tend to yield less sampling 
variability and therefore more accuracy.” Do 
you agree with this claim? Why or why not? 
What evidence is provided in the article to 
support the claim?

Morita (1999) Evaluation Horizon knowledge, 
knowledge of content 
and students

In your own words, describe the different 
methods students used in combining their 
individual samples during the capture-recap-
ture activity. Which method do you find the 
most appealing? Why?

Morita (1999) Personal response Knowledge of content 
and students
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article recommendations was to use probability simula-
tions to develop students’ intuitions about random phe-
nomena. Tarr provided the example of having children 
predict how many times a coin would come up “heads” 
when flipped a given number of times. After making 
a prediction, children were to perform coin flips and 
gather data. They were then asked to revisit their initial 
predictions in light of the data and revise their thinking as 
necessary. 

To engage prospective teachers in reading Tarr’s article 
generatively, one of the writing prompts I posed was, 
“Explain how simulations of random phenomena can 
help students develop correct intuitions about probabil-
ity.” In terms of the Day and Park (2005) reading com-

prehension question categories, this was an “inference” 
item because it prompted prospective teachers to draw 
upon examples presented in the article as well as similar 
activities they had experienced during class to formulate 
responses. In terms of the LMT framework, the prompt 
was intended to elicit knowledge of content and teaching 
because it assessed understanding of a content-specific 
teaching strategy. It was also intended to elicit knowledge 
of curriculum because probability simulation is not just a 
teaching strategy to be used for a single lesson, but rather 
recurs throughout the study of statistics.

SOLO Assessment of Prompt

Prospective teachers providing prestructural responses to 

Levels of achievement

Criteria Needs improvement Meets expectations Exceptional

Inclusion of 
required 
information

0 Points 
Most components requested 
in the assignment description 
are missing.

1 Point 
Most components requested 
in the assignment description 
are present.

2 Points 
All components requested in 
the assignment description 
are present.

Clarity and 
organization

0 Points 
Problems with grammar, 
spelling, mechanics, or writ-
ing style obscure meaning.

1 Point 
Few problems with grammar, 
spelling, punctuation, me-
chanics, and writing style.

2 Points 
No problems with grammar, 
spelling, punctuation, me-
chanics, and writing style.

Conciseness 0 Points 
Writing is too brief to convey 
necessary points or the writ-
ing is long and rambling.

1 Point 
The main points requested 
in the assignment descrip-
tion are addressed with some 
degree of efficiency and 
eloquence.

2 Points 
The main points requested 
in the assignment descrip-
tion are addressed with a 
high degree of efficiency and 
eloquence.

Depth of thought 0 Points 
No unique insights related to 
the project components are 
provided.

1 Point 
The writer provides unique 
insight related to some of the 
components in the assign-
ment description.

2 Points 
The writer provides unique 
insights related to all of the 
components in the assign-
ment description.

Evidence of 
understanding

0 Points 
There is little evidence that 
the writer understood any of 
the main concepts related to 
the components in the as-
signment description.

1 Point 
Evidence that the writer un-
derstood the main concepts 
related to most components 
of the assignment description 
is provided.

2 Points 
Evidence that the writer un-
derstood the main concepts 
related to each component of 
the assignment description is 
provided.

Figure 5. Rubric used to assign grades to sets of writing prompts.
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the prompt exhibited no evidence of progress toward un-
derstanding the role of probability simulation in instruc-
tion. Steph, for example, wrote, “Random phenomena 
throws children off because it disproves what they have 
always thought was correct. It shows something that is 
extremely unlikely to happen and is hard to explain.” Al-
though portions of the response were true, it did nothing 
to explain how probability simulations may be helpful to 
students. It started to list potential difficulties in thinking 
students may have, but not how the recommended strat-
egy may help remedy those difficulties.

Unistructural responses showed a degree of progress 
toward explaining how probability simulations may help 
students. However, the responses did not go beyond the 
single aspect of stating relevant terminology. In some 
cases, statistical terminology was included, but not ex-
plained, as in Sonya’s response: “Simulations of random 
phenomena can help students develop correct intuitions 
about probability because it informally supports the idea 

of randomness and variability.” Although all of the statisti-
cal terms in her response were relevant to responding to 
the writing prompt, she did not offer an explanation of 
how simulations would support children’s understand-
ing of randomness and variability. In other unistructural 
responses, pedagogical terminology was used, but not 
explained, as in Karen’s response, 

Using random situations to explain probability 
to students is a very successful way because it 
involves realistic situations that can be hands-on 
or they can relate to, to explain the material that 
is trying to be covered. When students are able to 
relate or do a project hands-on they are able to 
grasp the material better from my understanding.

Karen used pedagogical terms like “hands-on” and “re-
alistic situations” in lieu of giving content-specific insight 
about what probability simulations may contribute to 
children’s thinking.

Prestructural Unistructural Multistructural Relational

Extended AbsractKEY

Writing prompt cue

Informational aspect irrelevant to the prompt

Informational aspect relevant to the prompt

Informational aspect relevant to the prompt
but beyond what is required to respond  
successfully to the prompt

Response to the writing prompt

�
�

�
�

�
�

�
�

�
�

�

Figure 6. Diagrammatic representation for mapping SOLO levels exhibited in 
response to writing prompts.
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Multistructural responses included the aspect of relevant 
terminology, but also included the relevant aspect of what 
may happen statistically as students carry out simulations. 
Christine, for example, wrote, “Random phenomena can 
help students develop correct intuitions about probability 
because students can do trials to determine how often an 
event will happen. Doing trials can give them a range of 
different numbers, and then they can find the average.” 
The response provided examples of activities that may 
occur during a probability simulation along with relevant 
terminology. The sample activities described, however, 
were not organized around a coherent theme (e.g., in 
Christine’s response, it is not clear why students would 
want to “find the average”). Nonetheless, such responses 
suggested a greater amount of understanding of the 
nature of teaching strategies that incorporate probability 
simulation than unistructural responses.

Relational-level responses went beyond multistructural 
ones by describing how the elements of a probability 
simulation become useful pedagogically when the unify-
ing theme of encouraging children’s metacognition is 
placed at the forefront. Ken, for instance, wrote,

the simulations can help students because you 
can have them take an experiment and predict 
what they think will happen then run the simula-
tion and see what the actual number would be. 
this allows the students to see what predictions 
they made actually were realistic and probable 
and what predictions were a little unreasonable. 
this process gives them a better understanding of 
probability.

In relational-level responses, metacognition provided a 
means for linking the activities that occur during a prob-
ability simulation to their pedagogical purpose and value. 
Not only were the activities that occur during a simulation 
described, but the manner in which teachers can support 
children’s reflection on their thinking was used to explain 
how simulation could be used as part of an overall teach-
ing strategy.

Connecting the above SOLO analysis to the diagrammatic 
scheme in Figure 6, in the sample writing prompt, the 
cue (▲) was to explain how probability simulations can 
help develop children’s thinking. Prestructural responses 
(■) simply stated that children have difficulty with ran-
dom phenomena. Although true, this observation is 
irrelevant (✕) to explaining how simulations might rem-
edy the difficulties. Unistructural responses (■) touched 
on the relevant aspect of terminology (●), but did not 
mention aspects that would help illustrate its meaning. 
Multistructural responses (■) mentioned relevant aspects 
(●●●) of terminology and events that occur during a 

probability simulation. Relational responses (■) used the 
idea of metacognitive activity as an umbrella to explain 
how the various events that occur during a simulation 
can help develop children’s thinking. This helped the 
responses progress beyond the multistructural level by 
explaining how relevant aspects (●●●) in multistructural 
responses complemented one another. No extended 
abstract responses (■) to the prompt were observed, but 
these might involve explaining how other pedagogical 
ideas, not specified explicitly in the writing prompt (○), 
might fit together with probability simulation to help form 
a coherent curricular approach to remedying children’s 
difficulties with random phenomena. For instance, an ex-
tended abstract response might describe the advantages 
and disadvantages of online applets or dynamic statistics 
software for carrying out simulations.

Use of Formative Assessment Information from 
SOLO Analysis

The SOLO analysis for the sample writing prompt in-
formed my approach to probability simulations with the 
class. To help more of the prospective teachers under-
stand the importance of metacognition within the context 
of using probability simulations during instruction, I 
began to more consistently ask them to predict the results 
of probability simulations in class before running them. 
Once the simulations had been run, they were encour-
aged to compare the results to their original predictions 
and discuss reasons for discrepancies or agreement 
between the two. Additionally, to help them begin to 
reason about how technology can be used in conjunction 
with probability simulations, I introduced applets from 
the National Library of Virtual Manipulatives (http://nlvm.
usu.edu/) and the freeware program Sampling Sim (http://
www.tc.umn.edu/~delma001/stat_tools/). For example, 
when we began to study the behavior of sampling dis-
tributions, I asked the class to predict the shape, center, 
and spread for sampling distributions as the sample size 
varied. They then tested their predictions using Sampling 
Sim. As they did so, some began to predict that larger 
sample sizes lead to sampling distributions that are more 
tightly clustered around the population parameter. They 
then tested their conjectures with Sampling Sim, which 
allowed them to quickly simulate the gathering of various-
sized random samples and then reconcile the results with 
their original predictions.

Effects on Prospective Teachers’ 
Learning
Using writing prompts in place of solely subject matter-
based homework problems was a substantive departure 
from conventional practices for undergraduate statis-
tics courses. Although some of the prompts contained 
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 problems to develop subject matter knowledge, many 
were also designed to build elements of pedagogical 
content knowledge. Curious to examine the extent of 
prospective teachers’ learning in a course where the 
primary homework tasks were writing prompts, I adminis-
tered two assessments at the beginning and at the end of 
the course. The first was a statistics test developed by the 
LMT project (G. Phelps, personal communication, June 
11, 2010). I used it to gain a sense of prospective teachers’ 
SKT development during the course. This was an early 
draft of the test, and did not have equated forms, but 
it did align very closely with the course learning goals. 
The second assessment was the Comprehensive Assess-
ment of Outcomes in a First Statistics Course (CAOS) test 
(delMas, Garfield, Ooms, & Chance, 2007). As the name 
implies, CAOS assesses the extent to which students 
develop conceptual understanding of ideas generally en-
countered in introductory college-level statistics courses. 

Although writing prompts were assessed using the SOLO 
taxonomy, the LMT and CAOS examinations provided 
better assessments of learning gains from the beginning to 
the end of the course. The SOLO analyses provided valu-
able snapshots of prospective teachers’ thinking at various 
points in time, but it was not feasible to track changes 
in SOLO levels across tasks because the sets of tasks 
all dealt with different statistical content. Hence, any 
changes in the level of response seem just as easily at-
tributable to the difficulty of the content as they would be 
to general cognitive gains in SKT. SOLO analyses could, 
however, be used to track learning gains if similar sets of 
tasks were administered periodically throughout a course.

Results from the LMT and CAOS tests both indicated 
that prospective teachers made notable progress toward 
learning goals for the SKT course. On the LMT test, the 
mean difference between pretest and posttest scores was 
statistically significant (N = 22, M = 0.64, SD = 0.52), t 
(21) = 5.79, p < .0001, 95% CI [0.41, 0.87]. The mean 
change from pre- to posttest of 0.64 IRT units indicated 
that participants on average improved their SKT scores 
by 0.64 standard deviations between pretest and posttest 
administrations. On the CAOS pre-test, the mean percent 
correct was 36.54%, and on the posttest it was 51.54%. 
The mean difference between CAOS pretest and posttest 
scores was statistically significant (N = 21, M = 15, SD = 
12.01), t (20) = 5.72, p < .0001, 95% CI [9.53, 20.47]. In 
comparison, the typical score on the CAOS pre-test for a 
national sample of students from undergraduate introduc-
tory statistics courses was 44.9%, and the typical post-
test score was 54% (delMas, Garfield, Ooms, & Chance, 
2007). Although the mean percent correct for the SKT 
class was slightly below 54%, the gain from pre-to-post 
was slightly greater. 

The CAOS test results indicated that students in the 
SKT course left with approximately the same degree of 
conceptual understanding of statistics subject matter as 
students enrolled in conventional introductory college 
statistics courses. This was an important finding, since the 
SKT course had replaced a general education statistics 
course for the prospective teachers involved. Additionally, 
the LMT test results indicated that they gained statistical 
knowledge specifically required for teaching, which was 
not targeted in the general education course that used 
to be required. The observed gains in conceptual under-
standing of introductory college statistics and SKT helped 
justify continuing to steer prospective teachers into the 
SKT course. While it is not possible to attribute the ob-
served learning gains directly to the writing prompts, the 
scores provide evidence that the writing prompts can play 
a prominent role in courses that build both subject matter 
knowledge and pedagogical content knowledge.

Conclusion

The ideas for designing and assessing writing prompts that 
have been discussed in this article can be used in a va-
riety of content courses for teachers. Although statistical 
knowledge for teaching was the focus of this article, the 
ideas offered can be applied more broadly. Specifically, 
as teacher educators find articles that address elements 
of subject matter knowledge and pedagogical content 
knowledge, they can design prompts using the reading 
comprehension question types (Day & Park, 2005) that 
have been described and use the SOLO framework (Biggs 
& Collis, 1982; Biggs & Tang, 2007) to assess the levels of 
responses they elicit. The sample prompts described in 
this article, and included in the online supplement, pro-
vide examples of the types of items that may ultimately 
be designed and used. Readers are encouraged to experi-
ment with the sample prompts and to design their own 
to elicit various aspects of SKT and MKT. Continuous 
design, trial, revision, and dissemination of prompts can 
contribute to a collective set of items to be used by those 
in the mathematics teacher education community for the 
purpose of supporting content courses for teachers. The 
development of tools to support such courses is particu-
larly vital in light of calls to intertwine the development 
of subject matter knowledge and pedagogical content 
knowledge in the mathematical preparation of teachers 
(Kilpatrick, Swafford, & Findell, 2001; Conference Board 
of the Mathematical Sciences, in press). 

I hope that this manuscript will contribute to teacher 
educators’ discourse about SKT and MKT. Specifically, I 
hope it will spark discussions about the roles that writing 
prompts, generative reading, and the SOLO taxonomy 
can play in the process of developing and assessing 
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prospective teachers’ subject matter knowledge and 
 pedagogical content knowledge. In addition to contribut-
ing to the practice of teacher education, such discussions 
can help refine theories of the components of SKT and 
MKT and how they may be assessed. The LMT frame-
work and SOLO are useful tools to inform teacher educa-
tors’ discussions, but they, like all models, can always 
be improved. The writing prompts discussed above and 
the method for producing them provide catalysts for 
further refinement of SKT and MKT theory and methods 
for assessment. Relevant questions for further discus-
sion include: What other components of SKT and MKT 
might exist? How might the components interact with one 
another? What percentage of writing prompt responses fit 
well with one of the categories of the SOLO taxonomy? 
What other formative and summative assessment tech-
niques might profitably be used in conjunction with SKT 
and MKT writing prompts? By examining such questions, 
we can develop increasingly effective approaches for 
fostering SKT and MKT and assessing their development.

references
Aspinwall, L., & Shaw, K. (2000). Enriching students’ 

mathematical intuitions with probability games 
and tree diagrams. Mathematics Teaching in the 
Middle School, 6, 214–220. 

Bakker, A., Biehler, R., & Konold, C. (2005). Should young 
students learn about box plots? In G. Burrill & M. 
Camden (Eds.), Curricular Development in Statistics 
Education: International Association for Statistical 
Education (IASE) Roundtable (pp. 163–173). 
Voorburg, the Netherlands: International Statistical 
Institute.

Ben-Zvi, D., Gil, E., & Apel, N. (2007). What is hidden 
beyond the data? Helping young students to reason 
and argue about some wider universe. In D. 
Pratt & J. Ainley (Eds.), Reasoning About Informal 
Inferential Statistical Reasoning: A Collection of 
Current Research Studies. Proceedings of the 
Fifth International Research Forum on Statistical 
Reasoning, Thinking, and Literacy (SRTL-5), 
University of Warwick, UK.

Biggs, J. B., & Collis, K. F. (1982). Evaluating the quality 
of learning: The SOLO taxonomy. New York: 
Academic.

Biggs, J., & Tang, C. (2007). Teaching for quality learning at 
university (3rd ed.). Buckingham, UK: SRHE and 
Open University Press.

Borasi, R., Siegel, M., Fonzi, J., & Smith, C. F. (1998). Using 
transactional reading strategies to support sense-
making and discussion in mathematics classrooms: 
An exploratory study. Journal for Research in 
Mathematics Education, 29(3), 275–305.

Burgess, T. A. (2011). Teacher knowledge of and for 

statistical investigations. In C. Batañero, G. Burrill, 
& C. Reading (Eds.), Teaching statistics in school 
mathematics—Challenges for teaching and 
teacher education (pp. 259–270). Dordrecht, the 
Netherlands: Springer.

Burns, M. (2000). About teaching mathematics: A K–8 
resource (2nd ed.). Sausalito, CA: Math Solutions 
Publications.

Conference Board of the Mathematical Sciences. (in press). 
The Mathematical Education of Teachers II. 
Providence, RI: American Mathematical Society.

Day, R. R., & Park, J. (2005). Developing reading 
comprehension questions. Reading in a Foreign 
Language, 17(1), 60–73.

delMas, R., Garfield, J., Ooms, A., & Chance, B. (2007). 
Assessing students’ conceptual understanding 
after a first course in statistics. Statistics Education 
Research Journal, 6(2), 28–53. Retrieved from 
http://www.stat.auckland.ac.nz/~iase/serj/
SERJ6%282%29_delMas.pdf

Finzer, W. (2002). Fathom [software]. Emeryville, CA: Key 
Curriculum Press.

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., 
Perry, M., & Scheaffer, R. (2007). Guidelines for 
assessment and instruction in statistics education 
(GAISE) report: A pre-K–12 curriculum framework. 
Alexandria, VA: American Statistical Association.

Franklin, C.A., & Mewborn, D.S. (2008). Statistics in the 
elementary grades: Exploring distributions of data. 
Teaching Children Mathematics, 15, 10–16.

Garfield, J. B., & Ben-Zvi, D. (2008). Developing students’ 
statistical reasoning: Connecting research and 
teaching practice. New York: Springer.

Groth, R. E. (2007). Toward a conceptualization of statistical 
knowledge for teaching. Journal for Research in 
Mathematics Education, 38, 427–437.

Groth, R. E., & Bergner, J. A. (2006). Preservice elementary 
teachers’ conceptual and procedural knowledge of 
mean, median, and mode. Mathematical Thinking 
and Learning, 8, 37–63.

Harper, S. R. (2004). Students’ interpretations of misleading 
graphs. Mathematics Teaching in the Middle 
School, 9, 340–343.

Hiebert, J., & Lefevre, P. (1986). Conceptual and procedural 
knowledge in mathematics: An introductory 
analysis. In J. Hiebert (Ed.), Conceptual and 
procedural knowledge: The case of mathematics 
(pp. 1–28). Hillsdale, NJ: Erlbaum. 

Hill, H. C., Ball, D. L., & Schilling, S. G. (2008). Unpacking 
pedagogical content knowledge: Conceptualizing 
and measuring teachers’ topic-specific knowledge 
of students. Journal for Research in Mathematics 
Education, 39, 372–400.



Randall E. Groth 35
Jacobs, V. R. (1999). How do students think about statistical 

sampling before instruction? Mathematics Teaching 
in the Middle School, 5, 240–246, 263.

Jones, G. A., Thornton, C. A., Langrall, C. W., Mooney, 
E. S., Perry, B., & Putt, I. J. (2000). A framework 
for characterizing children’s statistical thinking. 
Mathematical Thinking and Learning, 2, 269–307.

Kader, G., & Mamer, J. (2008). Statistics in the middle 
grades: Understanding center and spread. 
Mathematics Teaching in the Middle School, 14, 
38–43.

Kilpatrick, J., Swafford, J., & Findell, B. (Eds.). (2001). 
Adding it up: Helping children learn mathematics. 
Washington, DC: National Academy Press.

Konold, C., & Miller, C. D. (2005). TinkerPlots: Dynamic 
data exploration (Version 1.0) [Computer software]. 
Emeryville, CA: Key Curriculum Press.

Konold, C., Robinson, A., Khalil, K., Pollatsek, A., Well, 
A., Wing, R., & Mayr, S. (2002). Students’ use of 
modal clumps to summarize data. In B. Phillips 
(Ed.), Developing a Statistically Literate Society: 
Proceedings of the Sixth International Conference 
on Teaching Statistics, Cape Town, South 
Africa. Voorburg, the Netherlands: International 
Statistical Institute. Retrieved January 26, 2012 
from http://www.stat.auckland.ac.nz/~iase/
publications/1/8b2_kono.pdf

Lappan, G., Fey, J. T., Fitzgerald, W. M., Friel, S. N., & 
Philips, E. D. (2004). Data about us. New York: 
Pearson.

Leavy, A. M., Friel, S. N., & Mamer, J. D. (2009). It’s a fird! 
Can you compute a median of categorical data? 
Mathematics Teaching in the Middle School, 14, 
344–351.

Lloyd, G. M., & Behm, S. L. (2005). Preservice elementary 
teachers’ analysis of mathematics instructional 
materials. Action in Teacher Education, 26(4), 
48–62.

McClain, K. (1999). Reflecting on students’ understanding of 
data. Mathematics Teaching in the Middle School, 
4, 374–380.

McMillen, S. (2008). Predictions and probability. Teaching 
Children Mathematics, 14, 454–463.

Mooney, E. S. (2002). A framework for characterizing 
middle school students’ statistical thinking. 
Mathematical Thinking and Learning, 4, 23–63.

Moore, D. S. (1988). Should mathematicians teach statistics? 
College Mathematics Journal, 19, 3–7. 

Morita, J. G. (1999). Capture and recapture your students’ 
interest in statistics. Mathematics Teaching in the 
Middle School, 4, 412–418.

National Council of Teachers of Mathematics (NCTM). 
(2000). Principles and standards for school 
mathematics. Reston, VA: Author.

Pegg, J., & Davey, G. (1998). Interpreting student 
understanding of geometry: A synthesis of 
two models. In R. Lehrer & D. Chazan (Eds.), 
Designing learning environments for developing 
understanding of geometry and space (pp. 109–
135). Mahwah, NJ: Lawrence Erlbaum Associates.

Perkowski, D. A., & Perkowski, M. (2007). Data and 
probability connections: Mathematics for middle 
school teachers. Upper Saddle River, NJ: Pearson.

Pugalee, D. K. (2004). A comparison of verbal and 
written descriptions of students’ problem solving 
processes. Educational Studies in Mathematics, 55, 
27–47. 

Rossman, A., & Chance, B. (2008). Workshop statistics: 
Discovery with data (3rd ed.). New York: John 
Wiley & Sons. Emeryville, CA: Key College 
Publishing.

Rossman, A., Chance, B., & Medina, E. (2006). Some 
important considerations between statistics and 
mathematics and why teachers should care. In G.F. 
Burrill & P.C. Elliot (Eds.), Thinking and reasoning 
with data and chance (Sixty-eighth Annual 
Yearbook of the National Council of Teachers of 
Mathematics, pp. 323–333). Reston, VA: NCTM.

Russell, S. J., Schifter, D., Bastable, V., Konold, C., & 
Higgins, T. L. (2002). Developing mathematical 
ideas: Working with data. Parsippany, NJ: Dale 
Seymour Publications.

Scheaffer, R.L., Gnanadesikan, M., Watkins, A., & Witmer, 
J.A. (1996). Activity-based statistics. New York: 
Springer.

Senk, S. L., & Thompson, D. R. (Eds.) (2003). Standards-
based school mathematics curricula: What are 
they? What do students learn? Mahwah, NJ: 
Erlbaum.

Shulman, L. S. (1987). Knowledge and teaching: 
Foundations of the new reform. Harvard 
Educational Review, 57, 1–22.

Smith, M. S., & Stein, M. K. (1998). Selecting and creating 
mathematical tasks: From research to practice. 
Mathematics Teaching in the Middle School, 3, 
344–350.

Tarr, J. (2002). Providing opportunities to learn probability 
concepts. Teaching Children Mathematics, 8, 
482–487.

Vygotsky, L. S. (1987). Thinking and speech. In R.W. Rieber 
and A.S. Carton (Eds.), The collected works of L. S. 
Vygotsky (pp. 39–243). New York: Plenum Press.



36 SKT Writing Prompts 

Watson, J. M. (2008). Exploring beginning inference with 
novice grade 7 students. Statistics Education 
Research Journal, 7(2), 59–82. Retrieved April 18, 
2012 from http://www.stat.auckland.ac.nz/~iase/
serj/SERJ7%282%29_Watson.pdf 

Watson, J. M., Fitzallen, N. E., Wilson, K. G., & Creed, 
J. F. (2008). The representational value of hats. 
Mathematics Teaching in the Middle School, 14, 
4–10.

Watson, J. M., & Moritz, J. B. (2000). Developing concepts 
of sampling. Journal for Research in Mathematics 
Education, 31, 44–70.

Watson, J. M., & Shaughnessy, J. M. (2004). Proportional 
reasoning: Lessons from research in data and 
chance. Mathematics Teaching in the Middle 
School, 10, 104–109.

Zawojewski, J. S., & Shaughnessy, J. M. (2000). Mean and 
median: Are they really so easy? Mathematics 
Teaching in the Middle School, 5, 436–440.

author

Randall E. Groth, Teacher Education and Technology 
Center, Room 379R, 1101 Camden Avenue, Salisbury, 
MD 21801; regroth@salisbury.edu 



37

The Role of Writing Prompts 
in a Statistical Knowledge for 
Teaching Course
Randall E. Groth

Assignment 1

Article to read: Jacobs, V. R. (1999). How do students 
think about statistical sampling before instruction? Math-
ematics Teaching in the Middle School, 5, 240-246, 263. 

Questions: 

1.  Write three of your own original scenarios about 
sampling. The first should involve random sampling, 
the second should involve restricted sampling, and 
the third should involve self-selected sampling. Ex-
plain why each scenario fits each category. 

2.  On p. 244, the author stated, “Students seemed to 
focus on the possibility of extreme outcomes without 
realizing that the probability of their occurrence was 
low.” What does this mean? Provide your own ex-
ample of a situation where a student may exhibit this 
behavior. 

3.  What does “fairness” mean, in the statistical sense? 
What is a common student conception of “fairness” 
that differs from the statistical sense? Give an example 
of a situation a young student with a nonstatistical no-
tion of fairness may consider to be unfair. 

4.  Why do some students believe that a survey is not 
useful if survey respondents do not all answer the 
same way? 

5.  In 200-250 words, describe a general strategy you 
would use for teaching young students about survey 
sampling and how you would assess their understand-
ing. Then provide a rationale for your general strategy. 

Assignment 2

Article to read: Franklin, C. A., & Mewborn, D. S. (2008). 
Statistics in the elementary grades: Exploring distributions 
of data. Teaching Children Mathematics, 15, 10-16. 

Questions:
1.  Explain the difference between categorical and quan-

titative data. Give your own example of a statistical 
question that young students could investigate involv-
ing categorical data. Also give your own example of a 
statistical question that young students could investi-
gate involving quantitative data. 

2.  In the second column on p. 12, the authors provided 
a bulleted list of five extension questions for the shoe 
activity. Write two of your own extension questions, 
and explain why they should be added to the list. 

3.  On p. 13, the authors stated, “it is inappropriate to ask 
children to determine the mean of a set of categorical 
data.” Why is it inappropriate? In your own words, 
explain how Snap Cubes® can be used to determine 
the arithmetic mean of a set of quantitative data. 

4.  On pp. 14-15, a bulleted list of questions is given 
that teachers can ask students when interpreting the 
results of the soccer investigation. Write two of your 
own questions to add to the list, and explain why they 
should be added. 

Assignment 3

Article to read: Leavy, A. M., Friel, S. N., & Mamer, J. D. 
(2009). It’s a fird! Can you compute a median of categori-
cal data? Mathematics Teaching in the Middle School, 14, 
344-351. 

Questions: 
1.  Provide your own example of a data set for which the 

median cannot be determined. Then provide your 
own example of a data set for which the median can 
be determined. Explain your thinking. 

2.  How can the median of a data set be determined us-
ing a paper strip marked with square grids? Give two 
of your own examples of data sets that would help 
illustrate the approach for young students, and show 
how the model applies to your examples. 

3.  See problem 1.4 in Figure 3. Identify one question 
that cannot be answered by using the data from the 
graphs and tables the students created. Explain why 
the question cannot be answered and tell what ad-
ditional information you would need to answer the 
question. 

SUPPLEMENT
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4.  Describe two types of student errors that occur when 
working with nominal categorical data: computing 
a numerical value for the median and computing a 
categorical median. Illustrate how the two errors can 
occur using a data set of your own. 

5.  In 200-250 words, describe a general strategy you 
would use for teaching young students that you can-
not find the median of categorical data and how you 
would assess their understanding. Then provide a 
rationale for your general strategy. 

Assignment 4

Article to read: McClain, K. (1999). Reflecting on stu-
dents’ understanding of data. Mathematics Teaching in 
the Middle School, 4, 374-380. 

Questions: 
1.  On p. 374, the author asked, “Do students first need 

to know how to construct various types of graphs 
before they can engage in an analysis of data, or can 
they learn how to construct various types of graphs 
by engaging in data analysis?” Write a response to 
the author’s question. Explain how your response 
compares to the position taken by the author of the 
article. 

2.  On p. 375, the author stated, “My assessment of their 
(the students’) performance would not be based solely 
on whether they made a histogram and made it cor-
rectly but would focus more on how they reasoned 
about organizing and representing the data.” Do you 
agree with this decision? Why or why not? 

3.  On p. 377, the author stated, “I was not clear whether 
the students were making a modified histogram or 
simply grouping the data points into categories that 
they named with numeric intervals.” What is the dif-
ference between the two activities? 

4.  Examine the student graphs shown in Figures 2, 3, 
and 4c. Discuss the strengths and weaknesses of each 
one. 

5.  On p. 380, the author stated, “As we deliberated, we 
decided to find situations in which the two data sets 
had very similar means even though the individual 
data points in one of the sets varied greatly.” Invent 
two data sets that are very different but have simi-
lar means. Use a context for the data that would be 
engaging for young students (similar to the battery life 
example on p. 380). 

Assignment 5

Article to read: Harper, S. R. (2004). Students’ interpreta-
tions of misleading graphs. Mathematics Teaching in the 
Middle School, 9, 340-343. 

Questions: 
1.  Respond to the NAEP test items shown in Figure 1 in 

your own words. 

2.  Respond to the NAEP test items shown in Figure 2 in 
your own words. 

3.  Respond to the NAEP test items shown in Figure 3 in 
your own words. 

4.  Invent a set of data that would be interesting for 
young students to analyze. Construct two correct 
graphs for the data. One of the graphs should be mis-
leading. Explain why one graph is misleading and the 
other is not. 

5.  Drawing upon the sample student responses reported 
at the end of the article, describe three major types 
of difficulties students may have with interpreting 
misleading graphs. 

Assignment 6

Article to read: Zawojewski, J. S., & Shaughnessy, J. M. 
(2000). Mean and median: Are they really so easy? Math-
ematics Teaching in the Middle School, 5, 436-440. 

Questions: 
1.  Write a response to item 1 in Figure 1. Explain your 

reasoning completely. 

2.  Write a response to item 2 in Figure 1. Explain your 
reasoning completely. 

3.  Write a response to item 3 in Figure 1. Explain your 
reasoning completely. 

4.  On p. 438, the authors commented in regard to item 
3, “This type of item assesses students’ conceptual 
understanding of mean.” Explain what the authors 
may mean by “conceptual understanding.” How is it 
different from other types of understanding? 

5.  Explain why some students believe the mean is 
always a better indicator of typical value than the 
median. How might you convince these students that 
the median is more appropriate in some cases? 



Randall E. Groth 39

Assignment 7

Article to read: Kader, G., & Mamer, J. (2008). Statistics 
in the middle grades: Understanding center and spread. 
Mathematics Teaching in the Middle School, 14, 38-43. 

Questions: 
1.  In your own words, and drawing upon the ideas in 

the article, explain why histograms and box plots are 
more challenging to use and interpret than line plots, 
dot plots, and picture graphs. 

2.  Construct two different sets of data that have the 
same mean. The data sets should have different num-
bers of values. Compute the SAD and MAD for each 
set of data. Show your work. Explain what the SAD 
and MAD tell you about the sets of data. 

3.  How is the MAD similar to the standard deviation? 
How is it different? How might understanding the 
MAD help students prepare to study the standard 
deviation? 

4.  Write your own responses to each of the questions 
shown in Table 1 on p. 41. Explain your reasoning. 

5.  Write your own responses to each of the questions 
shown in Table 2 on p. 42. Explain your reasoning. 

Assignment 8

Article to read: Watson, J. M. (2008). The representa-
tional value of hats. Mathematics Teaching in the Middle 
School, 14, 4-10. 

Questions: 
1.  Beyond generating hat plots, how can the software 

program TinkerPlots® help students learn statistics? 

2.  How are hat plots similar to box-and-whisker plots? 
How are they different? 

3.  Why is it desirable to have students work with hat 
plots before working with box-and-whisker plots? 

4.  How can hat plots help students make the transition 
from focusing on individual data values to focusing on 
group characteristics? 

5.  Invent a data set that would be interesting for young 
students to analyze. Construct a dot plot, a hat plot, 
and a box-and-whisker plot for the data. Describe the 
conclusions one can draw about the data from each 
representation. 

Assignment 9

Article to read: McMillen, S. (2008). Predictions and 
probability. Teaching Children Mathematics, 14, 454-463. 

Questions: 
1.  Explain the difference between experimental and 

theoretical probability in your own words. 

2.  Explain why experimental probabilities do not always 
match the theoretical probabilities. 

3.  Which cards in Figure 3 (p. 459) involve theoretical 
probability? Which cards in Figure 3 involve experi-
mental probability? Justify your answers. 

4.  Explain how technology can be useful when teaching 
the distinction between theoretical and experimental 
probability. 

5.  Examine the worksheets at the end of the article for 
activities 1 and 2. Describe at least one modification 
you would make to the worksheets in order to help 
improve students’ learning experience. Explain why 
you made the modification. 

Assignment 10

Article to read: Tarr, J. (2002). Providing opportunities to 
learn probability concepts. Teaching Children Mathemat-
ics, 8, 482-487. 

Questions: 
1.  What is the difference between estimating the rela-

tive likelihood of events and quantifying likelihood 
numerically? Which of the two should elementary 
school children do first? Why? 

2.  Write a problem or scenario you would share with 
young students to help them understand the idea 
that the sum of the probabilities of all sample space 
outcomes is 1 (or 100%). Explain how the problem or 
scenario would help them understand this idea. 

3.  Explain how simulations of random phenomena can 
help students develop correct intuitions about prob-
ability. 

4.  Describe an activity that could help students under-
stand the idea, “that, for a given event, the experi-
mental probability (through repeated trials) is more 
likely to approximate the theoretical (actual) probabil-
ity as the number of trials increases” (p. 486). 
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5.  Is the beanbag game described in the “Probability 
and Area” section of the article (p. 486 and Figure 
6 on p. 487) fair? Justify your response. Is taking an 
equal number of turns an essential requirement for 
the game to be fair? Why or why not? 

Assignment 11

Article to read: Aspinwall, L., & Shaw, K. (2000). Enrich-
ing students’ mathematical intuitions with probability 
games and tree diagrams. Mathematics Teaching in the 
Middle School, 6, 214-220. 

Questions: 
1.  Explain how the tree diagram in Figure 2 shows that 

“odd it out” is a fair game. 

2.  Describe how Bill, Clara, Denise, and Ahmed differed 
in their intuitions about activity 3 (in Figure 3) before 
doing the activity. 

3.  Explain why activity 6 (in Figure 8) is not a fair game. 

4.  Explain how tree diagrams can help students refine 
their intuitive ideas about probabilistic situations. 
Provide at least one specific example from the article 
to support your explanation. 

5.  Provide your own example of a probabilistic situation 
that can be analyzed by using tree diagrams. Explain 
how you would use the situation in a classroom set-
ting to teach students. 

Assignment 12

Article to read: Watson, J. M., & Shaughnessy, J. M. 
(2004). Proportional reasoning: Lessons from research in 
data and chance. Mathematics Teaching in the Middle 
School, 10, 104-109. 

Questions: 
1.  Write your own responses to each of the four tasks 

shown in Figure 1 (and described on p. 105). Explain 
your reasoning. 

2.  Describe at least two different reasoning patterns 
students may make when comparing unequal-size 
groups. Discuss the strengths and weaknesses of each 
reasoning pattern. 

3.  Provide a response to each part of the task shown in 
Figure 2. 

4.  Describe three types of strategies you can expect 
students to use in answering the sampling task shown 
in Figure 2. 

5.  Add one of your own follow-up questions to the list in 
the first column of p. 109. Explain how your follow-up 
question would help enhance students’ learning. 

Assignment 13

Article to read: Morita, J. G. (1999). Capture and re-
capture your students’ interest in statistics. Mathematics 
Teaching in the Middle School, 4, 412-418. 

Questions: 
1.  In your own words, explain how the “capture-recap-

ture” method of sampling works. Are samples pro-
duced using this method likely to provide reasonable 
estimates? Why or why not? 

2.  Why did Eric, Paloma, and Kenji each have different 
estimates for the number of fish in the population 
of Lake Amanda? How much variability in student 
estimates do you think you would have if you had 25 
students in your class? Why? 

3.  In your own words, describe the different methods 
students used in combining their individual samples 
during the capture-recapture activity. Which method 
do you find the most appealing? Why? 

4.  Describe a method for helping students get a feel 
for sampling variability within the context of the 
sampling-resampling activity. Explain why the method 
is likely to help students understand the nature of 
sampling variability. 

5.  On p. 417, the author claimed, “They (the students) 
have formulated on their own this fundamental idea 
in statistical inference: larger samples tend to yield 
less sampling variability and therefore more accu-
racy.” Do you agree with this claim? Why or why not? 
What evidence is provided in the article to support 
the claim? 

6.  At the end of the article, the author stated, “Now 
what or who else can we tag? The possibilities are 
endless.” Write your own example of a situation 
where you could lead students to use the capture-
recapture method to estimate the size of a population. 
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We draw on research into the durability of 
sociomathematical and professional norms 
to make a case for attending to productive 
norms in teacher education experiences. 
We illustrate that productive norms have 
the potential to support teacher learning by 
(a) improving teachers’ own mathematical 
understanding, particularly of specialized 
content knowledge; (b) supporting teachers 
to productively view and analyze classroom 
practice; (c) providing teachers an expe-
riential basis for thinking about fostering 
productive norms in their classrooms; and 
(d) helping teachers to develop professional 
dispositions that support continued learning 
from practice. This work points to the impor-
tance of intentionally considering the norms 
cultivated in teacher education experiences, 
assessing their productivity, and strategically 
focusing on those that provide the best sup-
port for teacher learning.

Key words: Norms; Sociomathematical norms; Profes-
sional norms; Teacher learning; Teacher education

No teacher education experience, no matter how well 
designed or thorough, will be sufficient to prepare teach-
ers for all that they will face in their future classrooms 
(Feiman-Nemser, 2001; Hiebert, Morris, Berk, & Jansen, 
2007). This makes it critical that the limited time teacher 
educators have with teachers—particularly in methods 
classes—be used to lay a foundation that can be built 
on as they engage in the practice of teaching. One way 
to help do this is to intentionally cultivate patterns of 
behavior that support both short- and long-term teacher 
learning.

Knowing that the nature of a classroom’s norms has been 
shown to significantly affect the learning that takes place 
within the classroom (e.g., Cobb, Wood, Yackel, & Mc-
Neal, 1992; Kazemi & Stipek, 2001), many mathematics 
teacher educators intentionally cultivate norms that create 
the kind of environment they feel will support teacher 

learning in their classrooms. Often, however, these norms 
focus on engaging teachers in the learning rather than on 
supporting the learning itself. An example of this would 
be focusing on the norm of having teachers explain their 
mathematical thinking about a given task, without being 
intentional about developing norms for using that thinking 
to support understanding of the mathematical concept(s) 
underlying the task. The result is a high level of participa-
tion that meets an important process goal, but may fall 
short of meeting important content goals (see, for exam-
ple, Stockero & Van Zoest, 2011). In this sense, norms are 
often an underutilized teacher education tool.

Our work suggests that some norms have the potential to 
support teacher learning beyond that which takes place 
in a particular course or even an entire teacher educa-
tion program (Van Zoest, Stockero, & Taylor, 2011). We 
draw on our research into the durability of professional 
and sociomathematical norms intentionally fostered in an 
initial mathematics methods course to make a case for 
the long-term benefits of attending to productive norms in 
teacher education experiences. In doing so, we highlight 
four ways in which productive norms have the potential 
to support teacher learning. We conclude with implica-
tions for teacher education and questions for future work.

Defining Norms

In classrooms, norms are regular patterns of behavior that 
affect the nature of the learning that occurs within them. 
In some cases, teachers (in our work, teacher educators) 
may intentionally foster specific patterns of behavior, 
but norms exist regardless of whether the teachers and 
students are aware of them (Bauersfeld, Krummheuer, & 
Voigt, 1988; Voigt, 1998).

Yackel and Cobb (1996) made a key distinction between 
social and sociomathematical norms. Social norms are 
regular patterns of behavior that can apply to any subject 
area and, thus, are not unique to mathematics classrooms, 
while sociomathematical norms are specific to mathemat-
ical activity. Seago, Mumme, and Branca (2004) intro-
duced the term professional norms to indicate standard 
patterns of behavior unique to learning about teaching. 

These different types of norms are often related. For 
example, the social norm of supporting one’s answer with 
an explanation creates the need for the sociomathemati-
cal norm of what counts as a mathematical explanation 
and is related to the professional norm of backing up 
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claims about teaching and learning. Supporting one’s 
answer with an explanation is a social norm because it 
is not unique to a mathematics classroom; it could also 
be a norm for interacting in an English, science, or his-
tory class. What counts as a mathematical explanation 
is unique to mathematics, although the norm could look 
different in different classrooms. For example, in one 
classroom, saying what one did might suffice, while in 
another, the explanation might require providing math-
ematical justification for what one did. 

The majority of work with sociomathematical norms has 
been in the context of learning what Ball, Thames, and 
Phelps (2008) described in their Domains of Mathemati-
cal Knowledge for Teaching as common content knowl-
edge: “mathematical knowledge and skill used in settings 
other than teaching” (p. 399). Our work with teachers, 
however, also focuses on the development of special-
ized content knowledge: “mathematical knowledge and 
skill unique to teaching” (Ball et al., 2008, p. 400). Even 
though the level of the activity is different, we have found 
that the sociomathematical norms themselves are similar. 
For example, while the students’ focus would be on pro-
viding a mathematical explanation for their solution, the 
teacher’s focus might also include determining whether 
a student’s explanation is sufficient and mathematically 
accurate. 

Backing up claims about teaching and learning is a pro-
fessional norm because it is specialized to the work of 
learning about teaching. Similar to the sociomathematical 
norm what counts as a mathematical explanation, this 
professional norm also varies across learning contexts. In 
one teacher learning setting, it might include initial im-
pressions and simple reflections, while in another, teach-
ers might substantiate claims about teaching and learning 
using classroom-based evidence, including student work, 
dialog, and other artifacts of practice.

Research on norms in mathematics education has at 
its core the intent to develop inquiry-based classrooms 
that engage learners in worthwhile mathematics (e.g., 
National Council of Teachers of Mathematics [NCTM], 
2000). Thus, research has focused on how existing norms 
provide obstacles to this goal, what norms might sup-
port meeting the goal, and how these supportive norms 
can be developed in classrooms. In general, it has been 
established that intentionally fostering productive norms, 
particularly productive sociomathematical norms, can 
improve mathematics learning at any level—for example, 
elementary (Mottier Lopez & Allah, 2007), secondary 
(McClain, 2009), university (Stylianou & Blanton, 2002), 
teacher preparation (McNeal & Simon, 2000), and profes-
sional development (Clark, Moore, & Carlson, 2008). Of 
particular relevance to teacher education is the finding 

that an investment in developing these productive norms 
in methods courses can support teachers’ future learning 
(Van Zoest et al., 2011). Drawing on this growing body 
of research on norms, we use the adjective productive to 
distinguish norms that support student learning from other 
norms that may have no effect on learning (e.g., the stu-
dents always write in pencil) or may actually undermine it 
(e.g., the teacher does all the thinking during lessons). 

In this article, we provide more detailed examples of 
two productive norms—one sociomathematical and one 
professional—that we use to illustrate the ideas in the 
remainder of the paper. The examples are drawn from 
a study investigating the extent to which prospective 
teachers’ experiences and learning in an initial secondary 
school mathematics methods course have long-term ef-
fects on their professional practice (e.g., Van Zoest et al., 
2011). Before continuing, we give an overview of both the 
course and the study.

The Course

The initial methods course was the first of three courses 
devoted to the teaching of secondary school mathematics 
in an NCTM (2000) Standards-based teacher preparation 
program that focused on teaching mathematics for stu-
dent understanding. The first course focused on teaching 
at the middle school level, with an emphasis on analyzing 
and understanding student thinking and implementing 
instructional practices with small groups of students. The 
second course focused on using technology to support 
mathematics instruction, and the third focused on teach-
ing at the high school level, with an emphasis on unit 
planning and whole-class instruction. 

We approached both the development of the initial math-
ematics methods course and the research from a situated 
perspective (e.g., Borko et al., 2000). That is, we gener-
ated learning situations that were similar to those in which 
we intended the learning to be used, and we studied 
the way in which participants interacted in them. In the 
context of the initial methods course, we used the profes-
sional development curriculum Learning and Teaching 
Linear Functions (LTLF): Video Cases for Mathematics Pro-
fessional Development, 6-10 (Seago et al., 2004) to help 
prospective teachers learn to analyze student thinking 
and teacher decisions during classroom interactions, as 
well as the relationship between them. Each of the eight 
LTLF video modules began with the prospective teachers 
individually solving a mathematics problem, after which 
they shared and discussed their solution strategies as a 
group. The prospective teachers then viewed video clips 
of school students sharing their thinking about the same 
problem, and analyzed and discussed the student think-
ing and teacher actions seen in the video. This is similar 
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to the type of ongoing analysis in which teachers need 
to engage in order to make sense of and build on student 
thinking during instruction. In addition, the prospec-
tive teachers had an opportunity to “try out” the ideas 
they were learning with small groups of middle school 
students. They did so by planning for and implementing 
tasks from the LTLF modules, after which they reflected 
on students’ thinking and ways in which they as the 
teacher either supported or inhibited that thinking. More 
details about the structure and content of the course 
can be found in Van Zoest and Stockero (2008a, 2008b, 
2009) and Van Zoest, Stockero, and Edson (2010). 

In the discussions of the LTLF video cases and of the 
prospective teachers’ work with middle school students 
in the initial course, the instructors focused on cultivating 
professional and sociomathematical norms embedded 
in the LTLF curriculum (see Table 1). These norms were 
intended to support the development of professional skills 
and dispositions necessary for teachers to productively 
study practice with their colleagues. Although we were 
intentional about cultivating these norms, at the time 
of the study we used what Bernstein (2004) called an 
invisible pedagogy in that neither the norms themselves, 
nor the moves we made to cultivate them, were made 
explicit to the teachers.1 When the teachers shared their 
mathematical thinking, for example, we pushed them 
to provide a mathematical justification, rather than just 
report the procedure they had used, but did not explicitly 
discuss that we were cultivating justification as a desired 
pattern of behavior. Research on the learning outcomes 
of the course before and after incorporating the LTLF cur-

riculum (Stockero, 2008a; 2008b) documented, among 
other things, evidence of prospective teachers engaging in 
the norms embedded in the LTLF curriculum—norms that 
had not been evident among prospective teachers in the 
course prior to incorporating the curriculum.

The Study

The study looked at the long-term effects of teacher expe-
riences in the previously described initial methods course 
on their professional practice. The participants were 11 
prospective secondary school mathematics teachers (PTs) 
enrolled in the third methods course, and 16 beginning 
secondary school mathematics teachers (BTs) who were 
graduates of our program with fewer than four years of 
teaching experience. The PTs had been enrolled in the 
initial methods course in four different semesters, with 1 
to 4 enrolled in the course during any given semester; the 
BTs had been enrolled in five different semesters, with 2 
to 4 concurrently enrolled. Both authors taught and de-
signed the course, but approximately half of each partici-
pant group had taken it from other instructors. The other 
instructors were mentored by the first author, used the 
same curriculum, and cultivated the same norms. Includ-
ing both the PTs and BTs in the study enabled us to look 
at the extent to which documented learning outcomes 
persisted at different points in time.

To understand how the initial methods course activi-
ties may have supported long-term teacher learning, we 
separately engaged the PT and the BT groups in activities 
centered on the Counting Cubes Problem2 in Figure 1. 

1 As a result of what we have learned from our research program, we now make more explicit to teachers the specific norms that we are cul-

tivating in our work with them. This allows the productive norms that they are experiencing to become a topic of discussion, adding another 

layer of potential learning. By doing this, we are able to more fully take advantage of the spectrum of ways that norms can support teacher 

learning. 

2 The Counting Cubes Problem and the accompanying video are from the Turning to the Evidence project (see Seago & Goldsmith, 2005).

table 1 
Sociomathematical and Professional Norms in the LTLF Curriculum (Seago et al. 2004)

Sociomathematical norms Professional norms

Naming, labeling, distinguishing, and comparing mathematical 
ideas [naming and comparing]

Using mathematical explanations that consist of a mathematical 
argument, not simply a procedural description or summary  
[mathematical argument]

Raising questions that are related to the mathematics and push on 
understanding of one another’s mathematical reasoning  
[pushing understanding]

Listening to and making sense of or building on others’ 
ideas [listening]

Adopting a tentative stance toward practice—wondering 
versus certainty [tentative stance]

Backing up claims with evidence and providing reasoning 
[evidence]

Talking with respect yet engaging in critical analysis of 
teachers and students portrayed on the video
[critical yet respectful]
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These activities were similar to those they had participat-
ed in during the initial methods course. The PTs engaged 
in the activities during one 80-minute class session in 
their third (and final) methods course of the program; the 
BTs engaged in the activities during a 1-day professional 
development session held as part of the study. Neither of 
the two other mathematics teacher education courses in 
the program used video analysis as an instructional tool. 
Beyond the expectation in the second course that writ-
ten responses to mathematics problems were to include 
detailed explanations of their thinking and the expecta-
tion in the third methods course that prospective teachers 
listen to each other as they discuss ideas about teaching, 
there was no evidence to suggest that the norms culti-
vated through the LTLF curriculum (see Table 1) had been 
specifically addressed in the remainder of the mathemat-
ics teacher education courses. None of the BTs’ profes-
sional development experiences since graduation (as in-
dicated in an online survey) had used video case analysis 
as an instructional tool or been focused specifically on 
mathematics instruction. Thus, there was no evidence 
to suggest that any of the participants had engaged in 
discussions grounded in representations of practice where 
norms such as those in Table 1 were intentionally culti-
vated since they had taken their initial methods course. 

To gain insight into the participants’ individual thinking 
and their interactions in the group, data for the study in-
cluded both participants’ written work and recordings of 
the group discussions. The individual work included solu-
tions to the mathematical task, predictions about poten-
tial student solutions, and reflections on the video cases 
and on the session overall. The writing prompts and those 
given by the authors in their role as session facilitators 
were carefully worded and intentionally left open-ended 
to avoid directing the participants’ thinking or prompt-
ing them to consider norms. For example, participants 
were asked, “What did you notice in this segment about 
students’ thinking?” and “What did you notice about 

the teacher’s questions, contributions, actions, or role in 
instruction?” 

Transcripts of the recordings and the written work were 
coded independently by at least two researchers for 
examples and counterexamples of each targeted norm. 
Counterexamples were important to document because 
they allowed us to determine whether a behavior that vio-
lated a targeted norm was recognized and addressed by 
other group members. The research group met through-
out the process to verify that the coding was consistent 
and to resolve any differences. 

The researchers then looked across the coding to de-
termine what behaviors were normative for the group. 
This analysis involved developing multiple charts that 
cross-referenced examples and counterexamples for 
each targeted behavior by participant and data source. 
These charts were used to determine the number of 
participants who engaged in each target behavior and the 
number of behaviors in which each participant engaged. 
This allowed the researchers to draw conclusions about 
whether each behavior was normative for the group. 
Note that classifying a behavior as a group norm did not 
mean that everyone engaged in it all the time, but rather 
that it appeared to be the standard pattern of behavior to 
which the group aspired. Thus, a behavior was classified 
as normative if most participants engaged in the behavior 
when appropriate to do so, and when they did not, the 
behavior was corrected or addressed by another member 
of the group. 

For more details on the study methodology and results, 
including individual and group analyses of the PTs and 
BTs, see Van Zoest et al. (2011). Henceforth, the PTs and 
BTs collectively will be referred to as “the teachers.” In 
the following section, we provide examples of two pro-
ductive norms that will be used to illustrate the ideas in 
the remainder of the article.

Building 1 Building 2 Building 3

Study the sequence of cube buildings below. Assuming the sequence 
continues in the same way, how many cubes will there be in the 4th building? 
The 17th building? The nth building?

Figure 1. Counting Cubes Problem solved by the teachers in the 
study and the students in the video they watched.



Laura R. Van Zoest and Shari L. Stockero 45

Examples of Productive Norms
Mathematical Argument 

The sociomathematical norm of using mathematical 
explanations that consist of a mathematical argument, not 
simply a procedural description or summary [referred to 
as mathematical argument] (Seago et al., 2004) has been 
found to create rich opportunities for students to engage 
as mathematical thinkers (see Yackel, 2002, for an analy-
sis of argumentation across grade levels). Because proof 
and justification are central to the discipline of mathemat-
ics, this norm is particularly important to mathematics 
instruction that focuses on sense-making and developing 
a deep understanding of mathematical ideas—qualities 
advocated by the NCTM Standards (e.g., 2000) and the 
Common Core State Standards for Mathematics (CCSSI, 
2010). We turn now to examples from our study to ex-
plore what counts as a mathematical argument.

We begin by looking at some attempts to provide math-
ematical arguments for the Counting Cubes Problem 
(Figure 1) that were identified as counterexamples to the 
norm because they lacked adequate mathematical justi-
fication. For example, in response to the prompt “show 
how you arrived at your solution,” one teacher wrote 
about his expression, 5x – 4, “I counted the differences, 
noticed that the pattern increased by 5 each time, so I 
chose 5x. Then I used mathematical thinking to decide 
on what to add or subtract.” Similarly, another teacher 
explained the constant term negative four as follows:  
“[B]uilding One started with one. That means five less 
would have been negative four. Building Zero would have 
been negative four cubes. And that’s where the negative 
four comes from.” Both of these cases were identified as 
counterexamples to the mathematical argument norm be-
cause the responses simply summarized the process used 
to arrive at a final expression, rather than justifying why 
the final expression made sense mathematically.

The following two responses exhibit the norm, even 
though the explanations left room for improvement. To 
justify her expression, 5n – 4, a teacher wrote, “My solu-
tion accommodates my visualization of 5 blocks adding 
every [time] to the original cube: one cube spreading 
out at its arms.” While this teacher justified the first term 
of the expression, 5n, she made no attempt to explain 
the negative four, rendering her argument incomplete. 
Another teacher provided a stronger explanation of his 
expression for the total number of cubes in the nth figure, 
n + 4(n – 1): “The solution relates to the picture by the 
single n as the center [column] growth, the 4 is the num-
ber of [horizontal] legs and the (n – 1) is because each leg 
contains 1 less block than the figure number.” Although 
his language was not precise (i.e., he identified n as the 

center column growth, instead of the number of blocks in 
the center column), he justified each part of the expres-
sion in relation to the diagram provided with the task. It is 
this justification based on mathematical ideas that is the 
intent of the mathematical argument norm.

The above examples were in the realm of common con-
tent knowledge (Ball et al., 2008) because they involved 
the teachers solving a basic algebra task. We turn now 
to an example that draws on specialized content knowl-
edge. In this example teachers were asked to predict how 
students might think about the Counting Cubes Problem, 
drawing on specialized content knowledge because 
predicting others’ thinking is unique to teaching. In this 
context, argumentation was used when teachers went 
beyond predicting correct or incorrect expressions that 
students might produce, to thinking about how students 
might visualize and make sense of the task. One teacher, 
for example, engaged in the norm of mathematical argu-
ment when she described one way that students might 
think about the task that would result in an expression of 
5n – 4: 

So one of the ways that i thought of [how] a 
student might think of [the] arm length, if you 
think about the arm length as being the same as 
the building number, then [in the five arms] you 
would know you counted the middle block four 
times too many. So you could multiply the build-
ing number by five, but then subtract four.

In this case, the explicit language and description that the 
teacher used in sharing her prediction of student think-
ing went beyond a procedural account of what students 
might do, to a justification of why the students’ thinking 
would mathematically make sense. 

Evidence 

The professional norm of backing up claims with evi-
dence and providing reasoning [referred to as evidence] 
(Seago et al., 2004) supports teachers in making sense of 
classroom events and drawing conclusions that will help 
them improve their practice. Rather than responding to 
events based on emotions or initial reactions that may 
not accurately reflect the underlying issues, this norm 
helps teachers learn to use classroom-based evidence to 
make decisions that support the development of students’ 
mathematical understanding. In our study, this behavior 
was exhibited in two different ways: (a) when participants 
quoted the video transcript verbatim (or nearly so), and 
(b) when participants referenced specific line numbers 
from the transcript to support an argument. The transcript 
excerpt in Figure 2 illustrates these two ways. 
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Teacher 1 quoted the transcript verbatim (“It’s like the 
line, ‘Could someone think they can show that they’re 
the same or different?’”) to support her idea that the 
teacher’s goal was to help the class realize that two of 
the expressions, 5n – 4 and 1 + 5(n – 1), were the same, 
just written in a different way. Teacher 2 referenced a 
line number to further support the claim that the class-
room teacher was trying to get the students to compare 
different mathematical expressions. Teacher 3 used line 
numbers to provide a rationale for his thought that Zach 
was the one who articulated what each group’s expres-
sions were representing [one group used zero as their first 
building number and the other group used one, resulting 
in different expressions]. In this excerpt, the teachers were 
spontaneously engaging with the evidence norm by using 
quotes from the transcript and line numbers to support 
their thinking. Rather than making unfounded claims or 
providing an emotional reaction to an idea under discus-
sion, the teachers were engaged in analyzing and making 
sense of what was actually being said by the students and 
teacher in the video and what it meant in relation to stu-
dent understanding of the mathematics. It is this emphasis 
on attending to aspects of classroom interactions that can 

be used to learn from teaching that makes the evidence 
norm productive. 

In the following section, we use these two examples 
of productive norms—mathematical argument and 
evidence—to illustrate our findings about how cultivat-
ing productive norms in methods courses can support 
teacher learning (e.g., Van Zoest et al., 2011). 

Reasons for Cultivating Productive 
Norms
Many teacher educators are aware of norms and take 
steps to cultivate specific norms in their teacher educa-
tion contexts, yet fall short of taking full advantage of the 
different types of learning that norms might support. We 
have found that productive norms have the potential to 
support teacher learning by (a) improving teachers’ own 
mathematical understanding, particularly the specialized 
content knowledge needed for teaching; (b) supporting 
teachers in learning to view and analyze classroom prac-
tice in productive ways; (c) providing teachers an experi-
ential basis for thinking about fostering productive norms 

During the professional development session, the facilitator prompted the following 
discussion by noting a teacher’s observation that the students in the video were 
making sense of several different expressions and asking whether the participants 
had any observations regarding the connections being made among these expres-
sions.

Teacher 1:  Well, I think the teacher probably kicked it off when he said, “Are they the 
same or are they different?” . . . It’s like the line, “Could someone think they 
can show that they’re the same or different?” and Zach raises his hand. So, 
Zach is kind of prompted to go up to the board and say, “Hey, these are, you 
just have to use this distributive property thing.”

Teacher 2:  [The teacher] also asked, on line 32, um, to Cassie, “How is yours different 
or the same as what Arden and Yoshio did?” And that was one of the things 
I think [another teacher in her small group] pointed out, for me, maybe that 
Cassie didn’t quite understand it. [Cassie] said, “The only thing that was differ-
ent was that we subtracted and he added.’’ And that really didn’t—

Teacher 1:  That doesn’t make a lot of sense.

Teacher 2:  It doesn’t make a lot of sense. I mean, it makes it, maybe visually it makes 
sense, okay they have an adding sign and we have a subtracting sign, but it 
didn’t get to really the root of what’s different about it.

Teacher 3:  For me, I thought 46 through 49 was like a big moment, where [Zach’s] like,  
“I think what Arden is trying to do” and he nailed it, he said, “Arden’s calling it, 
they’re just renaming their variables.”

Figure 2. Excerpt from discussion during the professional development session.
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in their classrooms; and (d) helping teachers to develop 
professional dispositions that support continued learning 
from practice. 

In the following sections, we describe, and draw on our 
work to illustrate, each of these reasons for cultivating 
productive norms in teacher education. Although we dis-
cuss the reasons separately to highlight the contributions 
each makes, we see them as interacting with one another 
in supportive ways to achieve the goal of improved class-
room practice.

Improving Teachers’ Mathematical  
Understanding

The reason for cultivating productive norms most com-
monly discussed in the literature (e.g., Grant, Lo, & Flow-
ers, 2007; McNeal & Simon, 2000) is to help teachers 
improve their own mathematical understanding. Through 
cultivating specific sociomathematical norms, such as 
mathematical argument, learners are pushed to make 
sense of mathematical ideas they may previously have 
only superficially understood.

The examples in the mathematical argument section il-
lustrate how cultivating this norm helps teachers develop 
a deeper understanding of mathematics. When teachers 
engage in this norm, they go beyond knowing how to get 
an answer, to understanding why the answer makes sense 
mathematically and what mathematical ideas underlie 
the solution process. Consider, for example, the subtle 
difference between the statements, “I counted the differ-
ences, noticed that the pattern increased by 5 each time, 
so I chose 5x” and “My solution [5n – 4] accommodates 
my visualization of 5 blocks adding every [time] to the 
original cube: one cube spreading out at its arms.” The 
first statement asserts that the number of blocks increases 
by 5 each time, while the second explains why this is the 
case. The second, we argue, is more productive in that the 
ability to provide this kind of justification is an important 
component of the common content knowledge teachers 
are being asked to help their students develop, knowledge 
that goes beyond learning procedures to making sense of 
mathematics (e.g., CCSSI, 2010; NCTM, 2000).

In the methods course, we specifically engaged teach-
ers in doing mathematics and providing justification 
to prepare them to engage with the LTLF videos. We 
have found, however, that cultivating the mathematical 
argument norm also supports teachers in developing 
specialized content knowledge, as it helps them learn 
to recognize what student explanations might count as 
a mathematical argument. We see this in the following 
excerpt, in which a teacher discussed how students in 
the video were able to justify a part of a mathematical 

expression that the teachers themselves were unable to 
justify in their own discussion. 

i couldn’t figure out how to describe where you 
take away the four. ‘Cause i did it like [another 
teacher] did it, with the four—well, i did it in a 
table, but then i also saw the 4(n – 1) + n. i was 
like, “oh, well, that’s how you get your minus 
four.” But i like how this [student explanation] 
actually shows this is how you take away the four.

In this excerpt, the teacher provides some indication that 
hearing the student’s mathematical argument helped 
her better understand the mathematics in the task. If the 
mathematical argument norm had not been established, 
it is quite possible that this teacher would not have been 
uncomfortable with her own inability to provide an argu-
ment, and thus, would not have noted the significance of 
the argument the student provided. Thus, cultivating the 
mathematical argument norm appears to have supported 
this teacher’s own mathematical learning, as well as her 
ability to productively analyze practice—a second way 
that norms can support teacher learning.

Viewing and Analyzing Classroom Practice

The cultivation of productive sociomathematical and 
professional norms, such as mathematical argument and 
evidence, also supports teachers in learning to view and 
analyze classroom practice in productive ways, including 
making sense of student ideas, becoming more tentative 
about initial analyses, and seeking evidence to support 
conclusions about student learning (Stockero, 2008a, 
2008b). 

The sociomathematical norm of mathematical argu-
ment prepares teachers to both recognize when students 
provide a sound mathematical argument (as seen in the 
previous excerpt) and notice when a student’s explana-
tion may indicate an incomplete understanding of the 
mathematics. For instance, a teacher noted that two 
students in the video “had the slope figured out by their 
reasoning of the picture and found the intercept by fitting 
their line into their data. They didn’t have conceptual rea-
soning based on the picture [for] why you should subtract 
4.” In this case, the teacher recognized that the student 
seemed to have a sound understanding of slope, but may 
not have fully understood the meaning of the intercept in 
this problem context. This analysis of practice is markedly 
different from that in which teachers make judgments 
about students’ understanding based on whether or not 
their answer is correct.

Cultivating the mathematical argument norm in their 
initial methods course also supported the teachers in our 
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study in noticing whether the norm seemed to be in place 
in the classroom they analyzed in the video. For instance, 
one teacher noted: 

[i]t’s very important that students were expected 
to explain their work to their peers. this verbal 
explanation—added onto their written work—
makes misconceptions more obvious and also lets 
other students hear explanations [of] classmates. 
also, [it] shows if they really understand what 
they did. 

Here, the teacher noticed that the norm of mathemati-
cal argument was in place and articulated the value of 
this norm for its ability to support teaching and learning. 
This type of noticing has the potential to support teachers 
in continuing to learn from practice, as it helps them to 
make sense of how mathematical understanding can be 
supported in a classroom.

The professional norm of evidence also supported the 
teachers in productively viewing and analyzing practice. 
Recall that this norm was exhibited when teachers used 
video transcript line numbers or quotes to support their 
analysis of practice. This use of evidence can be seen 
throughout the excerpt in Figure 2. The resulting dialogue 
is very different from that which occurs when analyses 
of practice are based on recollection and emotion—
a common occurrence in teacher education settings. 
When the evidence norm is in place, teachers are able 
to engage in grounded analysis and reflection in which 
they learn to make sense of what is actually being said 
by the students or teacher. This helps teachers develop 
listening skills that are critical to student-centered instruc-
tion and learn to focus on key aspects of the interactions 
that matter to student learning—professional habits that 
lay a foundation for continued learning from practice. In 
addition, despite differences in the reflection time and 
type of evidence available, there is some indication that 
dispositions developed through teacher education experi-
ences focused on analyzing artifacts of practice transfer 
to classroom instruction (Sherin & van Es, 2009). Thus, 
cultivating the disposition of using evidence to ground 
analyses of practice holds promise for supporting teach-
ers in making evidence-based in-the-moment decisions 
during instruction. 

Fostering Productive Classroom Norms

Since many teachers have not learned mathematics in 
student-centered classrooms where ideas were shared 
and discussed, a third reason for cultivating norms is to 
provide teachers with an experiential basis for thinking 
about fostering productive norms in their own class-
rooms. Teachers’ ability to engage in and recognize the 

importance of productive norms for supporting math-
ematical learning is an important first step in cultivating 
these norms in their own mathematics classrooms.

Examples in previous sections illustrated how cultivating 
the sociomathematical norm of mathematical argument 
helped teachers consider what a sound mathematical 
argument might look like in a given instructional situa-
tion. However, even when the kind of argument a teacher 
might push for is clear, orchestrating productive discus-
sions in which students justify and make connections 
among their mathematical ideas is still challenging (e.g., 
Smith & Stein, 2011). The professional norm of evidence 
helps teachers analyze specific teacher moves that might 
foster norms that support productive mathematical dis-
cussion and argumentation in their own classroom. 

One teacher, for instance, noticed that “[the teacher] did 
not tell students, he asked students questions that focused 
them to specific aspects of the work (lines 32, 35, and 
61).” Although this teacher did not list specific questions, 
an analysis of the transcript reveals that he was noticing 
that the teacher in the video asked questions that includ-
ed: “How is yours different or the same as what Arden 
and Yoshio did?” (line 32), “Does that make it different? 
Is it the same, or what?” (line 35), and “Is your expression 
the same as any of the other ones? Because they all look 
different somehow. They have different numbers in them. 
Are any of them like equivalent or the same?” (line 61). 
In each case, the teacher noticed specific teacher moves 
that focused students on listening to and making sense 
of one another’s ideas and on comparing and making 
connections among them—all productive norms in a 
mathematics classroom focused on using student thinking 
to develop mathematical understanding. Analyzing how 
other teachers cultivate productive norms provides teach-
ers a foundation for developing ideas about cultivating 
such norms in their own classrooms.

Developing a Professional Disposition

A fourth reason for cultivating productive norms is to help 
teachers to develop professional dispositions that sup-
port continued learning from practice. This may be the 
most powerful way to think about taking full advantage 
of norms in teacher education, as it has the potential to 
promote learning that will lead to what Franke, Carpenter, 
Fennema, Ansell, and Behrend (1998) called self-sustain-
ing generative change—change that will provide a basis 
for continued growth long past the end of the teacher 
education experience.

The discussion in the previous sections provides evidence 
of ways that norms might support this continued teacher 
learning. The examples illustrate how cultivating produc-
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tive norms helped the teachers in our study develop 
a disposition of: (a) making sense of mathematics and 
expecting students to do the same; (b) carefully listen-
ing to and making sense of student ideas; (c) engaging in 
grounded analysis of practice; and (d) considering teacher 
moves that might allow them to cultivate productive norms 
in their own classrooms. These dispositions will allow them 
to continue to learn from practice, as together they form 
the foundation of a reflective practitioner—one who has 
the ability and propensity to engage in critical analysis and 
reflection, consider alternatives, and make connections 
between theory and practice.

We have some evidence that the teachers in our study 
who had classrooms of their own were, in fact, build-
ing on the dispositions developed in the methods course 
to support their instruction. For example, one teacher 
compared the mathematical arguments his own students 
might give to those given by the students in the video:

[in my classroom] i always like to hear somebody 
explain how to do it verbally, which i think was 
what really happened really well on the clip, 
because definitely being able to explain your rea-
soning and even teach somebody else how to do it 
is on a level of Bloom’s taxonomy that, you know, 
not only do they know it, but they can compre-
hend it and explain it as well.

In this explanation, the teacher articulates the value of 
having students provide mathematical justifications for 
their solutions, rather than simply describing the pro-
cedures they used. This suggests that he was attempt-
ing to develop the mathematical argument norm in his 
own classroom. In general, the norm of mathematical 
argument supported the development of a professional 
disposition that led teachers to expect a mathematical 
justification for ideas. That is, they were not satisfied with 
students simply replicating what was said in a book or in 
a curriculum standard, but rather expected them to use 
reasoning and argumentation to help make sense of the 
mathematics being taught.

The use of evidence to support analyses of practice pro-
vides a means of connecting specific instances of practice 
with general theories about teaching and learning; these 
connections then serve as a basis for ongoing learning. 
One striking difference that we found between the PTs 
and BTs in our study was in whether the claims they 
used evidence to support were generalizations or specific 
claims. For example, the statement “[the teacher] did not 
tell students, he asked students questions that focused 
them to specific aspects of the work (lines 32, 35, and 
61)” uses evidence to support a generalization about the 
teacher’s actions, while the statement “I didn’t really like 

how he funneled the question on line 85. It was a yes or 
no question” focuses only a specific instance. 

In general, the PT teachers in our study were much more 
likely to invoke evidence to support specific observations, 
while the BTs’ use of evidence was more balanced be-
tween supporting generalizations and supporting specific 
claims. We conjecture that the PTs may have been more 
cognizant of providing evidence since they were still in a 
university setting and not as far removed from the context 
in which this more academically oriented norm had been 
introduced, and thus did so more frequently in superficial 
ways. The fact that the BTs provided evidence in more 
meaningful ways suggests that the more significant aspect 
of this professional norm endures over time; that is, this 
norm supports teachers in using evidence to make sense 
of classroom events and draw conclusions that will help 
them to continue to improve their practice. 

Implications for Teacher Education and 
Questions for Future Work 
We have identified how productive norms can support 
teacher learning by (a) improving teachers’ own math-
ematical understanding, particularly the specialized 
content knowledge needed for teaching; (b) supporting 
teachers in learning to view and analyze classroom prac-
tice in productive ways; (c) providing teachers an experi-
ential basis for thinking about fostering productive norms 
in their classrooms; and (d) helping teachers to develop 
professional dispositions that support continued learning 
from practice. We highlighted the fact that although social 
norms, such as explaining one’s thinking, are important, 
they fall short of supporting teacher learning unless they 
are coupled with sociomathematical and professional 
norms that support learning specific to mathematics 
teaching. As a result, mathematics teacher educators 
need to carefully consider the potential of focusing on a 
range of norms—social, sociomathematical, and profes-
sional—in terms of the many ways that such a focus sup-
ports both short- and long-term teacher learning.

Our work speaks to the importance of intentionally 
considering the norms cultivated in teacher education 
experiences. This includes identifying those that are pro-
ductive—such as mathematical argument and evidence—
and systematically integrating them into our curricula. 
In fact, this work has provided evidence that not only 
can productive norms be fostered and used to support 
teacher learning in a particular teacher education course 
(e.g., Stockero, 2008b), they can also support longer-term 
learning (Van Zoest et al., 2011). The finding that inten-
tionally developing productive sociomathematical and 
professional norms early in a teacher education program 
can contribute to teachers’ continued learning from 
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practice is particularly encouraging given the benefits of 
self-sustaining generative change (Franke et al., 1998) to 
ongoing teacher development. 

Fully capitalizing on the potential of productive norms 
to support teacher learning requires further work. First, 
we need to know what norms support meeting our 
teacher education learning goals. The norms discussed 
here—mathematical argument and evidence—have been 
shown to be productive and can be cultivated in teacher 
education experiences with confidence. In our work, we 
have found other norms—such as the sociomathematical 
norm of naming, labeling, distinguishing, and comparing 
mathematical ideas, and the professional norm of listening 
to and making sense of and building on others’ ideas—
to also be productive (Van Zoest et al., 2011). As other 
teacher educators systematically analyze the productivity 
of additional norms, we encourage them to share their 
findings with the mathematics teacher education com-
munity. 

Second, we need to know more about the sequencing of 
norms. Focusing on developing a large number of norms 
at the same time is not practical and risks diluting the 
benefits of the most productive norms. Knowing which 
norms are foundational and which ones are better intro-
duced further into the program would be very helpful. 

Finally, our experience suggests that additional learning 
can occur from discussions with teachers about why we 
are intentionally cultivating specific norms. As discussed 
previously, at the time of the study we were using an 
invisible pedagogy (Bernstein, 2004), in that the norms 
that we intended to establish were not made explicit to 
the teachers. After completing the study, however, we 
conjectured that it would have been beneficial to be 
explicit about the norms we were cultivating, the reasons 
we felt these norms would be productive, and the moves 
we were making to cultivate them. More work is needed 
to verify this conjecture and, if it is found to be true, to 
determine effective ways to make the use of productive 
norms more visible. Doing so may allow the cultivation of 
norms to affect teachers’ learning in even more powerful 
ways.

Although there is more work to be done to take advan-
tage of the opportunity that cultivating productive norms 
provide for meeting the challenging task of preparing 
mathematics teachers, there is enough information to get 
started now. As you think through your teacher educa-
tion work, we encourage you to think about the norms 
that are currently in place, assess their productivity, and 

consider augmenting or replacing them with norms that 
have been demonstrated to be productive—such as 
mathematical argument and evidence. Doing so will lay 
a foundation that teachers can build on as they engage in 
the practice of teaching. Developing reflective teachers 
who can learn from their practice is essential for meeting 
the ambitious goals of mathematics teaching called for by 
NCTM (e.g., 2000).
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In the majority of secondary mathematics 
teacher preparation programs, the work of 
learning mathematics and the work of learn-
ing to teach mathematics are separated, 
leaving open the question of when and how 
teachers integrate their knowledge of con-
tent and pedagogy. We present a model for 
a content-focused methods course, which 
systematically develops a slice of mathemat-
ics content in the context of typical methods 
course activities. Three design principles are 
posited that undergird the design of such a 
course, addressing the nature of the math-
ematics content, the sequencing and design 
of activities, and the ways in which the course 
addresses the needs of diverse learners. Data 
from an instantiation of one such course is 
presented to illustrate the ways in which the 
course design framed teachers’ opportunities 
to learn about both content and pedagogy. 

Key words: Teacher education; Mathematical knowledge 
for teaching; Mathematics methods. 

As Linda Darling-Hammond (2010) points out, teacher 
education in the United States finds itself in a Dickensian 
conundrum. On one side, a great deal of political atten-
tion has been paid to improving the quality of teaching 
and learning, particularly in the fields of science, technol-
ogy, engineering, and mathematics. On the other, pointed 
questions are being raised about the specific value of 
formal teacher education. In light of studies criticizing the 
mathematical training that US teachers receive (Schmidt 
et al., 2007; Schmidt, Houang, & Cogan, 2011), there has 
been a return to favoring mathematical preparation over 
education coursework for teacher certification in many 
states. This press has largely focused on the preparation 
of secondary teachers, with the notion that disciplinary 

specialists with some basic pedagogical instruction might 
be well equipped to teach. While the research com-
munity generally agrees that teachers certified through 
formal teacher preparation programs effect stronger 
learning outcomes in students (Boyd, Grossman, Lank-
ford, Loeb, & Wyckoff, 2008; Darling-Hammond, 2006; 
Darling-Hammond & Bransford, 2005), little consensus 
exists regarding the features of mathematics teacher 
preparation that promote teacher and student learning. 
The call for common school mathematics standards has 
cascaded into calls for common mathematics teacher 
education standards (Simon, 2000; Wilson, 2011) consis-
tent with student-centered instruction, and frameworks 
that support the development of such a knowledge base. 
Several researchers have taken up this call, describing 
the knowledge base for teaching mathematics (e.g., Ball, 
Thames, & Phelps, 2008; Stein, Engle, Smith, & Hughes, 
2008), creating instruments for measuring teacher knowl-
edge (e.g., Brown, Bush, & McGatha, 2006; Hill & Ball, 
2004; Izsák, 2008), and linking those measures to student 
outcomes (Hill, Rowan, & Ball, 2005). While the field has 
made substantial progress in describing mathematical 
knowledge for teaching and in linking that knowledge to 
student outcomes, little work has been done to describe 
features of mathematics teacher education that support 
the development of this knowledge. In this paper, we 
describe design principles that undergird a model for a 
mathematics methods course for secondary teachers that 
systematically integrates mathematics content in ways that 
provide opportunities to learn mathematical knowledge 
for teaching.

Researchers have conceptualized the complex knowledge 
base for teaching in ways that incorporate content, peda-
gogy, and several conceptualizations of the intersections 
between the two across the K–16 spectrum (e.g., Ball, 
Thames & Phelps, 2008; Shulman, 1986; Speer & Wagner, 
2009; Steele, 2005). A common thread across this work is 
that pedagogical knowledge is neither discrete nor con-
ceptually separable from the knowledge of the mathemat-
ics content being taught. Knowledge of how to teach a 
particular slice of mathematics rests on one’s knowledge 
of the mathematics in question; however, research that has 
investigated the development of mathematical knowledge 
for teaching has shown this process to be less additive 
(e.g., learn the content, then learn to teach it) and more 
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 iterative. For example, Steele (2008) demonstrated the 
ways in which engaging in mathematical and pedagogical 
tasks can enhance different aspects of both knowledge 
bases; Speer and Wagner (2009) identified pedagogical 
dilemmas that arise during teaching that spark re-examina-
tion of the content and the further development of peda-
gogical capacity. Yet in both policy and practical circles, 
the work of learning mathematics content and learning to 
teach mathematics are bifurcated. Prospective teachers 
receive content and pedagogical instruction in different 
courses, often separated both temporally and organiza-
tionally within teacher education systems. While many 
elementary preparation programs feature mathematics for 
teachers courses that sometimes attempt to integrate these 
learning experiences, few such opportunities exist for sec-
ondary teacher candidates (for exceptions, see Hill, 2006; 
Senk, Keller, & Ferrini-Mundy, 2000). 

One model integrating the study of content and methods 
for secondary teachers is what Markovits & Smith (2008) 
term a content-focused methods course. Content-focused 
methods courses (CFMC) situate the systematic develop-
ment of mathematical knowledge for teaching in the con-
text of the typical activities in a methods course (Markov-
its & Smith, 2008). Whereas a methods course might treat 
content opportunistically through isolated tasks or lesson 
plans that teachers prepare, and a content course might 
provide plausible connections to pedagogical practice, 
the content-focused methods course features discernible 
mathematical and pedagogical storylines that are tightly 
connected. In this article, we look back at a content-
focused methods course intended to enhance teachers’ 
mathematical knowledge for teaching and articulate a set 
of design principles common to the work. These prin-
ciples can serve as a framework for the design of teacher 
education experiences that target mathematical knowl-
edge for teaching across a wide range of mathematical 
content and in a variety of contexts: both preservice and 
practicing, both elementary and secondary teachers. 

Content-Focused Methods Course 
Design Principles
1.  Focuses on a narrow slice of mathematical content or 

process central to developing mathematical proficiency 
in secondary school. 

2.  Uses a guiding inquiry to frame and motivate the 
course and provide a unifying thread.

3.  Organizes content and pedagogical activities into 
sequences that engage teachers across the continuum 
from learner to teacher.

Illustrating the Model With a Specific Example: A 
Content-Focused Methods Course on Function

A content-focused methods course centered on function 
(herein referred to as the functions course for simplicity) 
was designed using the three principles. We begin with 
a description of the course and context, followed by a 
discussion of the ways in which each of the principles in-
fluenced course design. We then describe in general the 
learning evident from the teachers who participated in 
the course and relate those data to the design principles. 

Description of the Functions Course

The course was intended to enhance teachers’ mathe-
matical knowledge for teaching functions and to develop 
their capacity for enacting meaningful student-centered 
learning experiences around these ideas for secondary 
students. It was taught as a graduate-level course at a 
large urban university in the Midwestern United States. 
Course development and implementation were part of a 
larger research project whose goals were to design and 
study courses around case-based mathematics education 
materials. The goals of the course are shown in Table 1. 

The course targeted preservice and practicing secondary 
teachers and was promoted as an “advanced methods” 
course. It was a required course for preservice secondary 
teachers at the end of a yearlong master of arts in teach-
ing program and was offered as an elective for practic-
ing teachers pursuing master’s-level study. In addition, a 
number of elementary preservice teachers and in-service 
special educators with particular interests in mathematics 
took the course as an elective. (We reflect on the impact 
of the diverse teacher population later in this article.) The 
background of the 21 teachers enrolled in the course is 
shown in Table 2. 

The principal investigator of the research project served 
as the lead designer and course instructor with support 
from a research team made up of teacher education 
researchers and graduate students. The authors of this 
article were graduate students on the research team and 
have subsequently refined and enacted the course as 
faculty members at other institutions. The research team 
(RT) began by selecting sets of mathematical tasks and 
narrative or video cases (featuring the same or a similar 
task) that represented rich learning opportunities related 
to functions, drawing primarily from Smith, Silver, and 
Stein’s (2005a) set of algebra tasks and cases. The RT 
then created or adapted additional activities related to 
the mathematical tasks and assembled activity sequences 
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table 1
Goals for the Functions Course 

mathematical goals Pedagogical goals

Develop a mathematically accurate definition of function and use 
it to distinguish examples and nonexamples of function

Support the development of students’ understanding of 
functions by encouraging and facilitating rich mathematical 
discussions

Distinguish linear and nonlinear and proportional and nonpro-
portional functions

Identify and enact cognitively challenging mathematical 
tasks

Solve a variety of problems involving functions, using recursive or 
closed form terminology and notation

Identify factors that impact the maintenance and decline of 
cognitive demands during implementation

Create and make connections among multiple representations of 
functions

(called constellations) centered on a particular aspect of 
the mathematics of function. Figure 1 shows this collec-
tion of activities, with the colors representing the constel-
lations, the shapes representing different activity types, 
and grey borders representing activities closely related to 
the guiding inquiry. (Figure 1 shows an enactment of the 
course during a 6-week summer term meeting 3 hours 
twice a week. The course has also been enacted during a 
typical 16-week semester.) Activities above the horizontal 
bar were enacted in class, with those below the bar rep-
resenting homework assignments. We next describe the 
ways in which the design in Figure 1 reflected the three 
principles, and discuss how the team anticipated those 
principles and supported teachers’ opportunities to learn. 

Design Principle #1: A narrow focus: Algebra as the 
study of patterns and functions. The first principle for 
the content-focused methods course prescribes a nar-
row focus on an aspect of mathematical content central 
to the secondary mathematics curriculum. This principle 
establishes relevance for the mathematical content to be 
explored with respect to the work of teachers in their 

classrooms and affords an in-depth exploration of the 
content rather than a surface-level treatment of a vari-
ety of mathematical ideas. The content focus should cut 
across grade levels in some important way, be identi-
fied in standards documents as important to secondary 
mathematics, and be complex and challenging for both 
teachers and their students. 

Therefore, the RT selected algebra as the study of pat-
terns and functions as the focus for this course because 
it met the preceding criteria well. Function is an impor-
tant cornerstone of secondary mathematics, which has 
become even more prominent with the rise of second-
ary mathematics curricula that explicitly use function as 
the grounding concept for the development of algebraic 
thinking (Alper, Fendel, Fraser, & Resek, 1997; Center for 
Mathematics Education, 2009; Cooney, 1996; Coxford et 
al., 1997). The Common Core State Standards for Math-
ematics (Common Core State Standards Initiative, 2010) 
underscore this importance by positioning functions as a 
high school content strand alongside algebra, geometry, 
modeling, and statistics and probability. 

table 2
Demographic Data on Course Participants

Preservice: postbacc  
mat program

in-service: masters of 
education

Secondary education 
doctorate

 
total

Elementary (K–6, all subjects) 3 1 4

Secondary (7–12, mathematics) 10 5 15

Deaf Education 1 1 2

TOTAL 13 7 1 21



Figure 1. Activities in the functions CFMC.
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Researchers investigating function have consistently found 
that students and teachers alike are frequently able to 
identify and generate examples at the heart of the func-
tion concept, such as continuous linear and quadratic 
functions, but struggle to identify more exotic functions, 
cannot always provide a mathematically complete defini-
tion of function, and are limited in their representational 
fluency (e.g., Even, 1998; Pitts, 2003; Sánchez & Llinares, 
2003; Stein, Baxter, & Leinhardt, 1990). These character-
istics together suggested that a content-focused methods 
course designed around functions would be a rich site for 
sustained mathematical inquiry.

Specifically, the RT conceived of the course as focusing 
on families of functional relationships that were familiar—
largely linear and quadratic—to provide a diverse group 
of teachers with entry to the topic. At the same time, the 
team selected tasks that were mathematically extensible, 
allowing teachers to explore noncontinuous linear func-
tions and rational functions built by transforming a simple 
linear function. The RT also recognized the importance of 
representational fluency—generating multiple representa-
tions of functions, moving flexibly between them, and 
describing the ways in which different representations 
are useful for noticing and analyzing specific features of 
a function. This set of ideas is important for developing 
both content knowledge and pedagogical practice.

Design Principle #2: A guiding inquiry: What is a 
function, and what are examples and nonexamples? 
A guiding inquiry is a question (similar to an essential 
question in K–12) designed to frame the course-long 
content focus. This inquiry establishes the importance of 
the in-depth study of a particular slice of content within 
mathematics and mathematics teaching. This sort of big-
picture view is often lacking in curricula and standards 
documents and is an important aspect of teachers’ cur-
ricular vision, which guides their decision making about 
what content is taught in the classroom (Drake & Sherin, 
2008). The guiding inquiry also represents an opportu-
nity to generalize from the set of particular mathematical 
tasks in the course to a larger mathematical structure and 
concept. The guiding inquiry should be about a topic for 
which most teachers will have initial ideas but one for 
which it is reasonable to believe teachers and students 
might have a limited understanding or misconceptions. In 
this spirit, the guiding inquiry should also be posed early 
in the course so as to reveal teachers’ initial conceptions 
and revisited at key moments in the course to provide 
opportunities to refine and elaborate those initial under-
standings. 

The RT selected the guiding inquiry of What is a function, 
and what are examples and nonexamples of functions? 
for the reasons outlined above: Teachers would likely 
have some fluency with functions, yet a rich understand-
ing of the concept can elude teachers and students. A 
significant body of research has demonstrated that even if 
teachers and students can work with examples of func-
tions, they may not have a clear definition of a function 
and the specific criteria that distinguish functions from 
nonfunctions (Pitts, 2003; Vinner & Dreyfus, 1989). Lack 
of a clear definition of function can lead to the over- or 
under-generalization of the function concept and can 
engender a limited view of function and obscure its math-
ematical utility. For example, teachers who conceive of 
a function as something that can always be represented 
graphically potentially miss important function examples 
such as the Dirichlet function or nonnumeric functions 
such as the relationship between letters and mailboxes 
(Sand, 1996). A reliance on a graphing requirement on the 
Cartesian plane also obscures geometrically-based func-
tions such as transformations.

Motivating a course-long inquiry into a topic for which 
teachers may feel as if they already have a great deal of 
knowledge can be a challenge. To motivate deep consid-
eration of the definition of function, the RT positioned the 
definition of function as something to be constructed and 
revisited over time rather than simply stated and taken as 
shared. The language of function was used in the discus-
sion of the first mathematical task, and teachers were 
then asked to define function individually and in small 
groups. They were able to state their initial ideas about 
functions, providing the instructional team with a baseline 
gauge of what the teachers knew. The course instructor 
assembled a list that captured all publicly shared ideas, 
including incomplete or vague conceptions, and this list 
was posted for all subsequent class sessions. This list was 
then used both as a resource when considering future ex-
amples and as a living document to be modified over the 
course.1 These recurring discussions helped to problema-
tize the work on function. 

Design Principle #3: Engage teachers across the con-
tinuum from learner to teacher. The notion of system-
atically developing content knowledge in a mathematics 
methods course is an important feature of the content-
focused methods course model. In addition, the methods 
course must also develop pedagogical knowledge and 
link content and pedagogy in ways that are useful to the 
work of teaching. The use of authentic artifacts of practice 
(e.g., mathematical tasks, narrative and video cases of 

1 While it did not happen in this particular instantiation, we have had teachers spontaneously request to edit an idea recorded on the list in 

subsequent iterations of the course.
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teaching, student work, and lesson plans) is an important 
design consideration that supports the integration of the 
mathematical and pedagogical knowledge bases and con-
nections to practice (Ball & Cohen, 1999). The content-fo-
cused methods course takes this connection a step further, 
using specific mathematical tasks as a grounding experi-
ence and starting point in an exploration of the mathemat-
ics as learner and teacher. Engaging in a mathematical 
task provides common ground to discuss the nuances of 
making sense of the mathematics. From this place, teach-
ers can move back and forth between positions of learner 
and teacher, first in a protected way that may include 
analyzing third-party teaching artifacts such as narrative or 
video cases, sets of student work, or related mathemati-
cal tasks. As teachers develop deeper and more nuanced 
thinking about the content, they can move further on the 
continuum to consider the implications of taking different 
perspectives on the mathematics content on their teaching 
practice. 

This principle led the RT to use particular activity struc-
tures in the content-focused methods course. For each 
mathematical task solved, teachers were asked to analyze 
the teaching of that task in some way (either through nar-
rative or video cases), to consider students’ thinking about 
that mathematics in some way, and to make connections 
to their classroom practice. Beginning with solving the 
mathematical task as a learner is a critical element; in 
grappling with the mathematics themselves, teachers are 
better positioned to analyze students’ mathematical think-
ing and to consider how to support that thinking (Steele, 

2008). The cases of teaching considered do not necessar-
ily have to be exemplary cases but should raise important 
dilemmas about the teaching and learning of the content 
in question.2 

Figure 2 shows the activities from the first constellation in 
the functions course placed along the learning-teaching 
continuum, with the numbering representing the order 
of activities. The constellation began with comparing the 
square and hexagon tasks and solving the hexagon task 
from a learner’s perspective, followed by reading and 
discussing the teaching of the tasks in The Case of Cath-
erine Evans & David Young (Smith, Silver, & Stein, 2005a). 
Activities 4 and 5, both homework, pushed teachers to 
consider the implications of the use of patterning tasks 
in the classroom. The next class session looped back to 
talking about the mathematics by considering the math-
ematical standards in the hexagon task and posing the 
guiding inquiry (what is a function?) for the first time. The 
next three activities, analyzing student work, reading a 
practitioner article on teaching algebra, and interviewing a 
student around one of the tasks, represented a strong push 
toward teaching practice. 

Activity sequences that keep the mathematics constant 
and traverse the continuum between learner and teacher 
provide teachers with a range of different opportunities 
to learn. First, the work begins in a relatively comfortable 
space for discussion—doing mathematics—and gradually 
moves to more sensitive spaces of a teacher’s classroom 
practice. Along the way, teacher participants build under-

2 The use of at least one exemplary case as a comparative measure can be particularly helpful. For a more extensive discussion of the selection 

and use of cases, see Smith and Friel, 2008.

Compare 
square & 

hexagon tasks

Solve the 
hexagon task

Identify 
standards in 
the hexagon 

task

Analyze 
hexagon task 

student 
work

Read 
English & 

Warren (1998)

Create a 
de�nition of 

function

Revisit The 
Case of 

Catherine & 
David

Read 
Ferrini-

Mundy & 
Lappan (1997)

Defend 
use of 

pattern tasks 
in algebra

Assignment: 
Interviewing a 

Student

Read & 
discuss The 

Case of 
Catherine & 

David

Consider: 
Perimeter is a 
function of no. 
of hexagons

1 7 6 3 10 4 12

2 8 9 11 5

Learning and 
Discussing 

Mathematics 
Content

Teaching 
Mathematics 
to Students

Figure 2. The tasks in Constellation 1 on the learning-teaching continuum.
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standings of how other teachers and their students make 
sense of the mathematics content, and these understand-
ings can then be applied to participants’ own classrooms. 
Like turning a gemstone in the light to see its different 
facets, considering multiple perspectives on the math-
ematics creates a more nuanced and robust sense of the 
intertwined package of teaching and learning. Moreover, 
the sequence also provides teachers with a model of 
what student-centered pedagogy might look like around a 
particular mathematical topic. While not every aspect of 
the mathematical work will transfer directly to practice, a 
strong socially constructed mathematical conversation is 
likely to include useful features adaptable to the class-
room (Hillen & Hughes, 2008). 

These three design principles together frame the opportu-
nities teachers have to learn about content and pedagogy 
in a content-focused methods course. In the section that 
follows, we briefly describe teacher learning in the course 
with respect to both content and pedagogy. We then use 
data from the course to illustrate the ways in which the 
design principles may have afforded teachers particular 
sorts of opportunities to learn. 

Teacher Learning in the Functions Course

The research team collected data to assess teacher learn-
ing about content and pedagogy in the functions course 
in several ways. Through written assessments and semi-
structured interviews at the start and end of the course 
teachers were asked to solve mathematical tasks, analyze 
cases of teaching and student work artifacts, and plan les-
sons. The postcourse interview used a course map similar 
to Figure 1 and asked teachers to reflect on their learning 
of (a) mathematics; (b) students as learners of mathemat-
ics; and (c) teaching mathematics, and to identify activi-
ties that contributed to their learning. Course meetings 
were videotaped and transcribed, and all instructional 
artifacts were retained, which provided data related to 
opportunities to learn. All written assessment items were 
coded by both authors, with an inter-rater reliability of at 
least 92%. 

In general, our analysis of the data suggests that teachers 
added to both their knowledge of content and of peda-
gogy. Prior to the course, many of the teachers struggled 
to produce a correct definition of function as well as 
an example and nonexample. Performance in generat-
ing the definition, example, and nonexample improved 
significantly on the postcourse assessment. Teachers 
were also asked to solve a number of mathematical tasks, 
both on written assessments and during course meetings, 
that involved functions. The use of representations and 
the ways in which teachers made connections between 
them improved from the start to the end of the course 

as well. From a pedagogical standpoint, teachers were 
better able to select high-cognitive demand tasks related 
to functions and plan for them in ways that supported 
the maintenance of the cognitive demand. They came to 
understand the ways in which one might systematically 
plan for and support work on multiple representations of 
functions with students, with a particular focus on mean-
ingful questions that supported conceptual understand-
ing. Teachers also considered the utility of having and 
supporting multiple mathematically correct definitions for 
function rather than a single canonical definition.

In the section that follows, we explore this data set in 
greater detail. Our goal is to use the three design princi-
ples as lenses through which to consider data on teacher 
learning and ways in which the course provided teach-
ers with opportunities to learn about both content and 
pedagogy.

Making connections among multiple representa-
tions: Using the lens of Principle 1. One of the math-
ematical goals of the course was for teachers to make 
connections among multiple representations of functions. 
In this section, we use the lens of Principle 1—the focus 
on the content of function—to consider the ways in 
which course design using this principle offered teachers 
opportunities to learn related to connections between 
representations. Teachers had numerous opportunities 
to make connections between visual geometric patterns, 
symbolic equations, tables, graphs, mathematical lan-
guage, and real-world contexts. The choice of specific 
tasks related to function and the design of a specific 
progression through those tasks contributed to these  
opportunities to learn.

Table 3 lists the mathematical tasks related to function 
that were used in the course and describes both the fam-
ily of function (e.g., linear, quadratic, rational) and the 
starting representation used in each task. By holding the 

Figure 3. Five representations of function and the 
connections made in Class 7.
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content of function constant, teachers were able to expe-
rience the ways in which different representations made 
salient different features of the function relationship. As 
the course progressed, the teachers were using different 
representations spontaneously in their mathematical work 
and talk to make sense of the underlying mathemati-
cal constructs. For example, in a discussion of the Cal’s 
Dinner Card Deals task in Class 7 in which teachers were 
asked to make sense of the slope and y-intercept, teach-

ers made 13 different connections between the 5 core 
representations of function (symbol, language, context, 
graph, table). Figure 3 shows the connections between 
the representations made by teachers in a 20-minute 
discussion.

Changes in teachers’ abilities to make connections 
between mathematical representations were assessed 
in part through their performance on the visual pattern 

table 3
Range of Examples Used in Course Tasks

Example (starting representation in parentheses)

functions nonfunctions

 
Class

linear  
proportional

linear non- 
proportional

 
Quadratic

 
Piecewise

 
rational

non- 
numeric

1

2 Hexagon task 
(context)

3 S-pattern task 
(context)

4 Square/pool 
border task  
(context)

5 Paul’s hair 
growth  
(context/table)

Sonya’s hair 
growth  
(context)

6 Supermarket 
carts (context)

7 Car wash  
(context)
Cal’s Dinner 
Cards: Regular 
Plan (graph)

Cal’s Dinner 
Cards: Plans A 
and B (graph)

Mail carrier 
(context)
Students & test 
scores (graph)

Weight and 
height (graph)

8 Cal’s Cost Per 
Meal: Regular 
Plan (table)

Cal’s Cost Per 
Meal: Plans A 
and B (table)

9 Graphs of  
functions: 
Functions 1 & 
2 (symbolic)

Graphs of  
functions:  
Functions 3 & 
4 (symbolic)

10 Calling Plans 
(context)

11

12 S-pattern task 
(context)

Note. Italics indicate situations that are or could be considered continuous; nonitalics indicate discrete situations.
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task shown in Figure 4. Results from the pre/post written 
assessment show evidence of changes in teacher capacity 
to make connections between a visual geometric pattern 
and a symbolic equation. Teachers’ responses to the task 
were coded using the rubric shown in Table 4. Initially, a 
majority of teachers determined an equation that gener-
alized the pattern (rubric scores of 1 or higher), but the 
extent to which their explanations related their equation 
to the visual pattern varied. About 25% fully related their 
explanation to the pattern (score 4), with another 25% 
making no connections (score 1), and the remaining 
teachers making some connections (scores 2 and 3). By 
contrast, on the posttest, the majority (80%) completely 
explained how their equation related to the visual pattern, 
a significant difference (Wilcoxon sign-rank test; W = –73, 
ns/r = 12, p = 0.0045). 

In addition to the changes in performance on the written 
assessment, our analysis of the postcourse interview data 
showed that teachers saw an important pedagogical use 
for connecting representations. When asked what they 
learned in the course, 13 of 21 teachers discussed connec-
tions between representations as a topic that helped them 
better understand students as learners of mathematics, 
and 11 of 21 named connections between representations 
as an important priority in the teaching of mathematics. 

In following Design Principle 1, the RT held the content 
of function as a consistent thread throughout the course. 

Doing so allowed the instructor to focus on the ways 
in which representations helped to illuminate different 
aspects of functions. Teachers developed both a stron-
ger fluency with the mathematical representations and 
a clearer sense of why and how one might use different 
representations as pedagogical tools.

Defining function: Using the lens of Principle 2. 
Another goal of the course was for teachers to develop 
a mathematically accurate definition of function and use 
it to distinguish examples and nonexamples of func-
tion. Teachers considered the guiding inquiry, What is 
a function, and what are examples and nonexamples of 
functions?, which provided opportunities to meet this 
goal, at several points throughout the course, as shown in 
Figure 1. The prominence of the guiding inquiry, com-
bined with the repeated opportunities to revisit and revise 
thinking about the definition of function and the nature 
of examples and nonexamples, provided teachers with 
opportunities to deepen their content knowledge related 
to function. The pre/post written assessment measured 
that learning, asking teachers, What is a function? Give an 
example of a function and a nonfunction.

Teachers’ responses to the first part of this task (What is 
a function?) were coded as correct, incorrect, or incon-
clusive. A correct definition included the idea of univa-
lence (i.e., the mapping of each element of the domain to 
exactly one element of the range) and did not explicitly 
rule out arbitrariness (i.e., elements of the domain and 
range do not need to be numeric). Correct definitions 
could use different terminology for x and y (e.g., input 
and output; domain and range; independent variable 
and dependent variable). Definitions that did not include 
univalence or made erroneous statements (e.g., functions 
must be linear relationships) were coded as incorrect. 
Definitions were coded as inconclusive if there was not 
enough information present to suggest the univalence 
criterion. For example, several definitions included cor-
rect statements (e.g., functions pass the vertical line test) 
but provided no further explanation regarding why the 
statement(s) implied that a relationship was a function. 
Teachers’ responses to the second part of the task (Give 
an example of a function and a nonfunction) were also 
coded as correct, incorrect, or inconclusive.3 Examples 
and nonexamples were also coded by family (e.g., linear; 
quadratic) and representation(s) used. 

In general, teachers’ initial definitions were problematic, 
although their examples were not. Fewer than half of the 
21 teachers in the course provided a correct definition 

Figure 4. The pentagon pattern task (adapted from Schifter, 1996).

The �rst train in this pattern consists of one regular 
pentagon. For each subsequent train, one additional 
pentagon is added. The �rst three trains in the 
pattern are shown below.

  Train 1           Train 2    Train 3

a. Determine the perimeter for the 4th train.

b. Determine the perimeter for the 100th train.

c. Write a description that could be used to �nd the 
perimeter of any train in the pattern. Explain how 
you know. How does your description relate to the 
visual representation of the trains?

3 The inconclusive code was used for responses that provided a correct example and nonexample of function, but the teacher did not label 

which was which.
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on the pretest, with incorrect definitions cutting across all 
grade levels taught and experience. Most of these incor-
rect definitions did not include mention of univalence 
and included features that suggested a narrow conception 
of function (e.g., functions are linear; all functions can be 
graphed). Nearly all teachers (20 of 21)—including all of 
the teachers who provided an incorrect definition—pro-
vided a correct example of function, with most being 
linear or quadratic relationships presented as equations 
or graphs. Over half the teachers (13 of 21) provided a 
correct nonexample of function on the pretest; however, 
6 of these teachers provided an incorrect definition of 
function. 

By contrast, nearly all teachers (20 of 21) provided a 
correct definition on the posttest, a significant difference 
(Fisher’s exact test, p < 0.001). It is also important to note 
that all 12 teachers who did not provide a correct defi-
nition on the pretest improved in some way: 7 moved 

from incorrect to correct, 4 moved from inconclusive to 
correct, and 1 moved from incorrect to inconclusive. All 
teachers provided a correct example of function on the 
posttest,4 mostly linear or quadratic in nature. However, 
there was a significant increase in the number of correct 
nonexamples of function (Fisher’s exact test, p < 0.01). 
Given the background of these teachers, it is no surprise 
that the majority could easily produce and identify ex-
amples of functions. The types of examples provided by 
teachers were relatively straightforward relationships cen-
tral to secondary mathematics. However, it is interesting 
to note that prior to the course, the majority of teachers 
were able to provide correct examples of functions, but 
not all teachers were able to correctly produce a defini-
tion or a nonexample of a function.

The second design principle that specifies a guiding 
inquiry, problematized early in the course and revisited 
throughout, provided teachers with repeated opportunities 

4 One teacher did not respond to this item; all 20 teachers who did respond to this item provided a correct example of function. 

table 4
Rubric for the Pentagon Pattern Task

Score description Example

4 Full explanation; well connected to visual pattern
A generalization is evident (verbally or symbolically)
All aspects of the generalization are explained accurately with 
respect to the visual pattern

For each pentagon on the end of the train you 
count 4 sides, so that is always 4 × 2 = 8. There 
are two less pentagons in the middle of the train 
than the train number itself, and each of these has 
3 sides counted as part of the perimeter (3 exterior 
sides)→8 + 3(n – 2), where n is the train number.

3 Some explanation; partially connected to visual pattern
A generalization is evident (verbally or symbolically)
At least one aspect of the generalization is explained accu-
rately with respect to the visual pattern
Remaining aspects of the generalization are either explained 
incorrectly, inaccurately, vaguely, or not explained at all with 
respect to the visual pattern

n(5) – (n – 1)(2)
n refers to the number of the train, multiply this 
number by 5 then subtract one less than the total 
number multiplied by 2.
From the visual representation we can see that 2 
pentagons will share one side. This shared side 
will be on the inside of the shape and will not be 
included in the perimeter. This shared side must be 
subtracted from each pentagon.

2 Weak explanation; some connection to visual pattern
A generalization is evident (verbally or symbolically)
At least one aspect of the generalization is explained, but the 
explanation is incorrect, inaccurate, or vague

(3x) + 2
When a new train is added only three units sides 
two sides of that train are actually added. The (3x) 
is 3 sides of the trains from before multiplied by 
the train number.

1 Numeric explanation only; no connection to visual pattern
A generalization is evident (verbally or symbolically)
The elements of the generalization are explained but not con-
nected to the visual pattern in any way

3n + 2
Multiply the number of trains by 3 and then add 
2. I know this works because it fits my pattern. My 
description is independent of the visual representa-
tion. I had to make a table—the pictures did not 
help me in finding the patterns.

0 No explanation present
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to learn the definition of function. By considering multiple 
examples, examining narrative cases of teachers seeking 
to support their students in understanding the construct of 
function, and thinking about tasks to use in their class-
rooms related to function, teachers had the opportunity to 
rise above simply learning a correct definition of function. 
By thinking through the definition and examples as learn-
ers and teachers, teachers developed knowledge of both 
content and pedagogy through this sustained inquiry. 

Two cases of learning about content and pedagogy: 
Using the lens of principle 3. In this section, we look at 
the learning of two teachers through the lens of Principle 
3, which describes the ways in which activities that span 
the continuum of learning mathematics and teaching 
mathematics can support the development of teachers’ 
knowledge of content and pedagogy. We present cases of 
two teachers with differing backgrounds and prior knowl-
edge to describe the ways in which the learning-teaching 
continuum provided opportunities to learn about the 
content and pedagogy of function. Olivia was an experi-
enced elementary teacher whose knowledge of function 
was relatively thin at the start of the course, and Carl was 
a preservice secondary teacher with strong mathematical 
knowledge. We consider the ways in which the course 
addressed differing needs based on each teacher’s initial 
conceptions of function and how the diverse set of activi-
ties on the continuum from learner to teacher provided 
them with opportunities to learn that matched their 
backgrounds.

The case of Olivia. Olivia was a practicing elementary 
teacher completing her sixth year of teaching who en-
rolled in the course as an elective. Olivia was known as 
a thoughtful teacher-learner who had taken part in many 
high-quality professional development experiences, in-
cluding a similar content-focused methods course on pro-
portional reasoning in her masters of education  program. 

At the beginning of the course, Olivia’s knowledge of func-
tion was limited (see Figure 5). The definition of function 
she provided on her pretest did not include univalence and 
implicitly ruled out arbitrariness. Although she provided 
a correct example of function on the pretest, her work 
during the first interview (conducted after Class 3) revealed 
that she struggled to explain why her example was a func-
tion, even though a correct definition of function had been 
made public in class by the time of her interview: 

Interviewer:  I have the example of a function that 
you gave on the pretest. So you gave y = 
2x. And I wanted to ask you why this is 
an example of a function?

Olivia: Well, I think that looking at that, there 
would be one y for every x, and one x 
for every y, so I think that that’s why it’s 
a function.

Interviewer:  OK. And that’s based on the discussion 
in (the third class)?

Olivia: Yes, I mean, doesn’t—I don’t think it 
would have to be one value for each of 
them, I mean, every time you have y, or 
x, um, y is going to be two times that.

Interviewer:  OK. What could you do to make it not a 
function?

Olivia: Make it x squared, or something. If I 
made it x squared, then, I think you’d 
have more than one value for x. And 
[long pause], I don’t really know. I think 
that because it’s x squared, I think you’d 
have more than one value. But I’m not 
really sure what I’m doing. 

In this excerpt, Olivia attempted to use univalence to 
explain why her example is a function and to create a 
nonexample of a function but grappled with its meaning 
and determining the variable (x or y) to which she should 
attend. 

By the end of the course, however, Olivia had a more 
robust understanding of function and its definition. Her 
posttest function definition (Figure 5) satisfied both condi-
tions for a correct definition. During the postcourse inter-
view, Olivia successfully classified a set of relationships as 
functions and nonfunctions and explained her classifica-
tions drawing on the definition. In the excerpt below, she 
explained why the graphs of x = 2 and y = ±x½ are not 
functions, using univalence as the justification:

Olivia:  [x = 2 is a nonfunction] because x would 
be 2, but on that line, you could have 
any value for y. And also because of the 
multiple values of y, and also because 
if you think of drawing a vertical line 
through it, it is a vertical line, it’d hit 
the whole line. So it wouldn’t be just 
one spot. And for [y = ±x½], if you do 
the vertical line test, it goes through the 
graph twice.

Interviewer:  What is the vertical line test?
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Olivia:  Well, if you draw a vertical line through, 
you should only cross the graph once 
because if you cross it more than once, 
it means for that particular value of x, 
there’s more than one value for y. Like 
here, say my value for x was 2. I could 
have this value of y and this value of 
y...,5 say (2, 1) or (2, –1). So because you 
have those two values, it means it’s not a 
function.

Olivia’s responses in the second interview suggest that 
she had not simply memorized the definition discussed 
during the course; rather, she understood the key char-
acteristics and drew upon them to classify relationships 
as functions or nonfunctions. In addition, she described 
the vertical line test and connected it to univalence, 

suggesting that she did not merely memorize the proce-
dure of using the vertical line test to determine whether 
a relationship is a function. Olivia acknowledged her 
narrow view of function at the beginning of the course 
and described how her understandings changed through 
engagement in particular course activities:

Olivia:  I have a much broader understanding 
of functions… a broader view of what 
a function is and what it involves… 
And also, thinking about what a func-
tion was. But I don’t know that I could 
really define that before. And I try to 
think, “Could I have done that when I 
was maybe in 8th or 9th grade, when I 
was taking algebra classes?” And I don’t 
really know that I could have. 

Tracing Olivia’s Learning

Precourse Assessments Postcourse AssessmentsCourse activities identi�ed 
as contributing to learning:

A function is a relationship that can 
exist for a variety of numbers. In 
other words, different numbers can 
be used in the place of a variable, 
and the relationship can be 
maintained.

A function occurs when 2 variables 
vary together. One variable is 
dependent on the other variable. 
For each value of the independent 
variable, there must be only one 
value of the dependent variable.

Includes univalence?   ×
Doesn’t rule out arbitrariness? ×

×

�

�

�

× : Absent
�: Present
?: Inconclusive

Example of function:
y = 2x

y is different, depending
on the value of x

Example of nonfunction: 
x + 4 = 20

This is not a function 
because x can only have 

one value � 16

Example of function: 
f (x) = 4x + 2

The initiation fee for getting 
into a club is $2. At each 
meeting, the dues are $4. 
How much money will be 

spent after any given 
meeting?

Example of 
nonfunction: 

y2 = x

�  Includes univalence?
�  Doesn’t rule out arbitrariness

Hair Growth
Task 

(Class 5)

Cal’s Dinner
Card Deals 

(Class 7)

A
Function Is 

a Mail Carrier 
(Class 9)

Creating
a de�nition of 

function (several 
classes)

Figure 5. Tracing Olivia’s Learning (teacher responses shown in italics)

5  An ellipsis indicates deleted words.
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Interviewer:  So were there places that helped you 
with defining a function and thinking 
about what a function really is?

Olivia: Well, creating a definition of a function. 
I remember “Function as a Mail Carrier” 
because the idea that every x can only 
have one—that idea that when you put 
in a value for x, you should always get 
one y. It shouldn’t be you put in 4 one 
time, and you get 6 for y, and you put in 
4 another time, the same number, and 
get 8. You can’t have that. So I think that 
was important, too. 

Olivia noted that the course enhanced her understanding 
of function and identified four particular activities as be-
ing instrumental in her learning. She recognized that her 
broadened view of function was influenced by participat-
ing in discussions based on the guiding inquiry and by 
various types of mathematical and pedagogical activities. 
When asked about the pedagogy of the course as a factor 
in her learning, she described specific features related to 
Principle 3:

Olivia: One thing I also liked about the class 
is that we really worked on developing 
our understanding of math AND con-
necting it to teaching, like through the 
case studies. And there aren’t very many 
classes that do that... I think the two go 
hand in hand—really learning about the 
math and understanding it, then looking 
at how is that taught in the classroom? 
We looked at the tasks first, so we 
understood... what this task was about, 
the math that was involved, and then 
how a teacher was presenting the task, 
and how students in the task interpreted 
it, and maybe compare in your mind, 
“Well, you know, that’s how I thought of 
it.” It’s effective, I think, for teachers be-
cause both of them are really important 
and connecting them [is] important.

In sum, Olivia entered the course with substantial con-
fusion about function from a content standpoint. Her 
work in interacting with the mathematical tasks and the 
development of the definition enabled her to success-
fully define and identify examples and nonexamples by 
the end of the course. Moreover, she linked the content 
learning to the work in considering the cases and student 
work, describing the ways in which moving between 
learner and teacher was important to her development as 
a teacher. 

We now consider the ways that the same course sup-
ported a teacher with a different background by looking 
at the case of Carl, a preservice secondary mathematics 
teacher.

The case of Carl. Carl was a preservice secondary 
teacher completing a yearlong internship in a suburban 
middle school. He had earned a bachelor’s degree in 
mathematics from a major public university and took 
the course as the capstone of a fifth-year master of arts 
in teaching program. Despite Carl’s mathematical back-
ground, his work early in the course suggested a muddled 
understanding of function. Carl’s pretest definition al-
lowed for arbitrariness but did not reference univalence, 
as shown in Figure 6. In distinguishing examples and 
nonexamples in his pre-interview, he used the univalence 
criterion but incorrectly described it as “one-to-one cor-
respondence.” 

At the end of the course, Carl held a deeper and better 
connected understanding of function. His posttest defini-
tion fulfilled both criteria for a correct function definition. 
Interestingly, Carl did not use the input/output language 
that was often used in class discussions of the defini-
tion. This suggests that Carl had not merely memorized 
the class definition but held a conception of function 
that made sense to him. In reflecting on his learning, he 
described the differences in his understandings since the 
beginning of the course: 

Carl:  I have a clearer definition of what a 
function is… I think most of us came 
into the class having worked with 
functions before, obviously, and doing 
vertical line tests to see if something in 
the function maybe is not a function. But 
I don’t think a lot of us had a really solid 
definition in our heads of what a func-
tion is. And I think that the class kinda 
helped us revise our own inkling of what 
a function is. The thing about func-
tions is that correspondence between 
two different sets of quantities. Before 
the course, if someone had asked me 
“What is a function?” I couldn’t say… I 
would’ve said something about the verti-
cal line test. I would’ve said something 
about an equation [or] function nota-
tion. But I don’t think I could have really 
given a really direct answer. After the 
course, I think I can.

Carl noted that while he entered the course with ideas 
about the definition of function, these ideas were incom-
plete, and the course provided an opportunity for him 
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to revise his thinking and develop a clearer definition of 
function. When pressed to identify specific activities in 
the course that supported his learning, Carl described the 
discussion in which teachers created a definition of func-
tion (Class 3): 

Interviewer:  So you just (identified) creating a defini-
tion of a function. How did that help 
you come to clarify the definition of 
function?

Carl:  Well, I mean we were just really brain-
storming the definition of a function, and 
I think what it really did was made me 
analyze the specific kinds of things that 
make up a function. It doesn’t necessar-
ily have to be an equation. You know, it 
could just be the two sets. . . . But what 
it really did is it really made me scru-
tinize my own definition of a function 
that I had coming into the class, and we 
could change it and alter it a little bit, 
due to the discussion of the definition. 

Having that up there throughout class 
made me go back and see, “Well, is 
this a function? Is this a function?” Go 
through the criteria that we came up 
with ourselves.

When asked to reflect on how the structure of the course 
supported his learning, Carl’s answers differed from 
Olivia’s. Carl focused on the enactment of the tasks in the 
course as a model for his own future classroom and the 
cases as reinforcing the real-time modeling:

Carl:  Class time was a good example of how a 
pattern task could be implemented in the 
classroom, and the level of mathematics 
was high. [The instructor] had us solve 
in groups, was able to ask some open-
ended questions that didn’t necessarily 
guide the group directly to an answer. . . . 
[When] group discussion was over, she 
was able to bring the class together and 
have a whole-class discussion [and] pick 
out certain solutions that were beneficial 

Figure 6. Tracing Carl’s Learning (teacher responses shown in italics).

Tracing Carl’s Learning

Precourse Assessments Postcourse AssessmentsCourse activities identi�ed 
as contributing to learning:

A function is a 
sentence/expression/
relationship between an 
input variable and an output 
variable.

A function is a correspondence 
between two sets of values A & B 
where each value of A corresponds 
exactly with one value of B.

Includes univalence?   ×
Doesn’t rule out arbitrariness? �

?

�
�

�

× : Absent
�: Present
?: Inconclusive

Example of function: 
f (x) = x2

Example of nonfunction: 
A mathematical sentence 

where the input/
independent variable has 
no bearing/effect on the 

output/dependent variable; 
i.e., “# of buttons on my 

calculator vs. SAT Score”

Example of function: 
y = 2x + 8

Example of 
nonfunction: 

x 2 + y2= 1

�  Includes univalence?
�  Doesn’t rule out arbitrariness

A
Function Is 

a Mail Carrier 
(Class 9)

Discuss 
3 textbook 
de�nitions 
(Class 9)
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to the class as a whole to see. It was 
really an example and another reinforce-
ment of how to use pattern tasks and to 
keep the level of mathematics high in the 
classroom. [And] the cases that we read 
are examples.

Carl’s background differed from Olivia’s in that he en-
tered the course with a stronger conception of function 
but with a definition that was in need of clarification. 
Through the same set of activities, Carl was able to make 
repairs to his definition rather than adopting the co-con-
structed class definition. Carl also entered as a preservice 
teacher looking for models of how to enact student-cen-
tered tasks, models that had been lacking in his internship 
placement. For Carl, moving between doing mathematics 
and considering cases of teaching helped him develop 
pedagogical knowledge related to how he might support 
his students in developing conceptual understanding. 

For these two teachers, traversing the continuum of 
content and pedagogy created a common set of learn-
ing opportunities that led to different learning outcomes. 
Olivia’s mathematics background was such that she took 
advantage of opportunities to learn related to the content 
of function, integrating the new content knowledge into 
an existing framework about her own well-developed 
pedagogical practices. She specifically noted the cases 
as a place in which the content and pedagogy come to-
gether, and one might anticipate that seeing this connec-
tion would make her better able to integrate new content 
understandings into her teaching. Carl, with a stronger 
mathematical background but at the very beginning of 
his teaching career, was able to take note of the ways that 
larger-grained pedagogical structures can support the 
learning of content. His ideas about the ways in which 
the group discussions and sharing of solutions modeled in 
the course led to new mathematical understandings pro-
vided useful models for Carl’s early practice as a begin-
ning teacher. As such, Principle 3 provided these teachers 
with opportunities to learn about teaching mathematics 
that fit their differing needs at the time.

Discussion

The content-focused methods course is a promising mod-
el for supporting teachers in developing mathematical 
and pedagogical knowledge and integrating those knowl-
edge bases in ways that build knowledge needed for 
teaching mathematics. The examples presented from the 
functions course demonstrate how the design principles 
can come together to provide diverse groups of teach-
ers with opportunities to learn. The functions course, 
however, is only one instantiation of the content-focused 
methods course model and was enacted in a specific 

institutional context that may differ from your own. 

So how does one begin designing a content-focused 
methods course? Selecting a mathematical focus (Princi-
ple 1) is a good starting point. Identifying narrative and/or 
video cases (e.g., Barnett, Goldenstein, & Jackson, 1994; 
Boaler & Humphreys, 2005; Merseth, 2003; Smith, Silver, 
& Stein, 2005a, b, c) and student work (e.g., Lamon, 
2005; Parke, Lane, Silver, & Magone, 2003) that relate 
to the mathematical focus can suggest a specific guiding 
inquiry. In the sections that follow, we discuss ways in 
which the principles could be implemented in different 
contexts and the affordances and constraints of bringing a 
content focus to an existing mathematics methods course. 

Varying the Mathematical Focus and Guiding 
Inquiry: Principles 1 and 2

By varying the mathematical focus, and in turn, the guid-
ing inquiry, additional content-focused methods courses 
for teachers of grades 7-12 could be developed. For ex-
ample, content-focused methods courses on proportional 
reasoning (using the guiding inquiries What is propor-
tional reasoning? and Are all fractions ratios? Are all ratios 
fractions?; Hillen, 2005) and geometry and measurement 
(using the guiding inquiry What is a proof?; Steele, 2006, 
2008) have been developed and studied. A content-
focused methods course on reasoning-and-proving (Smith 
& Stylianides, 2010; Hillen, Smith, & Arbaugh, 2011) is 
currently under development. The guiding inquiries to 
frame this course will include a mathematical question 
(What is reasoning-and-proving?) as well as ones that 
could be considered more pedagogical in nature (How 
do secondary students benefit from engaging in reason-
ing-and-proving? How can teachers support the develop-
ment of students’ capacity to reason-and-prove?). While 
the current principles reflect a secondary population, the 
content-focused methods course model could be used 
in courses for teachers of the elementary grades. Similar 
principles have also been used to structure professional 
development opportunities for teachers and their princi-
pals (Steele, Johnson, Herbel-Eisenmann, & Carver, 2010). 

Varying the Focus on the Learner-Teacher 
Continuum: Principle 3

By shifting the focus on the learner-teacher continuum, 
additional courses could be created that would serve 
a variety of purposes. By placing an emphasis on the 
learner end of the continuum, a mathematics content 
course could be created, which could consist primarily 
of activities in which teachers solved mathematical tasks 
and occasionally examined student work or read a prac-
titioner-oriented article. Such a course could conceiv-
ably meet the forthcoming recommendations from the 
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 Conference Board of the Mathematical Sciences (CBMS, 
2012), stipulating three courses focused on content 
knowledge for teaching for future secondary mathematics 
teachers. These courses would address the need for sys-
tematic ways to develop specialized content knowledge, 
identified as a pressing research priority (King & Thames, 
2011). For teachers who have already had opportunities to 
carefully consider mathematics content, a course focusing 
on the teacher end of the continuum, making additional 
connections to practice (e.g., lesson study cycles) or pro-
viding opportunities to do action research (e.g., collecting 
and analyzing data from their own classrooms), might be 
useful (Boston & Smith, 2009). Such a course might be 
particularly appropriate for the master’s-level or district-
based professional development, where teachers have 
more fluency inquiring into and reflecting on their own 
practice. 

Such courses also provide a rich site for studying teacher 
learning. Given the few formal classroom learning 
opportunities that currently exist for teachers to learn 
specialized content knowledge and pedagogical content 
knowledge, little research exists on the ways in which 
teachers learn these ideas at the intersection of content 
and pedagogy. A content-focused methods course that 
is specifically designed with the goals of developing 
these aspects of mathematical knowledge for teaching 
could serve as an important site for studying the way 
these knowledge bases grow in teachers. Courses run in 
conjunction with a field component would also provide 
opportunities to study the ways in which such knowledge 
is used in context.

The content-focused methods course provides a general-
izable, adaptable model for integrating the study of con-
tent and pedagogy. The course described here resulted 
in teacher learning that varied in beneficial ways across 
teachers. Activities that traverse the content-pedagogy 
spectrum, grounded in a specific slice of mathematical 
content, can provide teachers opportunities to enhance 
areas of their knowledge across that spectrum. 
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The author presents a procedure for learning 
from variations that occur when instructors 
implement lesson plans designed by oth-
ers. This kind of variation, occurring in many 
classrooms every day, can provide a source of 
information for improving curriculum, both in 
terms of instructional activities for students 
and especially in terms of clarifications for 
instructors to support more effective imple-
mentation. The author provides detailed 
descriptions, in the context of a mathematics 
course for preservice K-8 teachers, for us-
ing implementation variations in a practical, 
research-based way to study and improve 
teaching. The goal is to build an accumulat-
ing knowledge base for teacher education. 
Examples are presented to illustrate how 
increasingly rich lesson plans, based on ob-
serving implementation variations, can move 
toward achieving this goal.

Key words: Curriculum Implementation; Continuous Im-
provement of Teaching; Teacher Preparation

The purpose of this article is to describe a method for 
studying variation in teaching resulting from lack of 
fidelity in implementing a curriculum to create evidence-
based improvements in teaching. The method uses 
observations of implementations to identify details of the 
curriculum that could be changed to increase the chances 
that all instructors who use the curriculum will provide 
the intended learning opportunities for students. A key as-
sumption is that repeated cycles of observing and revising 
the details of curriculum implementation are essential for 
building knowledge for teaching that leads to cumulating 
and lasting improvements in classroom instruction.

Lack of fidelity in implementing curricula might be a 
surprising setting in which to conduct cycles of observing 
and revising teaching. Lack of fidelity has usually been 
interpreted in one of two ways. Either it is viewed as an 
obstacle to measuring the effects of an intended cur-
riculum on student achievement (Fullan, 2008; Huntley, 
2009; National Research Council, 2004; O’Donnell, 
2008) or it has been interpreted as an unavoidable, and 
fully appropriate, mediation by the teacher to fit the local 
conditions and connect the curriculum with the students 

in a particular classroom (Fullan, 2008; Lloyd, Remillard, 
& Herbel-Eisenmann, 2009; Remillard, 2005). 

Rarely has the lack of fidelity been tapped as a source of 
natural variation that can be used as a comparatively in-
expensive way to improve the curriculum and, ultimately, 
improve the instruction that arises from implementing the 
curriculum. But lack of fidelity in implementing a curricu-
lum introduces variation in teaching that either decreases 
or enhances learning opportunities for students. Such 
variation can be treated as data that suggest improve-
ments to the curriculum. The purpose of this article is to 
explore a method for treating lack of fidelity as a learning 
opportunity for teacher educators and to illustrate the 
way in which the method can be used to improve a cur-
riculum for preservice teachers.

Background
Reducing Variation and Raising the Mean

The method I describe for studying variation in teaching 
due to lack of fidelity in implementing a curriculum is 
based on an assumption not universally endorsed in the 
United States. Simply put, the assumption is that the goal 
of improving classroom teaching requires reducing varia-
tion in teaching from classroom to classroom and, at the 
same time, raising the mean level of teaching quality (e.g., 
Raudenbush, 2009). 

The assumption more commonly accepted in the U.S. 
is that variation in teaching is necessary and sometimes 
even desirable. Variation in teaching is sometimes seen 
as a wise response to different local conditions and, in 
turn, a recognition of professional respect for individual 
teachers (e.g., Duffy & Hoffman, 1999; Lloyd et al., 2009; 
Remillard, 2005). In this view, reducing variation implies 
diminishing teachers’ roles in making professional judg-
ments about their own classrooms. I argue for a differ-
ent point of view. I agree with Nicolas Kristof who, in 
his New York Times column, described the variation in 
teaching from classroom to classroom as a major national 
problem in education, often diminishing the learning op-
portunities for students (2009). 

In the setting I describe, teachers are teacher educators, 
students are K-8 preservice teachers, and classroom 
teaching is the teaching of preservice mathematics cours-
es. But the issues of implementing a planned curriculum, 
the lack of fidelity in doing so, and the resulting variation 
across classrooms are otherwise the same as those arising 
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in school settings. In other words, I believe the method 
I describe can be used by teachers (teacher educators 
or classroom teachers) who are teaching from the same 
curriculum with the same student learning goals in mind. 
This is true for a range of curricula, from traditional to re-
form. The only requirement is that the person(s) conduct-
ing the observations and proposing revisions understand 
well the learning goals and the intent of the curriculum 
being improved.

Working Toward a Theory of Implementation

Studying the lack of fidelity when implementing a cur-
riculum is best guided by a theory of implementation. 
Over the past several decades, it has come to be recog-
nized that there is a large gap between intended instruc-
tional treatments and the outcomes of the treatments. 
Implementing treatments has become an object of study 
in its own right (Fullan & Pomfret, 1977; Lipsey, 1993; 
O’Donnell, 2008; Remillard, Herbel-Eisenmann, & Lloyd, 
2009). But theories of implementation are not well estab-
lished. To set the stage for the method I describe, I pres-
ent here the beginnings of a theory of implementation 
for the case I will examine: implementing lesson plans 
designed for mathematics content courses for preservice 
K-8 teachers. 

It is reasonable to expect theories of curriculum imple-
mentation to address two key questions: (1) What does 
a curriculum (in this case a set of lesson plans) need to 
contain to be implemented as intended? (2) How will we 
know whether it has been implemented as intended? That 
is, how can we measure its implementation? 

I hypothesize that a lesson plan for a preservice con-
tent course should include the following features. These 
features seem to be essential for both prescribing a lesson 
designed to help students achieve the learning goals and 
helping instructors implement the lesson as intended 
(Hiebert & Morris, 2009; Morris & Hiebert, 2011).

•	 A	complete	and	precise	statement	of	the	learning	
goal(s).

•	 Explanations	(rationales)	for	how	each	instructional	
activity is designed to help students achieve the learn-
ing goal(s).

•	 Descriptions	of	each	instructional	activity,	including	
descriptions of the activities themselves and descrip-
tions of the pedagogical approach that should be 
used. Descriptions of pedagogy explain how the 
recommended instructional moves derive from the 
theory of learning on which the lessons are based (a 
theory described below). 

•	 Responses	that	students	are	expected	to	give	to	the	
instructional tasks, suggestions for how the instruc-
tor might respond, and rationales for the suggested 
instructor responses.

•	 Samples	of	verbal	explanations	that	instructors	can	
present at key moments in the lesson.

•	 Review	of	content	that	instructors	might	need	if	they	
haven’t encountered this content or how it is treated 
in the lesson.

An example of a lesson plan with these features is pro-
vided on page 84. 

How can the implementation of a lesson be measured? 
In other words, how can one tell whether a lesson has 
been implemented as intended? Answering this ques-
tion in general is beyond the scope of this paper because 
there are numerous issues that must be considered (Ful-
lan, 2008; Huntley, 2009; Remillard, 2005; Remillard et 
al., 2009). But it is possible to offer a brief answer to the 
measurement question that serves as a working definition 
for the method I describe. 

I define lack of fidelity as follows: Implementations of indi-
vidual lessons lack fidelity if they include teacher moves, 
not prescribed in the lesson, that represent (1) significant 
variations of the lesson, or (2) positive adaptations of the 
lesson. Significant variations of the lesson include teacher 
explanations, class discussions, or instructional activities 
that (a) do not appear to help students achieve the learn-
ing goal(s) as effectively as those prescribed in the lesson, 
or (b) violate the learning theory on which the lessons 
are based. Positive adaptations of the lesson are teacher 
explanations, class discussions, or instructional activities 
that (a) appear to help students achieve the learning goal(s) 
more effectively than those prescribed in the lesson, or (b) 
change the lesson to make it more compatible with the 
learning theory on which the lessons are based. 

It should be noted that not all variations are significant 
variations or positive adaptations. Only variations that 
fit the definitions just presented are considered to be 
instances of lack of fidelity. Many variations can occur 
that are not considered to be implementation infideli-
ties. For example, class discussions can take a variety of 
forms without containing significant variations or positive 
adaptations. 

The learning theory on which the lessons in this study 
are based is actually a pair of learning principles rather 
than a full theory. The two principles, as described by 
Hiebert and Grouws (2007), are especially relevant for 
learning goals that have a heavy conceptual component: 
(1) conceptual relationships among mathematical ideas, 
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representations, and procedures must be made clear, and 
(2) students must be given an opportunity to grapple or 
struggle with the critical mathematical concepts. Given 
these two principles, it is possible to define significant 
variations of type (b) above as teacher actions that re-
move one or both of these principles from the intended 
learning opportunities, and to define positive adaptations 
of type (b) above as teacher actions that improve the 
learning opportunities for students in ways that are rel-
evant to the learning goals and are consistent with these 
two learning principles. 

Implicit in the theory of implementation just presented is 
an assumption that studying variation in teaching when 
implementing a curriculum does not yield claims of best 
teaching practices. The intent is to yield better teach-
ing practices by building into the enacted curriculum 
the positive adaptations observed and to eliminate from 
the enacted curriculum the significant variations. It is 
assumed that best teaching practices for the learning 
goals specified in a curriculum are an ideal that teachers 
work toward by incrementally improving the curriculum 
through studying its implementation through methods like 
those described next.

Method
Setting

I am a mathematics teacher educator at a large university 
in the mid-Atlantic region of the United States. The K-8 
teacher certification program is completed in four years 
and graduates about 150 students per year. The mathe-
matics portion of the program includes three mathematics 
content courses and one mathematics methods course. If 
students wish to obtain an endorsement to teach math-
ematics in middle school, they can take an additional 
four mathematics courses and one mathematics methods 
course. 

The work I describe centers on the first of the three 
mathematics content courses required for all K-8 preser-
vice teachers. This course focuses on whole numbers and 
decimal numbers. Classes are limited to 35 students, so 
multiple sections of the course are offered each semester. 
The instructors consist of faculty, doctoral students, and 
adjunct instructors. 

The curriculum for the course consists of detailed lesson 
plans for each class session in the semester. The lesson 
plans were developed over time by mathematics educa-
tion faculty and doctoral students working together. Each 
semester, instructors for a particular course meet weekly 
to develop, test, and refine the lessons (Hiebert & Mor-
ris, 2009). Critical for the work reported here is that the 

lesson plans contain the features identified earlier (e.g., 
learning goals, rationales for activities, detailed descrip-
tions of activities, predicted student responses and sug-
gested instructor responses, teacher explanations, and 
reviews of content). 

I am an author of the curriculum and an experienced in-
structor of the course. This means that I understand well 
the learning goals for the course and the intentions of the 
curriculum. This allowed me to develop strong hypoth-
eses during my observations about which changes to the 
intended curriculum were significant variations, which 
were positive adaptations, and which were neither. As 
noted earlier, the method depends on at least one person 
possessing deep knowledge of the learning goals and the 
curriculum. It is this knowledge that allowed me to gener-
ate hypotheses about implementation variations. 

The instructors observed in this study were adjunct 
instructors who had not been involved in the original 
process of lesson development and did not have frequent 
interactions with instructors who had been involved in 
this process. This meant it was likely that these instruc-
tors would implement the curriculum in some ways that 
varied from the intent of the authors. The variations could 
be better or worse adaptations—they could increase or 
decrease students’ opportunities to achieve the learning 
goals. Because these data provide the key opportunities 
to learn how to improve the curriculum, it is important 
that at least some of the observed instructors are less 
familiar and less experienced with the curriculum than 
the observer. These conditions often exist in teacher 
education programs and schools. Although the instruc-
tors in this study met weekly with each other to review 
past and future lessons to enrich their interpretation of 
the curriculum, I assumed that their relative inexperience 
would yield variations in implementing the curriculum 
that would be worth recording. 

Procedure

I observed 24 of the 27 sessions in each of the two sec-
tions of the first mathematics content course, one section 
for each of the two instructors. Observing more than one 
instructor was useful for sorting out whether significant 
variations were due to the written lesson plan or idio-
syncrasies of the instructor. I recorded written notes on 
all teacher statements and student statements intended 
for the whole class, including student responses to the 
instructional tasks. I flagged places in the lesson plan 
where, in my judgment, positive adaptations and signifi-
cant variations occurred and wrote notes in the margin of 
the lesson plan that would help me reconstruct the nature 
of the positive adaptations and significant variations. For 
significant variations, I noted the feature of the lesson plan 
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that was likely responsible. For example, if instructors car-
ried out an instructional activity differently than described 
in the plan, I marked the activity itself and, depending 
on the nature of the significant variation, the statement 
of the learning goal or the description of the pedagogical 
approach that was apparently misinterpreted or ignored. 
Within 1 or 2 days of observing a lesson, I reviewed all 
written notes, typed detailed descriptions of the instances 
of lack of fidelity, and made changes to the written les-
son plan that either captured the positive adaptations or 
elaborated or corrected the lesson plans to reduce the 
likelihood of the significant variations in the future.

Findings

I will present findings from this work by reporting three 
examples in considerable detail. For findings to be useful, 
they need to inform several aspects of the lesson im-
provement process driven by documenting lack of fidelity 
of lesson implementation. In particular, the findings must 
identify the source of a hypothesized significant variation 
in terms of the lesson features posited in the theory of 
implementation, they must explain why a teacher move 
was hypothesized to be a significant variation or positive 
adaptation, they must suggest fixes to the lesson plan, 
and they must provide a basis for hypothesizing that 
the fix will lead to reduced variation across instructors 
and a more effective level of teaching for everyone. The 
examples presented below illustrate these features of the 
findings. 

Example 1: Misinterpreting the Learning 
Goal
Source of the Significant Variation

I assumed that the general source for all significant 
variations was the written lesson plan (rather than the 
instructor) because written plans are always imperfect 
and incomplete, and significant variations result from a 
misinterpretation or selective interpretation of the plan. 
The first example stems from variations to the lessons I 
interpreted as significant that occurred in both instructors’ 
sections during Lessons 2-4. Because of the nature of the 
variations, I attributed the problem to a misinterpretation, 
or more accurately a selective interpretation, of the learn-
ing goals for these lessons. As stated in the lessons, the 
learning goals for Lessons 2 and 3 were:

1. Preservice teachers will understand the terms numera-
tion system, quantity, numeral, and number and the 
relationships among them.

2. Preservice teachers will recognize the properties of 
numeration systems: additive, multiplicative, subtrac-

tive, positional, place-valued, and the meaning of 
zero.

3. Preservice teachers will understand that the symbolic 
representation of a quantity in any numeration system 
is determined by decomposing it into parts equal in 
size to the measuring units of the numeration system, 
and representing the total amount of equal-sized parts 
with symbols, according to certain rules. The size of 
these parts as well as the symbols and rules used to 
represent them vary from system to system.

The learning goals for Lesson 4 were:

1.  Preservice teachers will understand the properties of 
based place-valued numeration systems. Preservice 
teachers will understand that a based place-valued 
numeration system consists of a set of measuring 
units, a finite set of symbols, and a collection of rules 
that determine the structure of the system.

2.  Preservice teachers will construct a set of measuring 
units associated with the place values for any based 
place-valued numeration system.

3.  Preservice teachers will be able to represent the same 
quantity with different based place-valued numera-
tion systems.

Although the authors of the lessons intended the preser-
vice teachers to work with actual quantities and pictures 
of quantities to develop an understanding of the concepts 
underlying numeration systems, and Lessons 2-4 includ-
ed instructional activities that engaged preservice teach-
ers in doing just that, both instructors eliminated many of 
the activities that involved breaking quantities into parts 
equal in size to the measuring units of a given numera-
tion system and activities that involved creating pictures 
to represent different-sized units. Instructors taught the 
lessons using primarily written words, numerals, and 
arithmetic calculations. For example, the lesson plans ask 
the teacher to repeatedly engage students in instructional 
activities that involve making place-value charts that 
show the measuring units of a numeration system with 
pictures of quantities. In contrast, the instructors placed 
measuring units in place-value charts but usually labeled 
the positions only with words and numerals (e.g., for the 
Babylonian system, “ones,” “60s, “60 × 60,” and so on). 

When asked to identify the most important learning goal 
for these lessons, one of the instructors chose this goal:

Preservice teachers will understand that the 
symbolic representation of a quantity in any 
numeration system is determined by decomposing 
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it into parts equal in size to the measuring units 
of the numeration system, and representing the 
total amount of equal-sized parts with symbols, 
according to certain rules. the size of these parts 
as well as the symbols and rules used to represent 
them vary from system to system.

This was indeed the most important learning goal that 
guided the writing of the lessons. The instructor was not 
ignoring the goal, but rather interpreting it differently than 
the lesson writers did. The instructor emphasized the 
symbolic aspects of the goal, whereas the lesson writers 
emphasized the quantitative aspects. 

The instructors made decisions to omit or modify many 
of the activities that were intended to engage students 
in concrete or pictorial work and concentrated instead 
on symbolic presentations and manipulations. I classi-
fied these changes as significant variations because they 
violated the principle of learning that calls for conceptual 
relationships among representations to be made clear 
and therefore did not appear to help students achieve the 
quantitative aspects of the learning goal. Based on past 
experience with these lessons, I know that students who 
have not developed physical, quantitative images for units 
of different sizes with the relationship of, for example, “10 
times as big,” will have difficulty when they are asked 
in future lessons to extend their knowledge of whole-
number systems to decimal fractions less than 1. So, these 
instances of lack of fidelity will limit students’ opportuni-
ties to achieve the later learning goals.

Fixing the Lesson 

Fixing the lesson means revising the lesson plan to com-
municate more clearly to the instructors the feature of 
the lesson that seemed to be the source of the problem. 
Because I attribute the misunderstanding that prompted 
the significant variations to the lessons just described to a 
selective interpretation of the learning goals, I focused my 
attention on restating the learning goals more completely 
and clearly. I will use the phrase elaborated learning goal 
to signify these revised versions of the learning goal. 

Rather than just restate the learning goals in clearer lan-
guage, a fix that might have little effect, I decided to elab-
orate the learning goals to include a description of how 
achievement of the goal will be measured plus a scoring 
rubric, of sorts, that provides an unambiguous standard 
against which students’ performance can be assessed. 
This is not a new idea. The assessment literature argues 
that including “performance objectives” with “content ob-
jectives” helps clarify the intent of the content objectives 
(Cook, 2008; Kapfer, 1971; Mager, 1997). The elaborated 
learning goals I developed are consistent with this general 

idea but were designed with a very specific correction in 
mind. In particular, I wanted to ensure that when future 
instructors read the learning goals, they would not be 
able to ignore the quantitative aspects of the goal. To 
accomplish this, I described actions and explanations 
that students are expected to display as they work toward 
achieving the learning goals. My purpose is to develop 
among instructors (a) a deeper shared understanding of 
the learning goals, and (b) a clearer sense of what to do in 
the instructional activities to help students achieve these 
goals. Because the actions and explanations I describe for 
students are about quantities, not just symbols, I hypothe-
size that future instructors will no longer be able to ignore 
this aspect of the learning goals. The elaborated learning 
goals clearly establish the intended emphasis of the in-
structional activities. Ironically, if these elaborated learn-
ing goals are taken seriously by instructors, the instructors 
have more freedom in how they implement the suggested 
instructional activities. In a real sense, the prescription for 
the lesson moves from the instructional activities into the 
statement of the learning goals. 

Compare, as an example, the original learning goals for 
Lesson 2 (presented earlier and restated below) with the 
elaborated learning goals I created as the lesson fix to 
reduce variation across instructors. The original learning 
goals were the following:

1.  Preservice teachers will understand the terms numera-
tion system, quantity, numeral, and number and the 
relationships among them.

2.  Preservice teachers will recognize the properties of 
numeration systems: additive, multiplicative, subtrac-
tive, positional, place-valued, and the meaning of 
zero.

3.  Preservice teachers will understand that the symbolic 
representation of a quantity in any numeration system 
is determined by decomposing it into parts equal in 
size to the measuring units of the numeration system, 
and representing the total amount of equal-sized parts 
with symbols, according to certain rules. The size of 
these parts as well as the symbols and rules used to 
represent them vary from system to system.

The elaborated learning goals for this lesson are these: 

1.  Preservice teachers will distinguish between numerals 
(symbols) and quantities (physical amounts of stuff). 
They will distinguish between actions on numerals 
(arithmetic) and actions on quantities. Why do we 
want preservice teachers to make this distinction? 
Ideas about quantities will be emphasized through-
out the course. This emphasis will help preservice 
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teachers recognize that mathematics is not just about 
symbols and calculation—that mathematical ideas 
are often about quantities and actions on quantities 
and that quantities can serve as concrete referents for 
mathematical ideas.

2.  Preservice teachers will understand the terms “mea-
suring unit” and “basic symbol” and will be able to 
use these terms when they explain how a quantity is 
assigned a numeral. They will understand that each 
numeration system has a set of measuring units and 
a set of basic symbols that it uses to represent all 
quantities. Preservice teachers will understand that, in 
any numeration system, a quantity (amount of stuff) is 
assigned a numeral by decomposing the quantity into 
parts equal in size to the measuring units and rep-
resenting with the basic symbols of the numeration 
system how many measuring units of each type fit in.

3.  Preservice teachers will understand that measuring 
units are quantities (physical amounts of stuff) that 
are used to measure other quantities, whereas basic 
symbols are symbols. Understanding that measuring 
units are quantities will make the study of decimals 
(later in this course) less abstract for the preservice 
teachers and will allow them to reconceptualize and 
be successful with decimals, whereas in their previous 
mathematical experiences, most of them were not.

4.  Preservice teachers will develop and show these un-
derstandings by carrying out the following mathemati-
cal actions and giving explanations that involve these 
actions:

a.  Using any numeration system, preservice teach-
ers will be able to physically measure quantities 
by physically partitioning the quantity to be mea-
sured into parts equal in size to the measuring 
units and determining how many measuring units 
of each type fit into the quantity. For example, 
preservice teachers will be able to measure a 
set of 23 dots in the Hindu-Arabic system by 
circling 2 separate measuring units of size 10 
dots each, and 3 separate measuring units of size 
1 dot each. In the Babylonian system, preservice 
teachers will measure 437 straws by physically 
bundling 7 separate measuring units of size 60 
straws each and 17 separate measuring units of 
size 1 straw each. 

b.  After physically measuring a quantity in this way, 
preservice teachers will be able to represent the 
measured quantity numerically by using the basic 
symbols of the numeration system to show how 
many measuring units of each type fit into the 
measured quantity. 

c.  For place-valued numeration systems, preser-
vice teachers will be able to make a place value 
chart that represents this process of measuring 
and assigning a numerical value to a quantity. 
The first row of the place value chart should 
show the measuring units as pictures of physical 
amounts. For example, in a place value chart in 
the Babylonian numeration system, a measuring 
unit of size 1 could be shown as 1 dot, a measur-
ing unit of size 60 as 60 dots, a measuring unit 
of size 3600 as 3600 dots. (Because it is too hard 
to draw large quantities, preservice teachers can 
use the notation [3600] to represent 3600 dots.) 
In the Hindu-Arabic system, a measuring unit of 
size 1 might be shown as the area of 10 squares 
on graph paper. The measuring unit of size 10 
would then be shown as 100 squares, a measur-
ing unit of size 100 would then be shown as 
1000 squares, and so on. The purpose of draw-
ing the measuring units as amounts of stuff in the 
place value charts is to emphasize to preservice 
teachers that measuring units are amounts of 
stuff, not numerals. (This will allow a smooth 
transition to decimal numbers and operations in 
future lessons.) 

 The place value chart should also show the mul-
tiplicative relationship between the measuring 
units. For example, when using the  Babylonian 
numeration system, preservice teachers should 
draw an arrow from each measuring unit in the 
place value chart to the next largest measur-
ing unit, label the arrow “× 60,” and be able to 
explain (and to demonstrate with quantities) that 
this means that each measuring unit is 60 times 
as big as the measuring unit that is associated 
with the place to the right, that 60 copies of the 
smaller measuring unit will fit into the larger 
measuring unit, that we can find the larger mea-
suring unit by making 60 copies of the smaller 
measuring unit, and that we can find the size of 
the smaller measuring unit by partitioning the 
larger measuring unit into 60 equal parts. Finally, 
in the second row of the place value chart, 
preservice teachers should show the number 
of measuring units of each type that fit into the 
measured quantity, represented with the basic 
symbols of the system. For example, Figure 1, a 
place value chart for base six (where the measur-
ing unit of size 1six is a circle), shows that four 
measuring units of size 1000six, two measuring 
units of size 100six, zero measuring units of size 
10six, and five measuring units of size 1six fit into 
a measured quantity. 
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 Thus, the place value chart is a concrete picture 
of the meaning of a numeral; place value charts 
provide a picture of the measuring units that 
are associated with the digits in a numeral. The 
use of a place value chart over multiple lessons 
increases the probability that preservice teachers 
will understand the meaning of each digit in a 
numeral after they move to representing numer-
als without the aid of a place value chart and will 
allow a smooth transition to decimal numbers 
less than one and to measuring units smaller than 
the measuring unit of size one.

d.  Given a numeral in a given numeration system, 
preservice teachers will be able to represent the 
numeral with a quantity. 

Why the Lesson Fix Should Reduce Variation

Obviously, the elaborated learning goals are much longer 
and more detailed than the original learning goals. But it 
is not just the length or detail that I believe is critical; it 
is the prescription of students’ actions (described in 4a, 
4b, 4c, and 4d above) that will be taken as evidence of 
students’ achievement of the learning goals that greatly 
increases the chances that future instructors will imple-
ment the lesson without these significant variations. 

To understand why this might be true, consider a les-
son designed to help students achieve strictly procedural 
learning goals, with no conceptual component. It is easy 
to see that it would be straightforward to write such a 
goal, with no ambiguity, and that there would be little 
question about the actions students should take to show 

competence. This means it is likely instructors would 
interpret the procedural goal in the same way and follow 
similar instructional paths. In other words, a shared inter-
pretation of a learning goal is likely to channel instructors 
onto a similar instructional path (at least, the variations 
they display are less likely to be significantly different).

With respect to clarity and shared interpretation, the chal-
lenge is to write conceptual learning goals like procedural 
learning goals. Elaborated learning goals are designed to 
meet this challenge. If instructors have the same under-
standing of the actions and explanations that students 
must master to demonstrate competence in a conceptual 
learning goal, then it is likely instructors will interpret 
the conceptual goal in the same way and, in turn, follow 
similar instructional paths. 

But readers might be asking whether describing the 
actions and explanations that students must provide 
to demonstrate competence will encourage instruc-
tors to teach in a rote, procedural way targeted toward 
the desired outcomes. Will instructors just teach to the 
test? Two features of the lesson mitigate the danger of 
this happening. First, the actions and explanations that 
provide the goals for instruction are sufficiently complex 
that it is difficult to imagine instructors getting students 
to memorize these and use them flexibly on a range of 
problems. For example, by Lesson 5, students are asked 
to apply the actions and explanations described in the 
elaborated learning goals above to solve problems like 
the one from Lesson 5 shown in Figure 2. If students can 
apply the actions and explanations to flexibly solve a 
range of problems, they probably have developed some 
level of conceptual understanding. A second feature of 

Figure 1. The place value chart for base six.
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the lessons that reduces the likelihood of rote instruction 
is that the instructional activities described in the lessons 
are consistent with the two learning principles identified 
earlier that support conceptual learning.

Example 2: Not Recognizing Students’ 
Lack of Understanding
Source of the Significant Variation

The second example is drawn from the same set of les-
sons but targets a different instance of lack of fidelity. As I 
observed Lessons 2-4, I noticed that the instructors were 
receiving no feedback from students regarding students’ 
lack of understanding of the quantitative aspects of the 
learning goals. Students were following the instructors’ 
lead, creating rules governing numerical manipulations, 
and completing the problems they were assigned cor-
rectly, but without understanding the relationships among 
quantities. Their lack of understanding was obvious 
during their small-group discussions, but the answers 
they produced were correct frequently enough for the 
instructors to presume that the students were achieving 
the learning goals. 

Practically, the problem with the lesson plans was that the 
student assignments for Lessons 2-3 could be completed 
by interpreting them through either the instructors’ inter-
pretation of the learning goals (e.g., calculating numeri-
cal values for the positions in a place value chart) or the 
lesson authors’ intended learning goals (e.g., forming units 
for the positions by partitioning and combining quanti-

ties). Students used numerical approaches to solve the 
assigned problems, instructors accepted these responses 
as indicating achievement of the learning goals, and there 
was no conflict that would have otherwise warned the 
instructors that something was wrong. 

It seems reasonable to assert that curricula (e.g., the les-
son plans of interest here) should contain student assign-
ments that signal the instructor when students have not 
yet developed the conceptual understanding that is the 
intended focus of the learning goals. Curricula should 
include student tasks that provide feedback to instructors 
about whether they, the instructors, are on the right track. 

That the student assignments in Lessons 2-3 could be 
completed without providing useful feedback to the in-
structors prompted me to reconsider the theory of imple-
mentation presented earlier. There is no feature of lesson 
plans in the bulleted list that requires such assignments 
to be included. I take this example as one that argues for 
adding this feature to the list, thereby refining the original 
theory. This example illustrates how the study of lack 
of fidelity or variation in teaching not only can improve 
teaching but also can refine the theory of implementation 
that connects the curriculum with classroom practice. 

Fixing the Lesson

The fix for the problem of receiving no useful feedback 
regarding students’ understanding is suggested by the 
problem itself: include student assignments that explic-
itly focus the instructors’ and students’ attention on the 
quantitative relationships in the learning goals. If students 
cannot complete the tasks without attending to quantita-
tive relationships, then errors on these tasks would signal 
to the instructors that quantitative understandings had not 
been developed sufficiently during instruction. Here is 
an example of an assigned student task before I fixed the 
lesson and after I fixed the lesson.

Before revision: 

Represent the following quantities using the Babylonian 
numeration system.

(a) O O O O O O O O O O O O O O O O O O O O
 O O O O O O O O O O O O O O O O O O O O
 O O O O O O O O O O O O O O O O O O O O 
 O O O O O O O O O O O O O O O O O O O O 
 O O O O O O O O O O O 

(b)  780,021 circles

Figure 2. A problem presented in Lesson 5.

One cup

From your work on this problem, 
explain why we get “repeating decimals.”

One third
of a cup

Suppose you are trying to represent this quantity of 
liquid (below) in base ten. You let the measuring unit of 
size 1 be one cup. Make a place value chart that shows 
all the measuring units that you need as you try to �nd 
a base ten numeral for this quantity, and explain how 
you found a base ten numeral for this quantity. What is 
the base ten numeral for this quantity?
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The students tended to solve part (a) by counting the 
number of dots (91), calculating 91 ÷ 60 = 1 remainder 
31, and then writing the Babylonian symbol for 1 in the 
60s place and 31 in the ones place. They did not break 
the quantity of dots into parts equal in size to the mea-
suring units (as the lesson writers intended) nor did they 
draw a place value chart that showed pictures of the 
relevant measuring units and the multiplicative relation-
ship between them. The students were unable to solve (b) 
because they got lost in all the numerical calculations. 

After revision: 

a.  Make a place value chart in the space below. In 
the first row of the place value chart, draw the first 
three measuring units for the Babylonian numeration 
system. Use a circle to represent a measuring unit of 
size 1. (Remember that when a quantity is too large 
to draw, you can show it with square brackets. For 
example, the measuring unit of size 3600 circles can 
be represented as [3600].) Show the multiplicative 
relationship between the measuring units using the 
arrow notation.

b.  Now bundle the following quantity using the Baby-
lonian measuring units. To make these bundles, start 
with the largest measuring unit that fits in and deter-
mine how many fit in. Now move to the next smallest 
measuring unit. See how many fit in. Continue the 
process until the quantity is completely partitioned 
into parts equal in size to the measuring units. 

 O O O O O O O O O O O O O O O O O O O O

 O O O O O O O O O O O O O O O O O O O O

 O O O O O O O O O O O O O O O O O O O O 

 O O O O O O O O O O O O O O O O O O O O 

 O O O O O O O O O O O 

c.  Now in the second row of your place value chart in 
part (a), show the number of measuring units of each 
type that fit in, using the basic symbols of the Babylo-
nian numeration system. 

To provide additional feedback to the instructor about 
whether the appropriate quantitative relationships had 
been developed during instruction, problems that cannot 
be solved using only a symbolic numerical solution were 
added to the assignment. An example follows:

do you think the Babylonian numeration system 
could be used to assign a numeral to a quantity 
that is smaller than a measuring unit of size 1? 

how could you do that? (hint: Choose your mea-
suring unit of size 1 very carefully.) Use a place 
value chart and a quantity to show how this could 
be done. how do we do it in the hindu-arabic 
numeration system?

Why the Lesson Fix Should Reduce Variation

My observations of later lessons provide the best evi-
dence that including better designed student tasks will 
provide feedback to the instructors that will help reduce 
significant variations from the intended lessons. The 
student tasks assigned after Lesson 4 more clearly ask 
students to use their knowledge of relationships among 
quantities rather than just carry out numerical calcula-
tions. One of the instructors noticed that the students 
were having difficulty with these tasks and spontaneously 
began reinserting some of the activities on building rela-
tionships between physical quantities that the instructor 
had previously dropped.

An open question is whether reducing variation in the 
lessons will require both an elaboration of the learning 
goals (as described under Example 1) and a redesign of 
the student assignments (as I describe here). I conjecture 
that both these fixes are needed. Because multiple inter-
pretations of a written lesson plan are possible, redun-
dancy in lesson features that clarify the intentions of the 
curriculum authors can only serve to reinforce a reduc-
tion in significant variations.

Example 3: A Positive Adaptation for 
Modeling Partitioning Division
Why the Teacher Move Was Hypothesized to Be a 
Positive Adaptation

The third example illustrates how positive adaptations 
can be used to improve the quality of a curriculum. In 
Lessons 11-13, both instructors modeled partitioning 
division in a way that was not prescribed by the lessons 
but, in my judgment, better prepared the students for the 
conceptual development of the long division algorithm in 
Lesson 18. For the problem 0.8 ÷ 4 = ?, for example, the 
plans for Lessons 11-13 encouraged students to model 
the problem by either (a) drawing or making a quantity 
of size 0.8 and then partitioning it into four equal parts to 
determine the size of each part or (b) using a doling-out 
process. In the latter approach, students would model 0.8 
with eight longs (base ten blocks), for example, and then 
give one long to group 1, one long to group 2, one long 
to group 3, one long to group 4, one long to group 1, and 
so on until all the longs were distributed equally among 
the groups. When students extended this type of solution 
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to problems like 0.72 ÷ 4 =?, they thought of 0.72 as 72 
measuring units of size .01 and doled the 72 units out, 
one by one, to the four groups. Both instructors, however, 
presented an additional approach that was not prescribed 
in the lesson plans. They represented 0.72 as seven longs 
and two unit blocks, for example, and explained that only 
one long could be distributed to each of the four groups. 
To distribute the remaining three longs, they would have 
to exchange each long for 10 unit blocks, combine the 
resulting 30 unit blocks with the other 2 unit blocks, 
and then distribute the 32 unit blocks equally to the four 
groups. In general, they started with the largest measuring 
unit of a quantity, distributed as many as they could to 
the n groups, exchanged the remaining measuring units of 
that size for the next smallest measuring unit, combined 
them with the other measuring units of that size, distrib-
uted as many as they could to the n groups, and so on. 

I classified these teacher moves as a positive adaptation 
because they were more consistent with the principle 
that conceptual relationships among mathematical ideas, 
representations, and procedures must be made clear. The 
instructors’ approach to concrete modeling (with blocks, 
graph paper, straws, etc.) developed the concepts underly-
ing the long division algorithm, whereas in the original les-
son plans, there was a conceptual discontinuity between 
the modeling in Lessons 11-13 and the development and 
modeling of the long division algorithm in Lesson 18. 

Fixing the Lesson

Fixing the lesson means revising the lesson plans to incor-
porate the additional approach to modeling partitioning 
division. The approach was also included in the elaborat-
ed learning goals for Lesson 12, as part of the described 
actions and explanations that students are expected to 
display as they work toward achieving the learning goals. 
A rationale for the approach and its connection to the 
long division algorithm was added to make instructors 
aware of the connection.

Why the Lesson Fix Should Reduce Variation

Traditionally, teaching that deviates from a planned cur-
riculum and creates more effective learning opportuni-
ties remains a variant not replicated by other teachers. In 
fact, U.S. educators often celebrate teachers who invent 
more effective practices than those suggested by the cur-
riculum. But these practices usually remain the province 
of the inventor. By writing positive adaptations into the 
planned curriculum, these practices can be replicated by 
all teachers. The variation is reduced because it becomes 
standard practice. 

Discussion
Nature of the Evidence Gathered to Conduct This 
Work

I began the article by claiming that improving teaching 
requires both reducing the variation in teaching across 
classes with similar learning goals and raising the mean 
level of teaching. I would like to conclude by pointing out 
that different kinds of evidence can be used to address 
these two linked research and policy goals. Specifically, 
reducing variation among teachers requires evidence of 
teaching moves and student responses during instruction, 
whereas improving the mean level of teaching requires 
evidence of students’ achievement. The importance of 
this distinction is seen both in the design of research and 
in the expense of conducting it.

The work I described in this article focused on generating 
hypotheses about changes to the curriculum that would 
reduce variation in future enactments and increase stu-
dents’ achievement of the learning goals. I used teacher 
moves and student responses during the lesson as data 
to catch places in the lesson where instances of lack of 
fidelity occurred and to hypothesize whether they were 
significant variations or positive adaptations. Testing 
whether changes I proposed based on these hypotheses 
will reduce variation in the future requires further obser-
vations of teaching. This means that repeated observa-
tions of teaching, focused on instances of lack of fidelity, 
can be sufficient to generate and test hypotheses about 
implementation variations and how to reduce them. 

A value of this claim is that it allows teacher educators 
and teachers to study curricula by taking advantage of 
the natural variation that will occur as different instruc-
tors implement a shared curriculum with shared learn-
ing goals. Empirically based improvements in curricula 
require studying the effects of varying the curricula. Or-
dinarily, researchers plan variations and study the effects 
of these variations. The method I am describing comple-
ments this more expensive approach by simply observing 
and analyzing the variations that naturally occur in most 
teaching settings. 

Whether the fixes to the lessons that reduce variation 
raise the mean level of teaching quality across instructors 
requires, of course, assessments of students’ achievement. 
Do students across all sections of a course (or across any 
set of classrooms that share the same learning goals and 
use the same curriculum) achieve the learning goals more 
effectively after variation has been reduced than before? 
Collecting these data requires a phase of research not 
reported in this article but a phase that must follow the 
work reported here. 
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It should be noted, however, that reducing variation in the 
way I have described carries with it strong hypotheses that 
the mean quality of instruction will, in fact, improve. In 
simplistic terms, eliminating significant variations eliminates 
those aspects of the lesson plan that appear to unneces-
sarily dampen the learning opportunities for students, and 
inserting positive adaptations increases the learning oppor-
tunities for all students, not just those of the instructor who 
introduced the adaptation. Eliminating the weakest aspects 
of instruction from all classes and introducing stronger 
aspects of instruction into all classes should increase the 
average quality of instruction. But, as noted earlier, these 
are hypotheses that must be tested empirically.

I would like to make a final point about the critical role 
of empirical data in the process I have described. How 
to write learning goals so instructors do not misinterpret 
them, and how to write student assignments so teachers 
and students do not miss or bypass the intent, are em-
pirical questions. It is impossible to know whether one 
has succeeded without empirical observations because 
people are capable of interpreting written text in mul-
tiple ways. Writing shared learning goals and creating 
tasks that provide critical feedback to instructors are not 
usually thought of as empirical issues. I believe this is 
especially true of writing learning goals, so I would like to 
elaborate on this particular claim. Learning to write goals 
that are interpreted similarly by all instructors requires 
observing how instructors operationalize the goals during 
instruction. It is not just a matter of writing out the goals 
in more detail, or even a matter of including performance 
objectives with the learning goals. Rather, writing learning 
goals for which a shared understanding develops among 
instructors requires an empirical cycle of writing goals at 
a grain size that reduces misinterpretation and then ob-
serving multiple instructors and classes to learn whether 
the goals are enacted as intended and then modifying 
them according to the information gathered and then ask-
ing instructors to implement the lessons again, and so on. 
It is impossible to predict beforehand which goals will be 
interpreted in a common way and which will be inter-
preted in different ways. The empirical cycle of observa-
tions and revisions is essential for writing learning goals 
that enable shared understandings among instructors. 

Professionalizing Teaching

How does variation in teaching influence its professional-
ization? As noted earlier, some have argued that accept-
ing variation among teachers’ practices signals profes-
sional respect (e.g., Duffy & Hoffman, 1999; Lloyd et al., 
2009; Remillard, 2005). In this view, reducing variation 
implies diminishing teachers’ roles in making professional 
judgments about their own classrooms. But I, along with 
others (Shanker, 1997; Stigler & Hiebert, 1999), believe 

the process of improving teaching by reducing variation 
supports, rather than undermines, the professionalization 
of teaching. The goal of reducing variation is to improve 
the quality of teaching for all students. To paraphrase Al 
Shanker (1997), the goal is to make the best we know 
standard practice. 

Both cases I described in this report place teachers 
(teacher educators) in a position of making professional 
judgments about the relative quality of learning opportu-
nities. In one case, the lesson plan (or curriculum) failed 
to clarify for instructors the intent or the details of a les-
son. The task for teachers studying curriculum enactment 
is to recognize these deficiencies as they play out in the 
classroom and to identify the features of the intended cur-
riculum that can be corrected or elaborated more clearly. 
In the second case, the task is to recognize a richer vari-
ant of the lesson as introduced by an instructor and build 
this into the shared curriculum. In both cases, the aim is 
to use teachers’ professional judgments to create steady 
and lasting improvements in the practices of teaching, a 
sure sign that teaching is being treated as a true profes-
sion. 

The Benefits of Studying Implementation and 
Making Small Changes

The findings reported in this paper might seem overly 
focused and narrow, and the changes to the curriculum 
small and obvious. The findings themselves are probably 
of little interest to teacher educators who do not share the 
same learning goals. But the real message of this paper is 
that this is exactly the nature and grain size of the work 
that needs to be done to improve the implementation 
of curricula—collecting details about implementation 
through empirical observations, using the observations 
to revise the curriculum and to revise theories of imple-
mentation, and repeating the process. This unglamorous 
nitty-gritty work usually produces only small changes, but 
these changes can build to produce a curriculum that is 
implemented in less varying ways across instructors and 
that eventually improves student achievement.

I believe this work can be conducted by teachers and 
teacher educators across a range of settings. What is 
required is that two or more teachers share the same 
learning goals for their students, teach using the same cur-
riculum, and differ in their understanding of the learning 
goals and the intention of the curriculum. These condi-
tions exist in many teacher education programs and in 
many K-12 school settings. Often the most experienced 
teachers, or the most reflective teachers, will have devel-
oped a deep understanding of the learning goals and the 
curriculum. These teachers are able to develop informed 
hypotheses about variations from the intended curriculum 
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that either raise or lower the learning opportunities for 
students. They can then propose curriculum changes to 
the group to reduce these variations. Finally, the effects 
of these changes can be tested through repeated observa-
tions and student assessments.

This work is not for those wishing for quick fixes. It is 
ongoing and yields small, incremental improvements. But 
the improvements are steady, can be preserved across 
changes in teachers, and can cumulate over time to yield 
substantial improvements in the quality of teaching and 
students’ learning.
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Lesson 5
Topic: Place Value II

learning Goals 
1. For based place-valued numeration systems, preservice teachers will extend the following understandings to non-

whole number numerals and to measuring units smaller than the basic measuring unit (the measuring unit of size 1). 

a.  Preservice teachers will understand that measuring units are quantities (physical amounts of stuff).

b.  Preservice teachers will understand that in any base b place-valued system, there is a b times relationship 
between the measuring units. They will understand that, for a given measuring unit, we can construct the next 
largest measuring unit by making b copies of the given measuring unit. They will understand that, for a given 
measuring unit, we can construct the next smallest measuring unit by partitioning the given measuring unit 
into b equal parts. One of these parts will be equal to the next smallest measuring unit. They will understand 
that b copies of a measuring unit fit into the next largest measuring unit. 

c.  The preservice teachers will understand that a quantity (amount of stuff) is assigned a numeral by decompos-
ing the quantity into parts equal in size to the measuring units and representing with the basic symbols how 
many measuring units of each type fit in.

2.  The preservice teachers will develop a deeper understanding of the idea of a basic measuring unit.

Preservice teachers will develop and show these understandings by (a) carrying out the following mathematical 
actions and (b) giving explanations that involve these actions: 

(the following actions and explanations are all within the context of based place-valued numeration systems.)

•		 Preservice	teachers	will	be	able	to	construct	measuring	units	smaller	than	the	basic	measuring	unit	(the	measuring	
unit of size 1). 

•		 Preservice	teachers	will	be	able	to	make	a	place-value	chart	that	includes	measuring	units	larger	and	smaller	than	
the basic measuring unit. The place-value charts should show the measuring units as pictures of physical amounts. 
The preservice teachers should clearly show how they constructed the set of measuring units; they should explain 
that they made b copies of a smaller measuring unit to find the size of the next largest measuring unit, or they 
should explain how they partitioned a larger measuring unit into b equal parts to find the size of the next small-
est measuring unit. Measuring units smaller than the basic measuring unit should be shown in the place-value 
charts as separate quantities, not as shaded parts of a whole where the whole is the next largest measuring unit. 
The place-value chart should also show the b-times relationship between all of the measuring units with the arrow 
notation. 

•		 Given	a	non-whole	number	numeral,	preservice	teachers	will	be	able	to	represent	the	numeral	with	their	con-
structed set of measuring units. They will represent the non-whole number portion of the numeral with measuring 
units that are shown as separate quantities, not as shaded parts of a whole, where the whole is the next largest 
measuring unit. 

•		 For	all	quantities	(i.e.,	including	quantities	that	are	represented	by	non-whole	number	numerals),	the	preservice	
teachers will be able to physically measure the quantities—that is, physical amounts of stuff—by physically parti-
tioning the quantity to be measured into parts equal in size to measuring units and determining how many of each 
type of measuring unit fit into the quantity. 

SUPPLEMENT
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•		 After	physically	measuring	a	quantity	in	this	way,	preservice	teachers	will	be	able	to	represent	the	measured	quan-

tity numerically by using the basic symbols of the system to show how many measuring units of each type fit into 
the measured quantity.

•		 Preservice	teachers	will	be	able	to	flexibly	use	a	variety	of	different-looking	quantities	to	represent	“1.”

•		 The	preservice	teachers	will	be	able	to	solve	a	series	of	challenging	problems,	which	are	posed	in	the	homework	
for this lesson, that require these ideas. 

Equipment
•		 100	straws	for	the	instructor	

•		 Rubber	bands

•		 Scissors	

Associated Files
•		 Lesson 4 Homework

•		 Handout 1 (one copy for each student)

•		 Handout 2 (one copy for each student)

•		 Lesson 5 Homework (one copy for each student)

Associated Text
•		 Handout	2

•  Mathematics for Elementary School Teachers, Bassarear, Section 2.3, pages 100–115 

Time: 0–30 min.
Activity Flow: Part 1; Based Place-Valued Numeration Systems; Sets of Measuring Units

Activity
Assign each group a problem on the Lesson 4 Homework. Ask them to put their solution on the board or on a trans-
parency. Have the groups present their solutions. Go over every problem. Do not skip problems, because the preser-
vice teachers should have numerous opportunities to practice explaining the relevant concepts.
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Student responses Suggested teacher responses

Students may use base ten language 
when they verbally refer to their nu-
meral. For example, for 203five, they 
say “two hundred three.”

If you say “two hundred three,” you are referring to a different quantity than “two zero 
three base five.” Two hundred three implies base ten, so the measuring units are differ-
ent sizes than the measuring units in base five. Even if you use the same basic measur-
ing unit for both bases, the other measuring units are different, so the quantities that 
are represented by the two numerals are different. 

Discussion of Problems 7 and 9c [equivalent quantities represented by different symbolic representations]

Student responses Suggested teacher responses

Students approach the conversions in 
a very procedural way. For example, 
they explain that the place values are 
generated by raising the base to the 
power of 0, 1, . . . n. Their answers 
may be correct, but they are unable 
to produce a conceptual explanation.

Procedures that are not developmentally appropriate will cause difficulties for your 
future students. Younger students will not know about exponents. Your explanation of 
the meaning of the numerals requires an understanding of the meaning of the numer-
als. For example, you are explaining that “‘10’ means one group of ‘10.’” But if I do 
not know what the symbol “10” means, the explanation is not helpful. When you are 
trying to explain the meaning of numerals to young children, it is more appropriate to 
explain the meaning of numerals in terms of quantities—for example, to show them 
what measuring units are associated with each place value and what the digits in a 
numeral tell you about the number of measuring units.

On Problem 9c, some students are 
unable to convert 102four to base 
seven without converting it to base 
ten first and take a numerical ap-
proach rather than a quantity-based 
approach. They write that 102four is 
equal to (1 × 16) + (2 × 1) = 18. Then 
they set up a place-value chart with 
the numerals 1 and 7 written in for 
the measuring units. Then they deter-
mine that the base seven numeral for 
18 is 24seven.

This is an excellent solution, but it is based on understandings about numerical rep-
resentations and arithmetic. Let’s also develop a solution that is based on understand-
ings about quantities and how numerals represent quantities. You begin by choosing 
an appropriate/convenient basic measuring unit. You might choose a single straw to 
represent your basic measuring unit. Now let’s make a place-value chart and draw the 
measuring units for base four. (Ask the students to help you create the measuring units 
for base four and draw them in the first row of the place-value chart.) Let’s put the 
digits of our numeral in the second row of our place-value chart under our measuring 
units. This helps us to remember what 102four means. The numeral 102four means 
there are two basic measuring units, zero bundles of the measuring unit of size 10four 
(the measuring unit that is equal in size to four basic measuring units), and one bundle 
of the measuring unit of size 100four (the measuring unit that is equal in size to 16 
basic measuring units or four measuring units of size 10four.) (Draw this quantity on 
the board, bundled into the measuring units of base four.) We need to unbundle and 
rebundle this quantity, using the measuring units for base seven. Let’s make another 
place-value chart, showing the measuring units for base seven. Using the same basic 
measuring unit of one straw, what is the next largest measuring unit for base seven? 
(Draw it in the place-value chart.) What is the next largest measuring unit? (Draw it in 
the chart.) What is the biggest measuring unit that will fit into the [now unbundled] 
quantity of straws? Yes, the measuring unit of size 10seven. (Circle measuring units of 
size 10seven in the unbundled quantity to show the measuring of this quantity.) Now 
we go to the next smallest measuring unit. This is the basic measuring unit. Will any 
basic measuring units fit into the remaining amount? We see that four basic measuring 
units fit in. Consequently, our base seven numeral would look like this: 24seven. (Write 
24 in the place-value chart under the appropriate measuring units to help the students 
understand the meaning of the numeral.) So the very same quantity is represented by 
different numerals in the two bases. The only difference is that we measure the quan-
tity with different-sized measuring units. We bundle it differently, but in both cases, 
the numeral conveys to others how many bundles we have of each type.
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Time: 30–50 min.
Activity Flow: Part 2; Based Place-Valued Numeration Systems; Place Values  
Less Than One 

rationale
This activity addresses the learning goals. It extends the preservice teachers’ understandings about whole-number 
place values and numerals (understandings about measuring units, the relationship between measuring units, how to 
construct measuring units from other measuring units, the meaning of the basic symbols in a numeral, and the idea 
that a quantity is assigned a numeral by decomposing the quantity into parts equal in size to the measuring units and 
representing with the basic symbols how many measuring units of each type fit in) to non-whole number place values 
and numerals. The activity is intended to reinforce the idea of bundling or copying b measuring units to create the next 
largest measuring unit in base b and the idea of partitioning a measuring unit into b equal parts in order to create the 
next smallest measuring unit in base b. 

The preservice teachers should see that numerals smaller than 1 are not an anomaly or frightening—that numerals 
less than 1 reflect the same relationships discussed previously and the basic symbols mean the same thing. By first 
working with an unfamiliar numeration system (base three), they develop more explicit understandings about based 
place-valued numeration systems and measuring units smaller than the basic measuring unit. (In addition, the use of 
an unfamiliar numeration system is designed to develop further preservice teachers’ ability to recognize (a) that several 
component understandings are involved in representing quantities with numerals, in counting, and in computing with 
the standard algorithms, (b) that these understandings are not trivial or easily acquired, and (c) why children might 
experience difficulties as they try to develop these understandings.) 

Activity
In this activity, students will model the structure of a base three system with straws. After a review of how measuring 
units are created in a base b system, they will figure out how measuring units smaller than the basic measuring unit 
are generated. The instructor will need straws, rubber bands, and scissors, as students at the board will be physically 
bundling and cutting straws to form base three measuring units.

 We have been thinking about how to represent quantities with numerals. However, up to now we have only 
represented quantities that were equal to or bigger than the basic measuring unit. Today we will discuss how to 
represent with numerals quantities that are smaller than the basic measuring unit. Let’s think about how we count 
in base three, and how we bundle quantities using the base three measuring units. 

Call three students to the board. Line them up (as shown in the diagram below). 

 Let this spot be for the basic measuring unit [Anne’s place]. (Draw a straw over Anne’s head.) This will be the basic 
measuring unit. What will the next measuring unit look like? (Draw the measuring unit of three straws over Ste-
phen’s head.) And the next? 

Draw the measuring unit of nine straws over Laura’s head. Your final display on the board should look like the diagram 
below. Emphasize that they obtained the measuring units by making the next measuring unit three times as big as the last.

 
   III I III   III   III  

Stephen Anne Laura 
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 I am going to hand straws to Anne. As I hand each additional straw to Anne, tell me how we would represent the 
new amount using the measuring units of base three. In addition, as I hand the straws to Anne, help me count the 
amounts in base three.

Hand 14 straws to Anne, one by one. Focus students’ attention on the bundling and counting of the straws. As each 
straw is handed to Anne, the students should say the appropriate word in the counting sequence in base three. In ad-
dition, the students should explain what should be done when Anne is given the third, sixth, ninth, and twelfth straws. 
Attention should be drawn to the need to rebundle the straws to form bigger measuring units. The instructor may want 
to say something like: 

 I am giving Anne the first straw. So that’s 1three. Now I’m handing her the second straw. That’s 2three . Now I’m 
handing her another straw. How many straws does Anne have? Can she hold this many? Why not? In base three, 
any given place value can hold no more than two of the corresponding measuring units, so when she is given the 
third straw, she must bundle them together and pass them to Stephen, who now has one measuring unit. What 
numeral represents this quantity? [10three]

Anne should put a rubber band around the three straws and pass the bundle to Stephen. Similar statements can be 
made for subsequent amounts that require rebundling straws. The students will describe how to rebundle the quanti-
ties on their own; however, it helps to summarize their responses with these kinds of statements.

After the 14 straws have been handed out and counted, ask for two more volunteers, who will represent 2 measuring 
units smaller than the basic measuring unit. Have them stand on the other side of Anne. Point to the measuring units 
for the three students who are holding straws. Ask the class what the fourth student’s measuring unit (Sam’s measuring 
unit) should be [the measuring unit for the place to the right of the ones place]. 

 So what does Sam’s measuring unit look like?

Sam should make the measuring unit for his place. [Sam should decide to use the scissors, cut a straw into three equal 
pieces, and explain that one of the equal pieces is the measuring unit for his place because it is three times as small 
as the next largest measuring unit.] If the student (or class) fails to suggest this, remind the class of the relationship 
between the sizes of the measuring units in base three. You may use the expression “one third of the basic measuring 
unit,” but be sure to also use the “3 times as small” language to be consistent with the construction of measuring units 
that are larger than the basic measuring unit. Now ask the class what the measuring unit for the fifth person (Tom) 
should look like.

 So what does Tom’s measuring unit look like?

Tom should make the measuring unit for his place. After Tom has made the measuring unit and explained his solution, 
draw the measuring units on the chalkboard above Sam and Tom. Next write the numerals for the measuring units 
for Anne, Stephen, and Laura on the chalkboard next to the quantities that were drawn earlier (i.e., 1three, 10three, 
and 100three, respectively). Extend the students’ understanding of whole-number place values (measuring units, the 
relationship between the measuring units, and the numerals that are associated with each place value) to non-whole 
number place values:

 Why could we possibly need measuring units smaller than the basic measuring unit? What need could have moti-
vated people to invent the idea of a measuring unit smaller than one? [Elicit the students’ answers.]

 When based place-valued numeration systems were extended to represent quantities smaller than one, people 
needed a convention to convey that they were using measuring units smaller than the basic measuring unit. If they 
wanted to measure and represent quantities smaller than the basic measuring unit, they would need smaller mea-
suring units, and they would have to have a way to represent these smaller quantities with numerals. They solved 
this problem by placing a dot after the “ones” place value. In our system, we call this a decimal point because 
we are in base ten. Since we are in base three now, we will call this a “tricimal point.” What is the numeral that 
is associated with this measuring unit? [Point to the measuring unit for the 0.1three place. The students should say, 
“0.1three.”] What is the numeral that is associated with this measuring unit? [Point to the measuring unit for the 
0.01three place. The students should say, “0.01three.”] Write these numerals on the board over the students’ heads.
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 Recall the labels for the whole-number place values, those to the left of the “tricimal point.” We read these as 

“one base three,” “one zero base three,” “one zero zero base three.” The symbolic representations—that is, the 
numerals— are 1three, 10three, 100three.

 So if we try to keep the same pattern, how can we represent the place values to the right of the “tricimal point” in 
base three? 

 The word labels are “zero point one base three,” “zero point zero one base three.” The numerals are 0.1three, 
0.01three.

 Do you see how this pattern is identical to the base ten numeration system? Why is that the case? What do the 
digits mean, and why would the measuring units in any base be assigned the same numerals? [Because one mea-
suring unit of size x would fit into a measuring unit of size x.]

Next ask the five students to represent the following numeral with straws: 112.22three. Be sure that the students explain 
how the straws are related to the numeral; their explanation should refer to the measuring units for each place and the 
meaning of the digits. 

Summarize the students’ explanation, and emphasize that the numeral means 1 of this measuring unit, 1 of this mea-
suring unit, 2 basic measuring units, 2 of this measuring unit, and 2 of this measuring unit. In other words, each digit in 
the numeral tells you how many measuring units there are of each size.

Now ask students: 

 What does 112.22three + 1three equal?

Write this number sentence on the board. Give the class some time to think about the problem. Then ask the students 
at the board to show the addition and the rebundling that must occur. [The students are already holding the straws for 
the numeral 112.22three, so Anne should pick up a straw from the table. Anne cannot hold three straws, so she will 
have to put a rubber band around them and pass them to Stephen. The students should determine the numeral for the 
new quantity [120.22three].]

Pose one more task. The students at the board are currently holding straws that are represented by the numeral 
120.22three. Ask the students to add 0.01three to this quantity. What is the numerical representation of this new quan-
tity? 

[The new quantity is 121three.] After the class has had time to find a solution, have the five students show the addition 
and the regroupings that must occur in the various place values. Tom needs to begin the process by adding 0.01 to the 
amount he already holds.

Ask them to relate what they just did to the solution process used when solving the problem with the standard algo-
rithm for addition:

120.22three

+ 0.01three

First, have the five students start over; they should each hold the correct number of straws to represent 120.22three. 
Now hand Tom 0.01three. This represents the first step of the algorithm—adding 2 measuring units of size 0.01three to 
1 measuring unit of size 0.01three. The instructor should carry out the steps of the algorithm on the board and ask the 
students to explain and illustrate the steps with the straws. 

Instructor:  I added 2 measuring units of size 0.01three to one measuring unit of size 0.01three. What happens 
next? 

Tom:  I need to bundle the 3 measuring units and give them to Sam, who will exchange them for one mea-
suring unit of size 0.1three. Now I have no measuring units of size 0.01three. 
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Instructor:  How do I indicate that in the algorithm?

Tom:  Write a 0 in the 0.01three place of the answer and write a little 1 above the 0.1three place to indicate 
the exchange of 3 measuring units of size 0.01three for one measuring unit of size 0.1three.

Instructor:  OK, I did that. Now what?

Sam:  I was already holding 2 measuring units of size 0.1three, so after Tom hands me his, I now have 3 
measuring units of size 0.1three. But I can’t hold three. So Anne takes them and exchanges them for 1 
measuring unit of size 1three. 

Instructor:  How do I show that in the algorithm?

Sam:  Write a 0 in the 0.1three place, because I no longer have any measuring units after the exchange. 
Write a little 1 above the ones place to indicate the exchange of 3 measuring units of size 0.1three for 
1 measuring unit of size 1three. 

Instructor:  OK, I did that. Now what?

Anne:  I had 0 measuring units of size 1three, but I was handed 1 by Sam, so I now have 1 measuring unit of 
size 1three. So in the algorithm, add 0 and 1 to get 1 in the ones place of the answer.

Stephen:  Two measuring units of size 10three and 0 measuring units of size 10three is 2 measuring units of size 
10three, so write a 2 in the 10three place.

Laura:  One measuring unit of size 100three plus 0 measuring units of size 100three is 1 measuring unit of size 
100three, so write a 1 in the 100three place of the answer. 

Ask the students at the board to return to their seats.

Time: 50–75 min.
Activity Flow: Part 3; Based Place-Valued Numeration Systems and Measuring Units For 
Places to the Right of the Point

Rationale
In this activity, students are asked to solve problems in base three and then in base ten. By first working in an unfamil-
iar system (base three), they develop more explicit understandings about based place-valued numeration systems and 
measuring units smaller than the basic measuring unit. When the students subsequently work in base ten, they can 
make connections between the base ten system and what they learned in base three, and transfer the more explicit 
understandings to base ten.

Activity
In this activity, the students create sets of measuring units, including measuring units smaller than the basic measuring 
unit, and represent numerals with their measuring units.

 In this activity we will apply what we just learned.

Distribute Handout 1.

Have the groups work on these two problems. All groups should put their solutions on the board while they are work-
ing so the instructor can monitor their understanding. After the activity, the instructor should choose a solution to go 
over, modeling appropriate language for the students. 
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Time: 75 min.
Activity Flow: Part 4; Conclusion and Homework

Rationale
Students need to have experiences with many representations of basic measuring units, different bases, and many 
types of problems (e.g., finding the basic measuring unit when they are given the quantity that is represented by 0.1, 
and vice versa) to become flexible in their ability to interpret the meanings of decimals. This homework assignment 
provides these experiences. The students need time to independently grapple with these situations. They also need 
to work on a number of challenging, nonstandard problems that will help them recognize what they do and do not 
understand about decimals. (This assignment may be hard for the students.)

activity
Explain that we will shift our focus to the four basic operations in the next lesson. Therefore, the homework assign-
ment offers more practice with constructing sets of measuring units for whole-number and decimal place values, but it 
also prepares them for the next topic by asking them to model some addition problems. 

Hand out Lesson 5 Homework and Handout 2.

Problem 1

Student responses Suggested teacher responses

The student is confused because the basic measuring unit 
is not a straw, and “has parts.” That is, the basic measuring 
unit consists of nine boxes. The student’s idea of “one” is one 
discrete unpartitioned object, and the basic measuring unit in 
this case does not match that description. The “nineness” is a 
perceptual distracter that interferes with the student’s ability 
to view the quantity as the “one” and to apply the “3 times 
as big” relationship idea to this quantity. The student cannot 
generate the other measuring units.

Ask the student to construct a place-value chart with the 
measuring units. This helps the student focus on making the 
basic measuring unit 3 times as big. You should help the stu-
dent understand that making a quantity 3 times as big always 
involves copying or repeating the quantity 3 times, and the 
way that it looks is irrelevant; it is the amount that matters, 
and this amount must be made 3 times as big. 

The student extends vague understandings about base ten and 
base ten blocks to the problem. The student uses one box to 
represent the 0.1.

“Wouldn’t 0.1 be one of these blocks [in the rectangle with 9 
blocks], since the basic measuring unit, or 1, is 9 blocks?”

Remind the student of the relationship between the measur-
ing units in a base b system. What base are you in? So what is 
the relationship between the measuring units?

Remind the student of the construction of the base three mea-
suring units completed earlier: What quantity is serving the 
same role as the straw? 

Problem 2

Student responses Suggested teacher responses

The most common problem is that students are unable to iden-
tify the basic measuring unit.

Direct them to the “times as big/as small” relationship for the 
set of measuring units. Ask them to construct a place-value 
chart and to draw the given measuring unit in the chart. How 
can you find the other measuring units?

The students build the set of measuring units correctly, but 
their solution for 4.32 is inconsistent with their set of measuring 
units. 

Ask them to construct a place-value chart that shows their 
measuring units. Then ask them what the digits in 4.32 mean. 
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Lesson 4 Homework
1.  Make a place-value chart for a base five numeration system. To do this, first choose a basic measuring unit. Now, 

in the first row of the place-value chart, use your basic measuring unit to draw the measuring units for the 1five 
place, the 10five place, and the 100five place. These measuring units should be shown as pictures of amounts of 
stuff, not as numerals. Now show the multiplicative relationship between the measuring units by drawing arrows 
between the measuring units and labeling the arrows “× 5.”

2.  Using your measuring units from #1, build the quantity represented by the base five numeral 203five. To do this, 
first write the basic symbols 2, 0, and 3 in the second row of your place-value chart under the appropriate mea-
suring units. The 2 should be written in the second row, under the drawing of the measuring unit of size 100five. 

 The 0 should be written in the second row, under the drawing of the measuring unit of size 10five. The 3 should 
be written in the second row, under the drawing of the measuring unit of size 1five. Now you can easily see that 
the numeral 203five means 2 of the drawn measuring units of size 100five, 0 measuring units of size 10five, and 3 
measuring units of size 1five. So now draw the quantity represented by the numeral 203five. 

Place-value chart with pictures of the measuring units in the first row, arrows in the first row, and basic symbols in the 
second row:

Now draw the quantity represented by the numeral 203five: 

3.  Using your measuring units from #1, build the quantity represented by the base five numeral 34five. Use the same 
steps that were described in #2 above. 

Place-value chart with pictures of the measuring units in the first row, arrows in the first row, and basic symbols in the 
second row:

Now draw the quantity represented by the numeral 34five:

4.  Count from 34five to 203five. That is, write the numerals from 34five to 203five. If this is hard for you, how can you 
use your place-value chart to help you figure out the next numeral? 

5.  Using the same basic measuring unit that you used in #1 for the base five numeration system, make a place-value 
chart for a base three numeration system. To do this, in the first row of the place-value chart, use your basic mea-
suring unit to draw the measuring units for the 1three place, the 10three place, the 100three place, and the 1000three 
place. These measuring units should be shown as pictures of amounts of stuff, not as numerals. Now show the 
multiplicative relationship between the measuring units by drawing arrows between the measuring units and label-
ing the arrows “× 3.”

6.  Using your measuring units from #5, build the quantity represented by the base three numeral 201three. To do this, 
first write the basic symbols 2, 0, and 1 in the second row of your place-value chart under the appropriate mea-
suring units. The 2 should be written in the second row, under the drawing of the measuring unit of size 100three. 
The 0 should be written in the second row, under the drawing of the measuring unit of size 10three. The 1 should 
be written in the second row, under the drawing of the measuring unit of size 1three. Now you can easily see that 
the numeral 201three means 2 of the drawn measuring units of size 100three, 0 measuring units of size 10three, and 
1 measuring unit of size 1three. So now draw the quantity represented by the numeral 201three. 

Place-value chart with pictures of the measuring units in the first row, arrows in the first row, and basic symbols in the 
second row:

Now draw the quantity represented by the numeral 201three: 
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7.  Explain why 34five and 201three represent the same amount (the same quantity or amount of stuff; compare your 

answers to #3 and #6).

8.  Count from 201three to 2201three. 

9.  Suppose the length below represents the basic measuring unit:                     

a.  Using this basic measuring unit, make a place-value chart for a base four numeration system. In the first row 
of the place-value chart, use your basic measuring unit to draw the measuring units for the 1four place, the 
10four place, and the 100four place. These measuring units should be shown as pictures of amounts of stuff, 
not as numerals. Now show the multiplicative relationship between the measuring units by drawing arrows 
between the measuring units and labeling the arrows “× 4.”

b.  Now using your place-value chart, draw the quantity that is represented by the base four numeral 102four.

c.  Now convert 102four to a base seven numeral by drawing pictures. (Hint: Rebundle your quantity in part (b).)

(Return to p. 85)
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Handout 1

Suppose the basic measuring unit in a base three system is this area:

a.  Build a set of measuring units for the two places to the left of, and two places to the right of, the “tricimal 
point.” In other words, the quantity that is represented by 1three is given, and you need to build the quantities 
that are represented by the numerals 10three, 0.1three, and 0.01three. Show the measuring units in a place-val-
ue chart and use an arrow between the measuring units to show the multiplicative relationship between the 
measuring units. 

b.  Use the set of measuring units that you constructed in part (a) to build the quantity that is represented by the 
numeral 12.12three. First, write these basic symbols in the second row of the place-value chart in part (a) under 
the appropriate measuring units. Then, in the space below, draw the quantity that is represented by 12.12

three
. 

2.  Suppose that in a base ten system, the measuring unit that is represented by the numeral 10 is this area: 

a.  Build a set of measuring units for the two places to the left of, and two places to the right of, the “decimal” 
point. In other words, the quantity that is represented by 10 is given, and you need to build the quantities that 
are represented by the numerals 1, 0.1, and 0.01. Show the measuring units in a place-value chart and use an 
arrow between the measuring units to show the multiplicative relationship between the measuring units. 

b.  Use the set of measuring units that you constructed in part (a) to build the quantity that is represented by the 
numeral 4.32. First, write these basic symbols in the second row of the place-value chart in part (a) under the 
appropriate measuring units. Then, in the space below, draw the quantity that is represented by 4.32.

(Return to p. 85)
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Handout 2

Modern Based Place-Valued Numeration Systems, Basic Measuring Units,  
and Sets of Measuring Units

developing a based, place-valued numeration system:

First, some quantity (a straw, a dot, a sheep) is chosen (often because it is convenient) and called the basic measuring 
unit [BMU]. 

A fixed number is chosen that corresponds to the number of basic symbols that will be used in the system. This num-
ber is called the base [b].

Each place in a numeral is associated with a measuring unit [MU], which is its place value. The place directly to the 
left of the point is associated with the BMU and is called the ones place. In any base, the BMU is a particular quantity 
that is considered “one.”

Every other place is associated with a quantity that is constructed from the BMU. This quantity is called a measuring 
unit [MU].

In base b, orienting oneself at the ones place and the BMU, the next largest measuring unit [MU] is constructed by 
grouping together b copies of the BMU. Then, this new MU has a magnitude that is b times as big as the BMU. Each 
successive place to the left of the ones place corresponds to the next largest MU. Its place value is b times as big as the 
place to its immediate right. 

Again, orienting oneself at the ones place and the BMU, the next smallest measuring unit is constructed by partitioning 
the BMU into the fixed amount (b) equal parts and choosing one of these parts. Then this new MU has a magnitude 
that is b times as small as the BMU. Each successive place to the right of the ones place corresponds to the next small-
est MU. Its place value is b times as small as the place to its immediate left. 

A set of MUs is formed that consists of the BMU and the MUs constructed as above, and is such that each new MU 
has a magnitude that is b times as big or as small as the adjacent MUs (on its right and left, respectively).

Suppose one chooses a BMU and constructs sets of MUs for based place-valued numeration systems with different 
bases. Once the BMU has been identified, then it is the quantity that represents “1” or “one.” Its size is completely 
independent of the chosen base. However, the different based place-valued numeration systems are distinguished by 
how the corresponding set of MUs is constructed. The quantity of the groupings required to move to the next bigger 
or next smaller place is different. That is, the size of the MUs associated with each of the place values changes among 
different based systems. 

In base b, the numeral 10 and the words “one-zero” mean 1 group of the quantity that is b times as big as the BMU 
and zero groups of the BMU. The numeral 0.1 and the words “zero point one” mean 1 group of the quantity that is b 
times as small as the BMU and zero groups of the BMU.

Examples: Let a straw be the BMU. Then the straw is “one” and is represented by 1b. 

Example 1: Consider a set of MUs for base ten. 

•		 The	BMU is a straw, so a straw is represented by “1ten” or “one.” 

•		 The	next	larger	place is associated with a MU that is the quantity of 10 straws, and is represented by “10ten” or the 
“one-zeros” place. Continuing with this construction, then the next largest place is associated with the quantity of 
10 groups of 10 straws, or 1 group of 100 straws. It is represented by “100ten” or the “one-zero-zeros” place, etc. 
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•		 The	next	smallest place is associated with the quantity that is one tenth the size of one straw or 10 times as small 
as one straw. It is represented by “0.1ten” or the “zero-point-one” place. Continuing with this construction, the 
next smallest place is associated with an MU equal to the quantity that is one tenth of one tenth of one straw, 
or one hundredth of one straw, or one hundred times as small as one straw. It is represented by “0.01ten” or the 
“zero-point-zero-ones place.”

Example 2: Consider a set of MUs for base three. 

•		 The	BMU is a straw, so a straw is represented by “1three” or “one.”

•		 The	next	larger	place is associated with a MU that is the quantity of three straws, and is represented by “10three” 
or the “one-zero base-three” place. Continuing with this construction, then the next largest place is associated 
with the quantity of three groups of three straws or one group of nine straws. It is represented by “100three” or the 
“one-zero-zero base-three” place, etc. 

•		 The	next	smallest place is associated with the quantity that is one third the size of one straw or three times as 
small as one straw. It is represented by “0.1three” or the “zero-point-one base-three” place. Continuing with this 
construction, the next smallest place is associated with an MU equal to the quantity that is one third of one third 
of one straw, or one ninth of one straw, or nine times as small as one straw. It is represented by “0.01three” or the 
“zero-point-zero-one base-three” place.

Example 3: Consider a set of MUs for base seven. 

•		 The	BMU is a straw, so a straw is represented by “1seven” or “one.”

•		 The	next	larger	place is associated with a MU that is the quantity of seven straws, and is represented by “10seven” 
or the “one-zero base-seven” place. Continuing with this construction, then the next largest place is associated 
with the quantity of seven groups of seven straws or one group of 49 straws. It is represented by “100seven” or the 
“one-zero-zero base-seven” place, etc. 

•		 The	next	smallest place is associated with the quantity that is one seventh the size of one straw or seven times as 
small as one straw. It is represented by “0.1seven” or the “zero-point-one base-seven” place. Continuing with this 
construction, the next smallest place is associated with an MU equal to the quantity that is one seventh of one 
seventh of one straw, or one forty-ninth of one straw, or forty-nine times as small as one straw. It is represented by 
“0.01seven” or the “zero-point-zero-one base-seven” place.

(Return to p. 85)
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Lesson 5 Homework

1.  Suppose the basic measuring unit is given as this area:

a.  Build the quantity that is represented by 4.2 in a base ten system. Make a place-value chart first.

b.  Build the quantity that is represented by 4.2 in a base five system. Make a place-value chart first. 

2.  Suppose the measuring unit that represents the quantity 0.1 in a base ten system is this area: 

a.  Construct the measuring units for the ones place, the tens place, and the hundredths place.

b.  Draw the quantity that is assigned the numeral 1. 

3.  Suppose the measuring unit that represents the quantity 10six in a base six system is this area:

a.  Find and show the basic measuring unit. 

b.  Build the quantity that is represented by 13.3six. Make a place-value chart first. 

4.  Why do the numerals 0.6 and 0.60 represent the same amount?

5.  Teachers use base ten blocks, shown below, to help children understand the relationship between the measuring 
units in our system. 

“Flat” “Long” “Unit”
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a.  Suppose the basic measuring unit is a “unit” (which is how the blocks are typically used in the lower grades). 
How many flats and units would you use to represent the quantity [1210] if you could only use those measur-
ing units?

 Flats                                 Units                               

b.  Suppose the basic measuring unit is a “flat.” How many “units” would you use to represent the quantity [0.18] 
if you could only use “units”? 

 Units                               

 Why is 0.18 called “eighteen hundredths”? 

c.  Suppose the basic measuring unit is a long. What is the numerical representation of the quantity  
below?                                                                  

d.  Suppose the basic measuring unit is a flat. What is the numerical representation of the quantity in  
part (c)?                                                         

e.  Suppose the basic measuring unit is the next-sized block, the “large cube,” which is equal to 1000 “units.”  
What is the numerical representation of the quantity in part (c)?                                                         

6.  Consider the following quantity. 

a.  Let the area of the long be the basic measuring unit in base ten. 
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Make a place-value chart that shows your measuring units:

 Now in the picture below, show how the quantity would be bundled with your measuring units: 

 Now write the base ten numeral for this quantity:                                                          

b.  Now represent the same amount of stuff with a base four numeral. Use the same basic measuring unit from 
part a. That is,  is still your basic measuring unit. 

 Make a place-value chart that shows your measuring units:

 Now in the picture below, show how the quantity would be bundled in the base four system with your  
measuring units: 

 Now write the base four numeral for this quantity:                                                         
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7.  As we saw in #5, the quantity that you choose for the basic measuring unit (or “one”) affects the numerical repre-
sentation of all other quantities.

a.  Let ☐ be the basic measuring unit. Represent the quantity below with a numeral in base three. First make a 
place-value chart that shows your measuring units for base three. Then bundle the quantity using your mea-
suring units. Then write the base three numeral for the quantity. 

 Place-value chart that shows your measuring units for base three:

 What is the base three numeral for this quantity?:                     

b.  Now let ☐ ☐ ☐ be the basic measuring unit. Again, represent the quantity below with a numeral in base 
three (same quantity as in part a). First make a place-value chart that shows your measuring units for base 
three. Then bundle the quantity using your measuring units. Then write the base three numeral for the  
quantity. 

 Place-value chart that shows your measuring units for base three:

 What is the base three numeral for this quantity?:                      

8.  Suppose you are trying to represent this quantity of liquid (below) in base ten. You let the basic measuring unit be 
one cup. Make a place-value chart that shows all of the measuring units that you need as you try to find a base 
ten numeral for this quantity, and explain how you found a base ten numeral for this quantity. What is the base ten 
numeral for this quantity?

One cup

From your work on this problem, 
explain why we get “repeating decimals.”

One third
of a cup

From your work on this problem, explain why we get repeating decimals.

9.  In the next lesson, we will start looking at the meaning of addition and subtraction. Imagine you are a six-year-old. 
How would you solve the following story problems with objects (e.g., building blocks, pennies, lengths of ribbons, 
base ten blocks, lengths on a number line, volumes of water)? 
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For each problem, answer the following questions:

1.  Describe the actions that you performed on the objects. 

2.  What did you use for your basic measuring unit in each problem?

a.  Josh had six cookies. His mom gave him five more. How many cookies does Josh have altogether?

b.  Five cows are in a field. Three are standing and the rest are lying down. How many cows are lying down?

c.  Dave had thirteen gumdrops. He gave four to Cheryl. How many gumdrops does he have left?

d.  Megan had some markers. She gave six to Janet. Now she has nine left. How many markers did she have to 
start with?

e.  There are four SUVs, two pickup trucks, and six cars in a parking lot. How many vehicles are there in the lot 
in all? 

f.  There were four SUVs in a parking lot. Two pickup trucks and six cars pull into the parking lot. How many 
vehicles are now in the lot?

g.  Darnell has some red and green grapes. Two pounds are green and three pounds are red. How many pounds 
of grapes does he have in all?

h.  Joe has six balloons. His sister Connie has nine balloons. How many more balloons does Connie have than 
Joe?

i.  Sean has four more pennies than Meg. Meg has eight pennies. How many pennies does Sean have?

(Return to p. 85)
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