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ENHANCING DISCOURSE ON EQUATIONS
The algebraic procedures used to solve such equa-
tions as 3(x – 1) + 7 = 2x + 1 are emphasized in alge-
bra; but students, teachers, and textbook authors
rarely engage in sufficient discourse about the pro-
cess, its justification, and the meaning of equation
and solving an equation. The extent of the vocabu-
lary of written mathematics seems to be “solve the
equation” or “simplify the equation,” with few alter-
native verbalizations or visualizations that describe
the procedures. The process of writing equivalent
equations seems to be interpreted only as a way to
read the solution—that is, the value of x—directly.

The process of solving an equation is a rich set-
ting for mathematical discourse that develops and
interrelates the concepts of an equation, a solution
of an equation, equivalent equations, properties of
equalities, and properties of number systems. Graph-
ing technology can supply a context that stimulates
and enhances a discussion of significant algebraic
concepts focused on the following questions: 

• What is an equation? 
• What is a solution of an equation? 
• What does it mean to say that two equations are

equivalent? 
• How do the use of the addition and multiplica-

tion properties of equality affect the equation,
the graph, and the solution? 

• How do the use of properties of number systems
affect the equation, the graph, and the solution?

Examples similar to the following were used
with preservice secondary mathematics teachers to
explore and extend their use of discourse on the
topic of equations. The equation 3(x – 1) + 7 = 2x + 1
can be solved graphically by considering the left
side and the right side as separate functions of x:
f1(x) = 3(x – 1) + 7 and f2(x) = 2x + 1. See figure 1.
Discussion can center on the graphs of these two
functions. The meaning of equation and solution of
equation can be generated verbally, often painstak-
ingly, for students who have not previously consid-
ered this representation. 

The graphs present a complex situation for inter-
pretation. Each graph represents an infinite set of
ordered pairs. At the point where the two graphs
intersect, the value of x establishes the same func-
tional values on each side of the original equation

and on the graph. The solution of the equation is the
value of x for which the y-value of each function—
each side of the original equation—is the same. 

Students can see by the distributive property that
the original left side is equal to 3x + 4, which leads
to the equivalent equation 3x + 4 = 2x + 1, so stu-
dents next consider the functions f3(x) = 3x + 4 and
f2(x) = 2x + 1. Students can discuss how this pair of
equations and their graphs relate to the original
pair and what effect using the distributive property,
or similar properties of number systems, has on the
graphical representation of an equation. Students
should see that replacing 3(x – 1) + 7 by 3x + 4 has
no effect on the graph, so the new pair of graphs
has the same intersection point as the original pair. 

Students should see the effect that occurs if they
continue to follow the usual procedure for solving
the original equation by using the addition property
of equality. They obtain another equivalent equation
by adding –2x to both sides of 3x + 4 = 2x + 1 to get
x + 4 = 1. Both sides of this new equation give new
functions, f4(x) = x + 4 and f5(x) = 1; graphing these
new functions along with the original pair leads to
a discussion of the effect of using the addition prop-
erty of equality on graphs. See figure 2. Teachers
should be certain that students understand which
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Fig. 1
Graphs of f1(x) = 3(x – 1) + 7 and f2(x) = 2x + 1
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A BERNOULLI INVESTIGATION
When teaching probability, I occasionally try to
expose students to problems that have counter-
intuitive results. One day, while the class was study-
ing Bernoulli’s formula for binomial probability, I
posed the following question:

A basketball player makes 75 percent of her free
throws. What is the most probable number of
free throws for her to make in her next ten
attempts?

Before the students worked on the problem, we
discussed what their intuition told them that the
answer might be. Predictably, one student called
out “7.5,” but that answer was quickly dismissed as
impossible. Other students offered that the most
likely answer was seven or eight; that conjecture
seemed reasonable to most students. I interjected
that seven or eight successes might be equally like-

ly, since 75 percent lies midway between 70 percent
and 80 percent.

By this time, many students realized that the
solution could be found by using the formula that
we had recently been studying. Within a few min-
utes, we had the following result:

P(r = 7) = 10C7 (.75)7(.25)3

≈ .250
P(r = 8) = 10C8 (.75)8(.25)2

≈ .282

The probability of eight successful free throws was
greater than that of seven.

Now that we had the answer, I asked the stu-
dents whether anyone could explain why this result
was reasonable. Several students conjectured that
because 75 percent would round to 80 percent if we
rounded to the nearest 10 percent, we might rea-
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Similar discussion can arise from the final step
of the standard process: adding –4 to both sides.
Students can examine the effect of this step by com-
paring the graph for the function defined by x + 4
with that for the function defined by x. This process
is visually clearer than the effect of adding –2x to
both sides. Students can also work with a different
starting equation and explore the effect of multiply-
ing both sides of an equation by a constant.

As a sidelight, students can examine the numeri-
cal process and the impact on graphs of adding two
functions, for instance, of adding 3x + 4 and –2x to
get x + 4. For example, at x = –3, the function value
can be found using the two components of the sum as
[3(–3) + 4] + (–2)(–3). Students should see that they
obtain the same result, namely, 1, that they obtain by
simply substituting x = –3 in the expression x + 4.

Algebra students have successfully used proce-
dures to solve linear equations for many years, but
both internal and classroom communication is
enhanced in this experience. Mathematical images
become associated with the procedures; and algebra
is presented through an insightful approach that is
enriched by reflection, analysis, and synthesis. 
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Fig. 2
Graphs of f3(x) = 3x + 4, f2(x) = 2x + 1, 

f4(x) = x + 4, and f5(x) = 1

graph goes with which equation and which inter-
sections are relevant. 

The result visually demonstrates that using the
properties of equality can have a different type of
effect than using the properties of number systems.
This realization may challenge students’ verbaliza-
tions and understanding of “solving an equation.”
In particular, they should see that the intersection
point for the pair of functions defined by x + 4 and 1
is different from the intersection point for the pair
defined by 3x + 4 and 2x + 1. But the x-values of the
two intersection points are the same, so the equiva-
lent equations, 3x + 4 = 2x + 1 and x + 4 = 1, do
have the same solution.
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