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These new approaches to algebra, although atypical, 

can bring unreachable students into the classroom mix.
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S
tudents who otherwise seem unreachable through traditional 
approaches to algebra require some alternative teaching 
methods. So do teachers who seek to add elements of fresh-
ness and innovation to their classrooms or who simply appre-

ciate variety. This article, as its title indicates, offers some unconven-
tional techniques for teaching a few conventional algebra topics.

We immediately acknowledge two impediments. First, no matter 
how we change the mathematical landscape, there is no “royal road” to 
algebra; students will still have to do some form of mathematical think-
ing. In other words, what makes an alternative process more efficient 
or easier to understand for some students often introduces mathemati-
cal considerations not present in the traditional approach. Second, 
tradition itself—and perhaps mathematical tradition more so—is hard 
to break. Even some of the most courageous and forward-thinking 
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teachers hold to the tried and true at the expense of 
innovations that may rightfully have a place in the 
mathematics curriculum. However, for those with a 
bold and adventurous spirit, we begin.

TRINOMIAL FACTORING 
Many algebra students experience some rough tran-
sitions as they move from factoring trinomials of 
the form ax2 + bx + c where a = 1 to those where  
a ≠ 1. The constant term seems to maintain its mes-
merizing draw on students’ attention, regardless of 
the lead coefficient and teachers’ best efforts. The 
reasons are perfectly understandable: It is much 
easier to find two integers that multiply to c and 
add to b than it is to wade through the vagaries of 
a trial-and-error process or make an appeal to the 
formality involved in the ac method. Is there a way 
to turn this fixation on the constant term into an 
advantage? There is, particularly when the alterna-
tive is viewed in the context of equation solving. 

Consider the equation 6x2 – 7x – 3 = 0. A student 
looking for two integers whose product is –3 and 
whose sum is –7 may quickly say that the polynomial 
is prime because the only factors of c are 1 and –3 
or –1 and 3. An alternative approach, however, is to 
divide through by 6, rewriting the equation as
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At first glance, the introduction of rational coef-
ficients seems to exacerbate the situation, unless 
a student is willing to accept that adding fractions 
with like denominators is a triviality. 

The alternative approach uses the fact that if a 
sum of two fractions must be expressed in sixths  
(b = –7/6), the product should be expressed in 
thirty-sixths for ease of computation: c = –3/6 = 
–18/36. With the equation now written as
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we find the factored form by seeking two integers 
whose sum is –7 and whose product is –18—namely, 
–9 and 2. The factored form is then (x – 9/6)(x + 2/6) 
= 0, with solutions x = 3/2 or x = –1/3 (after simpli-
fying). Naturally, the value of this approach will be 
directly proportional to a student’s capacity (or will-
ingness) to overcome an aversion to rational numbers. 

Example 1:	 Solve 2x2 + 7x – 15 = 0.
Solution:
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The solutions are x = –5 or x = 3/2.

SOLVING INEQUALITIES USING  
THE PUSH PRINCIPLE
The most common method of solving polynomial 
inequalities such as x2 – x – 12 > 0 involves finding 
the zeroes of the function and checking the sign of 
the function in the intervals between these zeroes. 
Students who are “graphically inclined” rely on the 
multiplicity of each zero and either the end behav-
ior or the sign of the function at the y-intercept; 
they can then draw a rough sketch of the graph 
from which the solution can be read. 

A third method is more conceptual in nature but 
in many cases highly efficient. It is based on two 
very simple ideas, the first involving only order 
relations and the number line:

	
Given any number x and constant k > 0, 

                    x > x – k and x < x + k.	 (1)

This statement simply reinforces the idea that if a 
is to the left of b on the number line, then a < b. As 
shown in figure 1, x – 4 < x and x < x + 3, yielding 
x – 4 < x + 3 for any x. 

The second idea reiterates well-known concepts 
regarding the multiplication of signed numbers:

 
�For any number of factors, if there is an  
even number of negative factors, the result  
is positive; if there is an odd number of  
negative factors, the result is negative. 	 (2)

These two ideas work together to solve inequali-
ties using what we will call the push principle. Con-
sider the inequality x2 – x – 12 > 0, with factored 
form (x – 4)(x + 3) > 0. From (1), we know that 
both factors will be positive if (x – 4) is positive, 
because it is the smaller factor (x – 4, as positive, 
“pushes” x + 3 to be positive). Moreover, both fac-
tors will be negative if x + 3 < 0 because it is the 
larger factor (x + 3, as negative, “pushes” x – 4 to be 
negative). We find the solution set by solving these 
two simple inequalities; the result is x > 4 or x < –3. 

If the original inequality were (x – 4)(x + 3) < 0 
instead, we require one negative and one positive 
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Fig. 1  Taking the factors in increasing order can make using the push principle easier.



Vol. 104, No. 1 • August 2010 | Mathematics Teacher  37

factor. Order relations and the number line require 
that the larger factor be the positive one—x + 3 > 0, 
so x > –3—and that the smaller factor be the nega-
tive one—x – 4 < 0, so x < 4. The solution is –3 < x 
< 4, as we can verify using any alternative method. 
The solutions to all other polynomial and rational 
inequalities are an extension of these two cases.

Example 2: Solve x3 – 7x + 6 < 0 using the push 
principle.

Solution: We can factor this polynomial by noting 
that x = 1 is a root and using synthetic division. The 
factored form is (x – 2)(x – 1)(x + 3) < 0, which 
we have conveniently written with the factors in 
increasing order. From (2), we know that for the 
product of three factors to be negative we require 
three negative factors or one negative and two posi-
tive factors. The first condition is met by simply 
making the largest factor negative, thus ensuring 
that the smaller factors are also negative: x + 3 < 0, 
so x < –3. The second condition is met by making 
the smallest factor negative and the “middle” factor 
positive: x – 2 < 0 and x – 1 > 0, yielding 1 < x < 2. 
The complete solution is x ∈(∞, –3] ∪ [1, 2]. 

Note that the push principle does not require 
testing intervals between the zeroes or analyzing 
whether the graph crosses or bounces off the x–axis 
at zeroes and vertical asymptotes (of rational func-
tions) that would be necessary if we were using a 

graphical approach. As an additional benefit, we can 
ignore irreducible quadratic factors (they contribute 
nothing to the solution set because they yield com-
plex zeroes) as well as factors of even multiplicity 
(there is no sign change at the related root). 

Example 3: Solve (x2 + 1)(x – 2)2(x + 3) > 0 using 
the push principle.

Solution: The factor (x2 + 1) does not affect the solu-
tion set (the factor produces no real zeroes and hence 
no sign changes), so this inequality will have the same 
solution as (x – 2)2(x + 3) > 0. Further, (x – 2)2 will be 
nonnegative for all x, so the inequality has the same 
solution set as (x + 3) > 0. The solution is x > –3.

Example 4: Solve the inequality 
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Solution: In factored form, the inequality is
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Neither of the factors (x2 + 4) or (x – 3)2 will ever 
be nonnegative when the expression is defined and 
can be ignored, indicating that the original inequal-
ity has the same solution set as
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be negative when we have one negative factor and 
one positive one, giving the solution x – 1 < 0 and  
x + 3 > 0 (the smaller factor must be negative and 
the larger factor positive). The solution is –3 < x < 1.

GRAPHING AND SOLVING  
QUADRATIC FUNCTIONS
Certain transformations of quadratic graphs offer 
an intriguing alternative to graphing these func-
tions by completing the square. In many cases, 
the new process is less time-consuming and ties 
together a number of important concepts. To begin, 
for the function f(x) = ax2 + bx + c, we will call F(x) 
= ax2 + bx the base function—that is, the original 
function less the constant term. 

When we compare f(x) with F(x) (see fig. 2), 
we notice the following. First, F and f share the 
same axis of symmetry (one is simply a vertical 
shift of the other). Second, we can easily find the 
x-intercepts of F by factoring (because 0 = ax2 + bx 
gives 0 = ax(x + b/a) with solutions x = 0 and x = 
–b/a). Third, the axis of symmetry h is simply the 
average value of the x-intercepts: 
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Fourth, the vertices of F and f differ only by the 
constant c. If we consider these vertices to be (h, k0) 
and (h, k), respectively, we have k = k0 + c. 

In what follows, we discover an additional 
insight that makes the graphing of many quadrat-
ics swift and efficient. To begin, we will find k0 by 
evaluating F at –b/2a. We start with F(x) = ax2 + 
bx and then substitute –b/2a for x: 
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From h = –b/2a, we have –h = b/2a. It follows that
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This verifies that the vertex of F is (h, k0) where  
h = –b/2a and k0 = – ah2.

Note that we can now determine the vertex of 
both F and f using only elementary operations on 
the single value h because k0 = – ah2 and k = k0 + c. 
In addition, because the vertex of f is known, we 
can find the zeroes using a vertex-intercept formula 
(instead of requiring the quadratic formula). From 
f(x) = a(x – h)2 + k, we can easily find the zeroes of f: 
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As a bonus, this approach allows quick access to 
the exact form of the roots, even when they happen 
to be irrational or complex. 

Following are two more examples solved by 
using the new approach.

Example 5: Graph the function f(x) = x2 – 10x + 
17 and locate its zeroes (if they exist).

Solution: For F(x) = x2 – 10x, the zeroes are 0 and 
10 by inspection, with x-intercepts (0, 0) and (10, 
0) and h = 5 (the halfway point) as the axis of 
symmetry. The vertex of F is (h, –ah2) or (5, –25). 
With c = 17, we add 17 units to the y-coordinates 
of these three points and find that the graph of f 
will contain (0, 17) [the y-intercept], (10, 17), and 
(5, –8) [the vertex]. Because a = 1, the zeroes of 
f are (h ± 2k , 0) = (5 ± 28 , 0), or approximately 
(2.2, 0) and (7.8, 0).

If b is an odd number, the decimal form of the 
halfway point can be used to help locate the ver-
tex. One needs to realize that the square of any 
number ending in 5 is the product of the preced-
ing digit or digits and the next larger integer, with 
25 appended. For instance, if b = 7, 7/2 = 3.5, and 
(3.5)2 = 3(3 + 1) + 0.25, or 12.25.
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Fig. 2 It is much easier to work first with F than with f.
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Even when a ≠ 1, the alternative method lends a 
measure of efficiency to graphing and solving qua-
dratic functions, as shown in example 6. 

Example 6: Graph the function f(x) = –2x2 + 5x – 4 
and locate its zeroes (if they exist).

Solution: For F(x) = –2x2 + 5x, the zeroes or x-inter-
cepts are (0, 0) and (5/2, 0) by inspection, with  
h = 5/4 (the halfway point) as the axis of symme-
try. Noting that a = –2 and c = –4, we find that the 
vertex of F is at (5/4, 25/8) because
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After subtracting 4 = 32/8 units from the y-coordi-
nates of these three points, we find that the graph 
of f will contain (0, –4) [the y-intercept] and (5/2, 
–4) with vertex (5/4, –7/8). The roots of f will be
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indicating that the graph has no x-intercepts. 

CONCLUSION
These approaches are atypical (at least in my 
experience). However, they seem to have a certain 
appeal to many students, particularly those who 
have already seen more typical ways to do the 
work. Overall, student responses have been quite 
positive. Even more notable, I have seen these 
approaches embraced by students of all ability lev-
els, not only those whom we might consider the 
brightest or hardest working. I encourage you to 
give these new ideas a try.
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ADDITIONAL PROBLEMS
Here are a few exercises to try with your students. 

Solve the following:

1.	 x3 – 3x – 18 < 0	

2.	   	
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3.	 x3 – 13x + 12 < 0
4.	 x3 – 3x + 2 > 0	
5.	 x4 – x2 – 12 > 0	
6.	 (x2 + 5)(x2 – 9)(x + 2)2(x – 1) > 0

Graph the following:

1.	 f(x) = x2 + 2x – 7
2.	 g(x) = x2 + 5x + 9
3.	 h(x) = x2 – 6x + 11
4.	 p(x) = –x2 + 10x – 17
5.	 q(x) = 2x2 + 12x + 21 
6.	 r(x) = 2x2 – 7x + 8

John W. Coburn

Alternative Approaches to  
Traditional Topics in Algebra


