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ReadeRreflections

We appreciate the interest and value the 
views of those who write. readers comment
ing on articles are encouraged to send cop
ies of their correspondence to the authors. 
For publication: all letters for publication 
are acknowledged, but because of the large 
number submitted, we do not send letters of 
acceptance or rejection. Letters to be con
sidered for publication should be in Ms Word 
document format and sent to mt@nctm.org. 
Letters should not exceed 250 words and are 
subject to abridgment. at the end of the let
ter include your name and affiliation, if any, 
including zip or postal code and email ad
dress, per the style of the section.

2010: a MaGIC YeaR?
Can you and your students create a table 
whose main diagonals will always yield 
the sum of 2010? Follow these steps 
and then challenge yourself and your 
students to determine why the sum is 
always 2010. In keeping with the spirit 
of NCTM’s Standards, have your stu-
dents communicate their work verbally 
as well as in writing. Have fun!

Begin by numbering the squares 
of a 12 × 12 chessboard from 1 
through 144 (see table 1 [Kuenzi-
Sriskandarajah]).

Next, arbitrarily interchange any 
number of rows of the chessboard to 
obtain a new “scrambled” numbering 
of the chessboard squares (see table 2 
[Kuenzi-Sriskandarajah]). 

Then arbitrarily interchange col-
umns of the modified chessboard in any 
fashion to obtain a further “scrambled” 
numbering (see table 3 [Kuenzi-
Sriskandarajah]). 

Now add 95 to every number on 
the chessboard (see table 4 [Kuenzi-
Sriskandarajah]).

Add the twelve numbers on either 
main diagonal to get the amazing sum of 
2010. Following are two examples:

155 + 232 + 214 + 188 + 97 + 199 + 225 
+ 137 + 159 + 126 + 170 + 108 = 2010

and

144 + 230 + 210 + 183 + 101 + 201 + 223
 + 133 + 164 + 130 + 172 + 119 = 2010

For an even more amazing result, 
highlight any number on the chessboard 
and cross out all the other numbers in 
the same row and column as the high-
lighted number (see table 5 [Kuenzi-
Sriskandarajah]).

Repeat this operation until twelve 
numbers remain (see table 6 [Kuenzi-
Sriskandarajah].

Add the twelve highlighted numbers 
to obtain 2010:

239 + 160 + 178 + 140 + 181 + 127 + 153
 + 113 + 207 + 102 + 218 + 192 = 2010

Different students and groups will have 
different tables and different addends, 
but the sum will always be 2010.

Why is the sum always 2010? 
You and your students may come up 

with some interesting ideas as to why 
the sum is always 2010. Of course, their 
explanations will depend on their mathe-
matical background, but it is important to 

give them an opportunity to understand 
the mathematics behind these results. 
What follows is one possible explanation.

In the original table (table 1 [Kuenzi-
Sriskandarajah]), every entry in the 
second row is 12 more than the cor-
responding entry in the first row; every 
entry in the third row is 24 more than 
the corresponding entry in the first row; 
and so on for the other rows. For the 
original table, then, the number in col-
umn c and row r is given by the formula 
c + 12(r – 1). After we interchange rows 
and then interchange columns, the num-
bers are still of this form, but c and r refer 
to the entry’s original column and row 
numbers. If we add 95 to every entry in 
the table, the numbers are of the form 
95 + c + 12(r – 1). After obtaining the 
twelve highlighted numbers, we note that 
exactly one number is left in each row 
and exactly one number is left in each 
column. So the sum is as follows:

(12) • (95) + (1 + 2 + L + 12) + 12(0 + 1  
                  + 2 + L + 11)

 = 1140 + 78 + (12)(66) = 2010
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Table 1 (Kuenzi-Sriskandarajah)

1 2 3 4 5 6 7 8 9 10 11 12

13 14 15 16 17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32 33 34 35 36

37 38 39 40 41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56 57 58 59 60

61 62 63 64 65 66 67 68 69 70 71 72

73 74 75 76 77 78 79 80 81 82 83 84

85 86 87 88 89 90 91 92 93 94 95 96

97 98 99 100 101 102 103 104 105 106 107 108

109 110 111 112 113 114 115 116 117 118 119 120

121 122 123 124 125 126 127 128 129 130 131 132

133 134 135 136 137 138 139 140 141 142 143 144

Table 2 (Kuenzi-Sriskandarajah) 

49 50 51 52 53 54 55 56 57 58 59 60

133 134 135 136 137 138 139 140 141 142 143 144

109 110 111 112 113 114 115 116 117 118 119 120

85 86 87 88 89 90 91 92 93 94 95 96

1 2 3 4 5 6 7 8 9 10 11 12

97 98 99 100 101 102 103 104 105 106 107 108

121 122 123 124 125 126 127 128 129 130 131 132

37 38 39 40 41 42 43 44 45 46 47 48

61 62 63 64 65 66 67 68 69 70 71 72

25 26 27 28 29 30 31 32 33 34 35 36

73 74 75 76 77 78 79 80 81 82 83 84

13 14 15 16 17 18 19 20 21 22 23 24

Table 3 (Kuenzi-Sriskandarajah)

60 53 59 57 50 56 58 54 52 55 51 49

144 137 143 141 134 140 142 138 136 139 135 133

120 113 119 117 110 116 118 114 112 115 111 109

96 89 95 93 86 92 94 90 88 91 87 85

12 5 11 9 2 8 10 6 4 7 3 1

108 101 107 105 98 104 106 102 100 103 99 97

132 125 131 129 122 128 130 126 124 127 123 121

48 41 47 45 38 44 46 42 40 43 39 37

72 65 71 69 62 68 70 66 64 67 63 61

36 29 35 33 26 32 34 30 28 31 27 25

84 77 83 81 74 80 82 78 76 79 75 73

24 17 23 21 14 20  22 18 16 19 15 13
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Table 4 (Kuenzi- Sriskandarajah) 

155 148 154 152 145 151 153 149 147 150 146 144

239 232 238 236 229 235 237 233 231 234 230 228

215 208 214 212 205 211 213 209 207 210 206 204

191 184 190 188 181 187 189 185 183 186 182 180

107 100 106 104 97 103 105 101 99 102 98 96

203 196 202 200 193 199 201 197 195 198 194 192

227 220 226 224 217 223 225 221 219 222 218 216

143 136 142 140 133 139 141 137 135 138 134 132

167 160 166 164 157 163 165 161 159 162 158 156

131 124 130 128 121 127 129 125 123 126 122 120

179 172 178 176 169 175 177 173 171 174 170 168

119 112 118 116 109 115 117 113 111 114 110 108

Table 5 (Kuenzi-Sriskandarajah) 

155 148 154 152 145 153 149 147 150 146 144

239 232 238 236 229 237 233 231 234 232 228

215 208 214 212 205 213 209 207 210 206 204

191 184 190 188 181 189 185 183 186 182 180

107 100 106 104 97 105 101 99 102 98 96

199

227 220 226 224 217 225 221 219 222 218 216

143 136 142 140 133 141 137 135 138 134 132

167 160 166 164 157 165 161 158 162 158 156

131 124 130 128 121 129 125 123 136 122 120

179 172 178 176 169 177 173 171 174 170 168

119 112 118 116 109 117 113 111 114 110 108

Table 6 (Kuenzi-Sriskandarajah)

153

239

207

181

102

192

218

140

160

127

178

113
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AN INTRIGUING EXPONENTIAL 
INEQUALITY: ANOTHER SOLUTION 
I loved the problem presented in John 
Robert Perrin’s “An Intriguing Expo-
nential Inequality” (MT August 2009, 
vol. 103, no. 1, pp. 50–55) and write to 
suggest an alternative analytic solution. 

My solution proceeds immediately from 
the realization during graphical explora-
tion that the case of interest is the case 
where the graph of f(x) = ax has the line 
L(x) = x as a tangent at some point where  
x = c. Since the slope of this tangent line is 
1 and since f´(x) = ax lna, we know that 

                          ac  lna = 1. (1)

If we think about the point of tan-
gency as being a point on f, we think of 
its coordinates as (c, ac). If, however, we 
think of the point of tangency as being 
a point on L, we think of its coordinates 
as (c, c). Since these are two different 
ways of naming the same point, we can 
equate the y-coordinates:

                            ac = c (2)

Substituting (2) into (1), we have

                         c  lna = 1. (3)

Taking the log of both sides of (2) gives

                       c  lna = lnc. (4)

Substituting (4) into (3) gives

ln c = 1,

which means that c = e. Putting this 
result into (2) yields

ae = e.

Consequently, we find the same key 
value of a found in the article: a = e1/e.

Laura Taylor Kinnel
laura_kinnel@georgeschool.org

George School
Newtown, PA 18940

A FOURTH WAY TO BREAK A STICK
A Combinatoric Method 
In my article “Three Ways to Break a 
Stick” (MT August 2009, vol. 103, no. 1, 
pp. 56–61), I showed that the probabil-

ity that the pieces of a stick randomly 
broken in two places can form a triangle 
is the same as the probability that three 
random points on a circle do not fall in a 
semicircle. 

Not mentioned in the article is a 
combinatoric method of finding the prob-
ability that three random points on a 
circle fall in a semicircle. Label each of 
the random points as 1. From each point, 
draw a diameter and label the other end-
point of the diameter as 0. If we orient 
the circle in such a way that a 1 is in the 
twelve o’clock position and if we travel 
around the circle in a clockwise direc-
tion, only four patterns of 1s and 0s are 
possible (see fig. 1 [Bannon]). Three of 
these four patterns have three consecu-
tive 1s, indicating that the points fall in 
a semicircle. We can conclude that the 
probability that three random points on 
a circle fall in a semicircle is 3/4 and that 
the probability that they do not is 1/4.

Thus, we have a fourth way of show-
ing that the probability that the pieces of 
a stick randomly broken in two places 
can form a triangle is 1/4.

Thomas J. Bannon
tombannon@juno.com

Adelphi University, Garden City, NY 11530
Queensborough Community College,  

Bayside, NY 11364 

Conditional Probability 
Bannon’s article “Three Ways to Break 
a Stick” offers three solutions for finding 

the probability that the pieces of a stick 
will form a triangle, and all three use an 
approach that considers the intersection 
of both breaks. Another approach makes 
use of conditional probability—that is, 
looking at the probability of the second 
break, Y, given the first break, X.

If we use the interval (0, 1) to repre-
sent that the stick has a uniform probabil-
ity distribution for each break—that is, 
that every point in the interval is equally 
likely—the probability density function is 
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So the probability that a break lands in 
some interval [c, d] ∈ (0, 1) is simply the 
distance d – c:
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If we use conditional probability, 
there are two disjoint cases for Y that 
would fail to make a triangle:

1. Y lands on the same half as X. With-
out loss of generality, assume that 
X is on the left half. The probability 
that Y lands on the same half, in the 
interval (0, 0.5), is 0.5 – 0 = .5. 

2. Y lands on the opposite half as X 
and is farther than 0.5 away from X. 
Again, if we assume that X is on the 
left half, then the probability that Y is 
farther than x + 0.5 (red) is the same 
as the distance from x to the middle: 
|x – 0.5| (see fig. 1 [(Wasserman]).

The probability that the pieces do not 
form a triangle is the sum of these dis-
joint cases: 
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Since X ∈ (0, 1) and is a continuous 
random variable, the sum of all the 
individual probabilities that Y causes no 
triangle is the integration 

The three points fall in a semicircle.

The three points do not fall in a 
semicircle.

Fig. 1 (Bannon)

Fig. 1 (Wasserman)
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making the probability of forming a tri-
angle .25 (see fig. 2 [Wasserman]).

Nick Wasserman
nhw2108@columbia.edu

Marymount School of New York
New York, NY 10028

9/10n – 1 
In his excellent article “Soft Drinks, 
Mind Reading, and Number Theory” 
(MT November 2009, vol. 103, no. 4, pp. 
278–83), Kyle T. Schultz discusses a stu-
dent’s assertion that “one could express 
each power of 10 as a sum of 1 and a mul-
tiple of 9.” Schultz writes: “This reason-
ing seemed plausible but left a new con-
jecture for us to wrestle with: A power of 
10 can always be expressed as a sum of 1 
and a multiple of 9. This conjecture could 
be explored by investigating factoring the 
expression 10n – 1 by using differences of 
squares and cubes” (p. 283).

To me, a more natural way would be 
to expand 10n as (9 + 1)n using the bino-
mial theorem: 
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It then becomes clear that each term except 
the last is divisible by 9, so that when 1 is 
subtracted, the result is divisible by 9.

David Grinstein
davidg@alumni.tufts.edu

Quincy College
Waltham, MA 02451

VOLUMe OF THe FRUSTUM 
GeNeRaLIZed
This note generalizes the work of both 
Javad H. Zadeh in his reflection “Egyp-
tian Geometry” (MT September 2008, 
vol. 102, no. 2, pp. 86–87) and Mark 
Snyder in his reflection “Frustum of a 
Pyramid Revisited” (MT August 2009, 
vol. 103, no.1, pp. 7–8), who gives alter-
native solutions for n = 3. Snyder also 
gives an alternative proof for the volume 
of a right square pyramid. 

We first introduce some terminology. 
An n-cube is an n-dimensional cube. 
The usual cube is a 3-cube. The square 
is a 2-cube. A line segment is a 1-cube. 
An n-right square pyramid (n-pyramid 
for short) is an n-dimensional figure 
formed with an (n – 1)-cube as base and 
line segments joining a point not on the 
base to the vertices of the base such that 
the line segment from the point to the 
center of the base is perpendicular to 
the base. The usual right square pyra-
mid is a 3-pyramid. The isosceles trian-
gle is a 2-pyramid. The face of an n-cube 
is one of the (n – 1)-cubes that form its 
boundary. The frustum of an n-pyramid 
is the figure formed by cutting an 
n-pyramid with an (n – 1)-dimensional 
flat that is parallel to the base and dis-
carding the smaller n-pyramid that is 
formed. The frustum of a 2-pyramid is 
an isosceles trapezoid. The frustum of a 
3-pyramid is the usual one.

Note that in 2-space, if we join the 
center of a 2-cube (square) to the ver-
tices, we cut the square into four con-
gruent 2-pyramids (isosceles triangles) 
whose bases are the faces of the 2-cube 
(square). In 3-space, if we join the 
center of the cube to the vertices of the 
cube, we cut the cube into six congruent 
pyramids whose bases are the faces of 
the cube. In general, an n-cube has 2n 
faces that are (n – 1)-cubes, so when we 
join the center of the n-cube to the verti-
ces, we cut the n-cube into 2n congruent 
n-pyramids. 

Now consider the n-cube in which 
each side has length B. The volume of 
the n-cube is Bn. The n-pyramid has an 
(n – 1)-cube as its base and height H. 
Following Snyder, from dimensional 
considerations we find that the volume 
of the n-pyramid must be V = kBn–1H, 
where k is a constant. Since this result 

holds for all n-pyramids, it holds for 
n-pyramids of height B/2, which are 
simply the pyramids we get when we 
split the n-cube into n-pyramids by join-
ing the center of the n-cube to each of its 
vertices. So for such n-pyramids, 
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Since there are 2n faces and there is one 
pyramid for each face, the volume of the 
n-cube is Bn = (2n) • (kBn/2). So k = 1/n. 
Therefore, the volume of the n-pyramid 
is given by V = Bn–1H/n. 

To determine the volume of the 
frustum of the n-pyramid, we follow 
Zadeh’s derivation for n = 3. Let the 
height of the frustum be h and the 
height of the n-pyramid be H = h + k. 
Then the volume of the frustum is the 
volume of the n-pyramid minus the vol-
ume of the small n-pyramid that is cut 
off to form the frustum: 
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Now, as Zadeh did, we use similar trian-
gles to get k = hb/(B – b). Substituting in 
the formula above, we get the following:
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Factoring out h and simplifying, we get 
the desired formula:
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Snyder’s derivation of the formula for 
the volume of the frustum works for  
n = 2, 3, and 4, but its extension to 
higher dimensions does not seem pos-
sible: Too many unknowns come into 
play, and too few symmetries are given 

Fig. 2 (Wasserman)
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Gordon, intently perusing the pages of 
his MT. Claire must have enjoyed “read-
ing” the journal, because shortly after-
ward she began to eat it. We appreciate 
readers who digest the journal from 
cover to cover, although not, perhaps, 
exactly in this way.—Ed.

Dividing both sides of the equation by  
(1 – x), we obtain
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This method can be applied to find 
the sum of a finite power series whose 
coefficients have low-order finite 
differences. 

Wenjiang Tu
wtu1211@oswego308.org

Oswego High School
Oswego, IL 60543

IT’S NeVeR TOO eaRLY
Russell Gordon of Ontario, Canada, used 
his iPhone to snap this photograph of his 
one-year-old daughter, Claire Dorothy 

to allow solving for all these unknowns. 
Too bad, because it is a lovely argument. 

Robert E. Clay
rclay@daltonstate.edu

Dalton State College
Dalton, GA 30720

 
OBTaINING THe SUM WITHOUT 
USING INdUCTION
In their reflection “Obtaining the Sum 
without Using Induction” (MT Septem-
ber 2009, vol. 103, no. 2, pp. 96, 98), 
Richard Grassl and Thomas Koshy pres-
ent a method for decomposing certain 
sums without using induction. I would 
like to introduce a different method that 
also does not depend on induction.

Assume that S is the sum of a finite 
power series
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If x = 1, then 
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If x ≠ 1, then

 (1)
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and 

 (2)
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Shifting xS one column to the right and 
subtracting (2) from (1) produces
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The first n terms of the result form a 
geometric series with common ratio x. 
Therefore,
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it’s never too early to begin digesting math

ematical concepts.

i ♥ spherical analogs of 
truncated icosahedrons. 

MatheMatics  
is aLL arouNd us.




