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Interesting solutions and ideas emerge 
when preservice and in-service 
teachers are asked a traditional 
algebra question in new ways.

Sarah D. Ledford, Mary L. Garner, and Angela L. Teachey

RADICAL

S
ometimes, in the teaching and learning 
of mathematics, open-ended problems 
posed by teachers or students can lead 
to a fuller understanding of mathemati-
cal concepts—a depth of understanding 

that no one could have anticipated. Interesting 
solutions and ideas emerged unexpectedly when 
we asked prospective and in-service teachers an 
“old” algebra question in new ways. Our initial goal 
was to model NCTM’s Process Standards in our 
classrooms (NCTM 2000). The result was a deeper 
understanding of solutions that emerge from the 
algorithm for solving equations involving radicals.

The old question was simply to find all solu-
tions—true and extraneous—to radical equations. 
(We call equations containing radical expressions 
with variables in the radicand radical equations.) 
Almost every traditional high school algebra 
textbook includes one section devoted to solving 
equations of the form 6ax + b = cx + d. Teachers 
usually instruct students to square both sides of the 
equation to eliminate the radical and to solve using 
basic algebra. Students are then told to check their 
answers in the original equation because extraneous 
solutions may appear. Often not discussed is what 
extraneous solutions really are and why they exist. 

CHARACTERIZING SOLUTIONS 
OF A BASIC RADICAL EQUATION
The first new question was to characterize all 
possible solutions of the equation of the form 
6ax +  b = cx + d. Goolsby and Polaski (1997) pro-
vide a graphical interpretation of the solution of 
6ax +  b = cx + d as the intersection of a radical 
function defined by the left side of the equation 
and a linear function defined by the right side of 
the equation. After some discussion of extraneous 
solutions, we were able to conclude that true solu-
tions are found where the radical function inter-
sects the line and that extraneous solutions are 
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found where the reflection of the radical function 
(specifically, y = –6ax +  b) intersects the line. The 
graphical approach provides an easy way to visual-
ize all possible solution combinations. All possible 
solutions include case 1, with one true solution 
and one extraneous solution (see fig. 1a); case 2, 
with one true solution and no extraneous solutions 
(see fig. 1b); case 3, with one extraneous solution 
and no true solutions (see fig. 1c); case 4, with 
only imaginary solutions (see fig. 1d); case 5, with 
two true solutions (see fig. 1e); and case 6, with 
two extraneous solutions (see fig. 1f).

To characterize the solutions algebraically as 
well as graphically, students carried out the typical 
algorithm. Squaring both sides of the original equa-
tion (6ax +  b = cx + d) left us with c2x2 + (2cd – a)x
+ d2 – b = 0. The solution was

x
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.

Next, we considered the discriminant and gener-
alized the types of solutions that we would obtain, 
depending on the values of a, b, c, and d. If a2 – 4acd
+ 4c2b < 0, then we have no true or extraneous solu-
tions (the algebraic formulation of case 4). If a2 – 
4acd + 4c2b = 0, then the solution takes the form

x
c

=
−2 d add ad

c

d a+d a

2 2
.

In this instance, we have either one true solution or 
one extraneous solution (cases 2 or 3).

More specifically, we can note that we would 
have an extraneous solution if
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(case 3). Then, using a similar argument, we would 
have one true solution if a/2c > 0. Finally, if a2 – 
4acd + 4c2b > 0, we have two solutions (cases 1, 5, 
and 6). 

A NEW QUESTION INVOLVING 
RADICAL EQUATIONS
We then posed the following: Write a radical 
equation with a true solution at x = 5 and extra-
neous solutions at x = –1 and x = –2. Asking an 
open-ended question about these radical equations 
seemed like a logical next step. We were surprised 
and pleased to find that the problem was more diffi-
cult than we had expected and led to some interest-
ing solution strategies. 

RADICALRADICAL
problem
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methods to solve a simpler problem that involved 
only two solutions, hoping that their technique 
could be generalized to the more difficult problem. 
They decided to find a radical equation that had 
one true solution at x = 5 and one extraneous solu-
tion at x = –1. Starting with the end in sight, (x – 5) 
• (x + 1) = 0, which is equivalent to x2 – 4x – 5 = 0, 
one student simply transformed this equation to x = 
64x + 5. Using technology, we can check for the 
solutions of this as we graph y1 = x, y2 = 64x + 5 
(which will show the true solution), and y3 = 
–64x + 5 (which will show the extraneous solution). 

This method was then extended to the problem 
at hand. Again, we started with the end in sight: 
(x – 5)(x + 1)(x + 2) = 0, which is equivalent to 
x3 – 2x2 – 13x – 10 = 0. We solved for

13 10
2

2
3

x
x x13x x133x x3

=
− −x x− −x x13x x13− −13x x13

so that we could take the square root of both sides, 
leaving

0 5 6 5 53x xx x0 5x x0 5 x= ±x x= ±x x − −6 5− −6 5x− −x. .6 5. .6 5x x. .x x0 5x x0 5. .0 5x x0 5 .

In graphing, we can see that this approach does, in 
fact, yield the desired solutions (see fig. 2). 

Note that the method described here works only 
because the extraneous solutions we chose were 
negative; in other words, a negative value cannot be 
equal to a principal square root. What if we wanted 

The new question led us to a discussion of the 
fundamental theorem of algebra and to a discussion 
of one-to-one functions. Note that an equation with 
three real solutions (extraneous or not) cannot be 
of the form 6ax +  b = cx + d because the quadratic 
produced by squaring both sides of the equation has 
exactly two solutions. This is a basic application of 
the fundamental theorem of algebra.

Because we need three solutions, a typical first 
impulse in solving the new problem would be to 
consider a radical equation that would produce 
a cubic instead of a quadratic, an equation of the 
form 3

6ax +  b = cx + d, for example. However, cub-
ing both sides of this equation will not produce 
extraneous solutions because the basic cubic func-
tion y = x3 is a one-to-one function.

Recall the definition of one-to-one functions: A 
function f is one-to-one if f(x1) = f(x2) implies that x1

= x2 (where x1 and x2 are in the domain of f). When 
we solve any equation of the form 6ax +  b = cx + d, 
we can square both sides of the equation f(6ax +  b) = 
f(cx + d), but because the function is not one-to-one, 
we cannot then say that 6ax +  b = cx + d. When we 
solve any equation of the form 3

6ax +  b = cx + d, we 
can cube both sides and be confident that f(3

6ax +  b)
= f(cx + d) does imply that 3

6ax +  b = cx + d.

Method 1: Exploiting the Sign 
of the Extraneous Roots
We were thrilled to find that when students were 
unable to solve the problem, many used algebraic 

Fig. 1  These graphs (a–f) indicate all possible cases.

 (a) (b) (c)

 (d) (e) (f)
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all solutions to be positive? A well-chosen horizon-
tal shift of both sides of the equation

0x = .5 655 65 5 535 635 6x x5 6x x5 6 5 5x x5 55 635 6x x5 635 6 5 5− −5 5x x− −x x5 6x x5 6− −5 6x x5 6 5 5x x5 5− −5 5x x5 5x x.x x

would produce

4 04 0 5 4 6 5 4 53x x5 4x x5 4x xx x4 0x x4 04 0x x4 0x x− =x x4 0x x4 0− =4 0x x4 0 − −5 4− −5 4 4 5− −4 5. (5 4. (5 4. (x x. (x x5 4x x5 4. (5 4x x5 4) .6 5) .6 53) .3− −) .− − ( )4 5( )4 5x( )x − −( )− −4 5− −4 5( )4 5− −4 5,

an equation that has extraneous solutions at x = 2 
and x = 3 and a true solution at x = 9. 

Method 2: An Algebraic Approach
A second approach is similar to the first yet quite 
elegantly accounts for the negative extraneous solu-
tions and the positive true solutions. The student 
who came up with this approach also attempted 
the simpler problem first (a true solution at x = 5 
and one extraneous solution at x = –1). She care-
fully selected a perfect square trinomial (2x – 3)2

= 4x2 – 12x + 9 so that 2x – 3 < 0 for x = –1 (the 
extraneous solution) and 2x – 3 > 0 for x = 5 (the 
true solution). Next, she added the perfect square 
trinomial to both sides of the equation x 2 – 4x – 5 = 
0 to obtain 5x 2 – 16x + 4 = (2 x – 3)2. She then took 
the square root of both sides—

5 16 4 2 325 125 1x x5 1x x5 16 4x x6 45 125 1x x5 125 1 2 3x2 3− +5 1− +5 16 4− +6 4x x− +x x5 1x x5 1− +5 1x x5 16 4x x6 4− +6 4x x6 4 2 3= −2 3= −2 3= −2 32 3x2 3= −2 3x2 3

—and achieved a radical equation with the desired 
solutions.

In extending this method to the problem with 
three solutions, we started with the same cubic as 
before: x3 – 2x2 – 13x – 10 = 0. We then carefully 
selected a perfect square, (x – 3)2, to ensure that 
x – 3 < 0 for x = –1 and x = –2 (the extraneous solu-
tions) and that x – 3 > 0 for x = 5 (the true solu-
tion). After adding the squared binomial to both 
sides of the equation, we had x3 – x2 – 19x – 1 = 
(x – 3)2 and, finally,

19 1 33 2x x3 2x x3 2 x x1 3x x1 3− −x x− −x x x x− =x x1 3x x1 3− =1 3x x1 31 3−1 3.

Again, in graphing each side of this equation and 
the reflection of the radical in the x-axis, we had 
the desired solutions as the intersections.

Method 3: A Graphical Approach
A few students used a graphical approach for the 
simpler problem. They started with a function such 
as y = 5x + 2 and then determined a line through 
the points (–1, –1) and (5, 17). These points were 
obtained using the same ideas as the previous two 
simpler solutions because we wanted the true solu-
tion to be at x = 5 and the extraneous solution at 
x = –1. Therefore, students using this method sub-
stituted x = 5 into their radical equation, producing 

the value 17. When substituting x = –1, they got 
an output of +1; however, because this solution is 
meant to be the extraneous one, it would have an 
output of –1, according to the radical equation’s 
reflection. The line passing through the two points is

1
7 1
6

1y xy x1y x1
6

y x
6

+ =1+ =1y x+ =y x1y x1+ =1y x1
7 1+7 1

+(((y x(y x(y x(y x ),
leading to the equation 

+ = + .x xx x+ =x x+ =x x+ =x x+ =2+ =2+ =2x x2x x+ =x x+ =2+ =x x+ =
7 1+7 1+
6

7 5−7 5−
6

Thus, we arrive at the correct solutions (see fig. 3).
This method finally led us to a more general 

approach that will work for any number of true 
and extraneous solutions. This approach involved 
obtaining an equation of the form f(x) = ±4g(x) 
such that f(–1) = –5g(–1), f(–2) = –5g(–2) (to 
ensure extraneous solutions), and f(5) = 4g(5) 
(the true solution). The next step was to arbi-
trarily select “nice” values so that g(–1) = 1, 
g(–2) = 4, and g(5) = 9, leading to f(–1) = –1, 
f(–2) = –2, and f(5) = 3. 

Therefore, we need a function g whose graph 
contains the points (–1, 1), (–2, 4), and (5, 9) and a 
function f whose graph contains the points (–1, –1), 
(–2, –2), and (5, 3). Because we had three points 

Fig. 2  The true solution is at the intersection of the red 

curve with the line; extraneous solutions are at the inter-

section of the green curve with the line.

The graph of
y = x and

= ± − −y xy x= ±y x= ± x− −x− −0 5y x0 5y x 6 5− −6 5− − 53. .y x. .y xy x0 5y x. .y x0 5y x 6 5. .6 5

shows a true solution at x = 5 and extraneous 
solutions at x = –1 and x = –2.
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for each function, we concluded that we could cal-
culate quadratic functions for f(x) and g(x). 

We then substituted our points into f(x) = ax2

+ bx + c to generate the two systems of equations 
below: 

f(x) → a(–1)2 +      g(x) → a(–1)2 + 
                 b(–1) + c = –1                    b(–1) + c = 1
a(–2)2 + b(–2) + c = –2     a(–2)2 + b(–2) + c = 4
     a(5)2 + b(5) + c = 3         a(5)2 + b(5) + c = 9

We obtained the following functions—

f x x x( )f x( )f x = − + −x x+ −x xx x+ −x x
1
21

6
7

2
21

2x x2x x

and

g x( )g x( )g x =
13
212212

8
7

16
21

2x xx x2x x2 − −x x− −x xx x− −x x ,

—leading to the equation

1
21

6
7

2
21

13
21

8
7

16
21

2 22 262 26 22 22 132 213
x xx x2 2x x2 2x xx x− +− +2 2− +2 2x x− +x x2 2x x2 2− +2 2x x2 2− =− = ± −± −± −2 2± −2 22 2± −2 2132 213

± −
132 213

x x± −x x2 2x x2 2± −2 2x x2 2 − .

Graphically, we can see that the solutions are 
indeed those that we were looking for (see fig. 4). 

Exploiting a Different Source 
of Extraneous Roots 
Another group of students had been exploring 
equations such as 

x x

x

2x x2x x 2

2
4

+ −x x+ −x x( )
+

= .

Applying the usual algorithm for solving the equa-
tion produces the solutions x = –2, which is clearly 
an extraneous solution, and x = 5. Note that x + 2 is 
a factor of the numerator and the denominator of the 
left side of the equation. To produce a true solution 
at x = 5, we begin with x – 1 = 4. To produce extra-
neous solutions at x = –1 and x = –2, we then form a 
rational expression on the left side of the equation:

x x1 1x x1 1x x
1 2x x1 2x x

4
1 1− +1 1x x1 1x x− +x x1 1x x

1 2+ +1 2x x1 2x x+ +x x1 2x x
=

( )x x( )x x1 1( )1 1x x1 1x x( )x x1 1x x− +( )− +x x− +x x( )x x− +x x1 1− +1 1( )1 1− +1 1x x1 1x x− +x x1 1x x( )x x1 1x x− +x x1 1x x( )x x( )x x1 1( )1 1x x1 1x x( )x x1 1x x1 1− +1 1( )1 1− +1 1x x1 1x x− +x x1 1x x( )x x1 1x x− +x x1 1x x ( )x( )x 2( )2+( )+
( )x x( )x x1 2( )1 2x x1 2x x( )x x1 2x x+ +( )+ +x x+ +x x( )x x+ +x x1 2+ +1 2( )1 2+ +1 2x x1 2x x+ +x x1 2x x( )x x1 2x x+ +x x1 2x x( )1 2( )1 2x x1 2x x( )x x1 2x x1 2+ +1 2( )1 2+ +1 2x x1 2x x+ +x x1 2x x( )x x1 2x x+ +x x1 2x x

This time the extraneous roots come from holes in 
the domain of the rational expression on the left 
side of the equation.

As a class, we also discussed other types of func-
tions that are not one-to-one and that could there-
fore produce extraneous solutions when applied to 
both sides of an equation—trigonometric functions, 
for example.

Fig. 3  This graph shows a true solution at the intersection of 

the red curve and the blue curve and an extraneous solution 

at the intersection of the green curve and the blue curve.

Fig. 4  This graph shows a true solution at the intersection of 

the red curve and the blue curve and extraneous solutions at 

the intersections of the green curve and the blue curve.

The graph of

± +± + +x xx x=x x=x x± +x x± + 2x x2x x
7 1+7 1+
6

7 5−7 5−
6

shows a true solution at x = 5 and extraneous 
solutions at x = –1.
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± −x xx x− +x x− +2 2x x2 2− +2 2− +x x− +2 2− + x xx x± −x x± −± −2 2± −x x± −2 2± −

shows a true solution at x = 5 and extraneous 
solutions at x = –1 and x = –2.
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CONCLUSION
Asking open-ended questions about an old problem 
led to a surprising variety of solutions and solu-
tion strategies that involved algebraic, tabular, 
and graphical representations of functions. The 
characterization of the solutions of the equation 
6ax +  b = cx + d illustrates the power of a graphical 
approach, whereas the algebraic approach makes 
specific the relationship among the parameters 
a, b, c, and d. Asking students to produce an equa-
tion with certain extraneous and true solutions led 
to a synthesis of many concepts, including the fun-
damental theorem of algebra, one-to-one functions, 
the problem-solving strategy of solving a simpler 
problem, horizontal shifts of functions, solutions 
of systems of equations, and functions with holes 
in their domains. Most important, we were able to 
engage students in an exploration of radical equa-
tions with true and extraneous solutions without 
simply relying on an algorithm that they had been 
taught. These investigations ultimately led them 
to a deeper understanding of the mathematical 
concepts.

As teachers, we gained new insights from 
students’ ideas and strategies. Classroom discus-
sions can be rich and powerful when students are 
encouraged to explore mathematics.
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