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DELVINGdeeper
Marshall Lassak and Renee Fietsam

Areas within Areas

This applet, along with the Calendar problem, 
spurred us to look further into the general problem 
of area ratios. We will first share different ways 
to represent and solve the Calendar problem and 
then attempt to generalize and calculate the exact 
minimum area ratio for any regular polygon. The 
focus here is on regular polygons. As stated in the 
e-example, the minimum area ratios for nonregular 
polygons (other than squares) behave differently 
from their regular polygon counterparts.

 SOLVING THE SQUARE
There are several ways to justify that the minimum 
area ratio of the two squares occurs when the inte-
rior square has vertices at the midpoints of the exte-
rior square. One approach uses the parameterization 
shown in figure 1.

To find the minimum area of the inscribed 
square, we find the maximum area, A, of each tri-
angle between the two squares (e.g., �AZT): 
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The critical point here is x = w/2. This point yields 
the maximum area for each triangle, which is also 
the minimum area for the interior square. This 
approach also suggests that we could demonstrate 
the minimum ratio by using the symmetry present 
in the figure and the similarity (congruencies) of 
the four triangles between the two squares.

Another approach that proves quite useful in 
better visualizing and understanding the problem 
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Consider the following problem, which was 
the MT Calendar problem for December 3, 
2006:

 A square is inscribed in a larger square. (That 
is, the four vertices of the inscribed square lie on 
the four sides of the larger square.) What is the 
smallest possible value of the ratio of the area of 
the inscribed square to that of the larger square? 
(2006/2007, p. 343) 

This problem is reminiscent of the problem of 
exploring area ratios of related polygons, one of the 
e-examples from Principles and Standards for School 
Mathematics (NCTM 2000) on NCTM’s Web 
page (http://www.nctm.org/standards/content.
aspx?id=26786): 
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is a dynamic graphing approach. This approach 
builds on NCTM’s e-example by using a dynamic 
plot linked to a dynamic diagram. Figure 2a shows 
the plot of the ordered pair of the length AT and 
the corresponding ratio of areas of the squares. The 
dynamic diagram allows us to look at the path of the 
vertices of the interior square along the edges of the 
exterior square. The plot shows a graph of a qua-
dratic with a minimum value when AT is half AB.

LOOKING AT OTHER REGULAR POLYGONS
The same dynamic approach can be used to inves-
tigate the minimum area ratio for equilateral tri-
angles (see fig. 2b). The diagram shows that the 
minimum area ratio occurs when the vertices of the 
interior equilateral triangle are at the midpoints of 
the edges of the exterior equilateral triangle. This 
dynamic sketch shows the area ratio at this point 
to be approximately 0.25. We say “approximately” 
because without some other verification the exact 
value may be very close to (but not exactly) 0.25.

Fig. 1  Setting up a parameterization is one way to fi nd the 

minimum ratio.

Fig. 2  Plotting the length versus the ratio of the areas produces the curves shown for regular quadrilaterals (a), 

triangles (b), pentagons (c), and hexagons (d).
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Figure 2c shows the minimum area ratio for a 
regular pentagon to be approximately 0.65, which 
is close to 2/3; once again, however, further work is 
needed to know for sure. Finally, figure 2d shows 
the minimum area ratio for a regular hexagon to be 
approximately 0.75.

This approach to finding the area ratios is unsat-
isfying because it relies on interpreting coordinates 
from a graph. Also, because of the limitations of 
technology, we cannot immediately conclude that 
the shown area ratio is the true ratio value. For 
example, several points close to the vertex on the 
graph in figure 2d show the ratio as 0.75 for the 
regular hexagon. 

FURTHER ANALYSIS
To find exact solutions for the area ratios of regu-
lar pentagons, we use a standard congruent trian-
gle method to calculate the area of the pentagons; 
one such triangle is indicated in figure 3. Know-
ing that each interior angle of a regular pentagon 
is 108°, we use the law of cosines to calculate the 
length of side GH (labeled Base). The angle adja-
cent to the base (labeled q) is 54° because the side 
of the small triangle bisects the 108° angle of the 
inscribed pentagon. This means that the base, b, 
can be written as

b xb x x w= +b x= +b xb x= +b x − −( )w x( )w x− −( )− −w x− −w x( )w x− −w x ( )x w( )x w x( )x−( )− cos .2 108s .108s .2 2= +2 2= + ( )2 2( )w x( )w x2 2w x( )w x �s .�s .

To find the height, we use h = b • (tan 54°)/2. With 
this information, we can calculate the area of the 
inscribed pentagon as follows: 
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Taking the derivative, we see that the only critical 
number occurs at x = w/2, or when the position of 
the inscribed vertex is at the midpoint of the origi-
nal side. This critical number is confirmed to be a 
minimum by the second derivative test. The value 
of the inscribed area at this value is 
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Using the same method, we find the area of the 
original pentagon. The base of one triangle is w, so 
the area of that triangle is w2 tan 54°/4, and the area 
of the entire original pentagon is 5 w2 tan 54o/4 ≈ 
1.72047740125w2. The value of the area ratio is

Area
inssscribed

original
Area

w
≈

1 126067078

0 0

. 2

1 7.1 7. 2 47740 047740 0125www2
≈ 0 6545. .6545. .6545

In general, for any regular convex n-gon, the 
ratio of areas can be calculated in a similar manner. 
Because the sum of the exterior angles of a polygon 
is 360°, each interior angle measures 180° – 360°/n
where n is the number of sides of the regular polygon.

Fig. 3  The indicated triangle is the key to an analytic solution.
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This final result allows us to calculate area ratios 
for any regular polygon. 

This approach as well as the end result is simi-
lar (but not equivalent) to a formula developed in 
Wanko (2006). In that investigation, Wanko’s stu-
dents determined a way to compute individual infi-
nite geometric series terms represented by Baravelle 
spirals. Joining midpoints of sides of regular poly-
gons to obtain new polygons forms the basis of these 
spirals. The areas of specific triangles in between the 
embedded polygons are then examined. 

Using the result, we find that the triangle, the 
square, and the hexagon are the exact values that 
we conjectured (see table 1). However, the exact 
value for the pentagon is revealed to be (15 + 3)/8, 
which does not appear to fit any pattern that might 
have been suggested by the other figures.

Further, our formula will not give all ratios an exact 
numeric value. For example, the heptagon ratio is
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The reason why is another great avenue for 
investigation.
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Using a parameterization similar to the pentagon 
parameterization shown in figure 3, the length of a 
side of the inscribed polygon would be 
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We find the area of the interior regular polygon 
by using the congruent triangle method used on the 
pentagon. The base of one of the triangles will be a 
(we labeled this Base earlier, but here we label it a
for simplicity), and the height will be

a
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The total area of the original regular polygon will be 
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We compute the area ratio as follows:
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Substituting x = w/2 (because the minimum ratio is 
at the midpoint) into this result yields

Table 1  Ratios of Embedded Polygons

Regular Polygon Ratio

Triangle

1
4

Square
1
2  

Pentagon
5 3
8
5 3+5 3

Hexagon
3
4
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