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A
n important concept in mathematics, yet one that 
is often elusive for students, is the concept of 
rate. For many real-life situations—those involv-
ing work, distance and speed, interest, and den-
sity—reasoning by using rate can be an efficient 

strategy for problem solving. 
Students struggle with the concept of rate, despite the many 

possible applications. According to NCTM’s Algebra Standard, 
students are expected to “model and solve contextualized 
problems using various representations, such as graphs, tables, 
and equations” by the end of grade 8 and “identify essential 
quantitative relationships in a situation and determine the 
class or classes of functions that might model the relation-
ships” by the end of grade 12 (NCTM 2000, p. 395). We pres-
ent an alternative approach to rate problems and show some 
connections between these problems and concepts taught in 
higher-level mathematics. An approach that makes use of 
functions provides students with a more robust understanding 
of mathematics, particularly because this approach facilitates 
multiple solution paths to the same problem.

A TYPICAL TEXTBOOK RATE PROBLEM 
Consider the following problem, found in a typical first-year 
algebra textbook: 

 Janice takes 4 hours to paint a room. Kathleen takes 
5 hours to do the same job. How long would it take them, 
working together, to paint the room? 

Typical strategies for solving this problem are based on propor-
tional reasoning, algebraic reasoning, or modeling using fractions. 
Typical textbook examples of the latter two strategies follow.

Algebraic Reasoning
Let x = the time needed working together. Then
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Using Fractions 
Janice paints 1/4 of a room in 1 hour. Kathleen paints 1/5 of 
the room in 1 hour. Together they paint 1/4 + 1/5 = 9/20 of the 
room in 1 hour. So the question becomes, How many 9/20 are 
there in 20/20? The answer is 2 2/9 (see fig. 1). (See Shore and 
Pascal [2008] for further discussion of these strategies.) 
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WJ(t) = (1/4)t, t ≥ 0; and WK&J(t) = (9/20)t, t ≥ 0 
(see fig. 3). 

Some connections can be made between these 
work functions and their corresponding rate func-
tions (see fig. 2). When we use this approach to 
explore rate problems with teachers and students, 
we ask the following types of questions to stimulate 
their thinking about the graphs and the functions 
they represent: 

• What is the significance of the linearity of the 
graphs?

• What do the slopes of these functions represent? 
• What would be realistic domains for these 

functions?
• How could these graphs be used to solve the 

problem? 

ALTERNATIVE STRATEGIES AND THEIR 
LINKS TO HIGHER-LEVEL MATHEMATICS
The same problem can be solved using either rate 
functions or work functions, as shown below.

Rate Functions
Define functions RK(t) and RJ(t) to represent the 
rates for Kathleen and Janice, respectively. Because 
Kathleen and Janice are painting at a constant rate, 
RK(t) and RJ(t) are constant functions. Specifically, 
RK(t) = 1/5, t ≥ 0, and RJ(t) = 1/4, t ≥ 0. 

If Kathleen and Janice work together, let their 
combined rate of painting be RK&J(t) = RK(t) + RJ(t) 
= 9/20, t ≥ 0. Figure 2 shows the graphs of these 
functions. From these graphs, we observe that 
Janice paints faster than Kathleen, that their com-
bined rate is faster than either of them working 
alone, and that their combined rate is also constant. 

From the equation work = rate • time, it follows 
that the amount of time required to paint 1 room 
by Janice (tJ), by Kathleen (tK), and by working 
together (tK&J) can be found by solving the equa-
tions: (1/4)tJ = 1, (1/5)tK = 1, and (9/20)tK&J = 1.

Work Functions
Another way of thinking about this problem is 
by using functions of work done. Using the equa-
tion work = rate • time, we define work functions 
for Kathleen, Janice, and both of them working 
together as, respectively, WK(t) = (1/5)t, t ≥ 0; 

Fig. 1  How many 9/20s are there in 20/20s?

Fig. 2  Rate functions RK(t), RJ(t), and RK&J(t) can be 

graphed to show comparative speeds.

Fig. 3  Graphs of the work functions WK(t), WJ(t), and WK&J(t) provide a different representation for comparisons of the painters. 
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Through questioning, we guide explorations of 
the graphs and elicit meaningful discussions of the 
problem. By observing that the line y = 1 represents 
1 room painted, we can develop a rich response to 
the fourth question above. We focus on the graph 
of the two painters working together, WK&J(t), 
noting that it crosses y = 1 farther to the left than 
does either of the other two graphs.

Some additional questions specific to the graph 
of WK&J(t) that we have asked to stir students’ 
thinking about these graphs of work functions 
include these: 

• How do the ordered pairs (t, WK(t)) and 
(t, WJ(t)) relate to (t, WK&J(t))? What does this 
relationship mean in the context of the painters?

• How does the slope of WK&J(t) compare with the 
slopes of WK(t) and WJ(t)? What does this com-
parison mean in context? 

• Using the graph of WK&J(t), estimate how long 
it would take Janice and Kathleen, working 
together, to paint 1 room, 2 rooms, and n rooms. 

For these rates of Kathleen and Janice working 
individually, an exact solution to the problem is 
hard to read from figure 3. However, by asking for 
an estimate, we help students define a small inter-
val within which the exact value is contained and 
simultaneously build on the important problem-
solving strategy of estimating from a graph. 

To find the exact time needed by Janice and 
Kathleen, reconsider the graphs in figure 3 over a 
longer period of time. From the graphs, we can see 

that the first time both Janice and Kathleen will 
have painted a whole number of rooms (5 and 4, 
respectively) is after 20 hours. At that point, their 
combined work is 9 rooms. Thus, on average, they 
need 20/9 hours per room. These approaches cre-
ate opportunities for a richer discussion about rate 
rather than by merely setting up the typical equa-
tion: r1x + r2x = 1. In addition, we begin to build a 
depth of understanding for the concept of function, 
known to be slow to develop and difficult for stu-
dents to master (Carlson 1998).

CONNECTIONS TO CALCULUS CONCEPTS 
This functional approach to solving rate problems 
creates opportunities for teachers to begin building 
a foundation for calculus concepts. For example, 
from figure 2, the values tJ, tK, and tK&J that satisfy 
the equations (1/4)tJ = 1, (1/5)tK = 1, and (9/20)tK&J

= 1, respectively, are the values that would make 
the area under the corresponding graph 1 unit (see 
fig. 4). In calculus, the question, What value of tK&J 

will make the area under the function RK&J(t) equal 
to 1? is equivalent to asking students to solve the 
following problem:

9
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This functional approach can also be used to 
highlight the concepts of sums of functions and 
sums of derivatives, which can be achieved without 
necessarily using calculus terminology. Further, 
this approach highlights the invariance of the area 
representing one painted room across the three rate 
cases. It follows that the greater the rate (the height 
of the rectangle), the smaller the time (the width 
of the rectangle) needed to make the area under 
the rectangle 1 unit. Thus, the rate of painting is 
inversely proportional to the time needed to paint a 
room. This inverse relationship—

rate (height)
1

time (width)
=

—can be “seen” as a curve connecting the top right 
vertices of the rectangles (see fig. 4). 

INCREASING THE CHALLENGE 
Mathematics educators have made a strong case for 
careful consideration of the tasks that teachers use 
during instruction. Lappan and Briars (1995) argue 
that “there is no decision teachers make that has a 
greater impact on students’ opportunities to learn 
and on their perceptions about what mathematics 
is than the selection or creation of the tasks with 
which the teacher engages students” (p. 138). We 
seek to engage students in explorations of rate that Fig. 4  This graph connects area to work.
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challenge their thinking and go beyond the rote 
manipulation of equations.

Consider the following problems: 

 Two candles of equal length are lit at the same 
time. One candle takes 9 hours to burn out, 
and the other takes 6 hours to burn out. If both 
candles burn at a constant rate, after how much 
time will the slower-burning candle be exactly 
twice as long as the faster-burning one? (Kroll, 
Masingila, and Mau 1992) 

 A dirt biker must circle a 5-mile track twice. 
His average speed must be 40 mph. On his first 
lap, he averaged 25 mph. How fast must he 
travel during his second lap to qualify? (Musser, 
Burger, and Peterson 2008)

These two problems ask the students to compare 
the amount of work still to be done (the candle 
problem) and average rate of change to instan-
taneous rate of change (the biker problem). We 
argue that both these problems have higher cogni-
tive demands than those of the painters’ problem 
presented earlier. However, they may be accessible 
to a broader range of learners using the functional 
reasoning presented here. 

THE CANDLE PROBLEM 
The desired time, when the slower-burning candle 
would be twice as long as the faster-burning candle, 
can be found using functional reasoning. Three 
solutions to this problem, each using a different 
function representation, follow.

Tabular Representation
We presented this problem to students in a collab-
orative problem-solving test setting and observed 
that their preferred method of solving it was by 
creating tables of the length of candle left at 
time t. Figure 5 shows a sample response by one 
group of students. This group used proportional 
reasoning and made explicit reference to their rea-
soning with rates.

This group chose a candle of length 18 inches 
and used rate reasoning to create tables of time-
length functions. Although these students did not 
use the word function in their discussion, they 
found a burn rate for both candles, expressed in 
inches per hour, and a burn rate for the faster-
burning candle, expressed in inches per 30-minute 
interval. Students went on to make a nontrivial 
generalization of the problem by observing that 
the initial length was irrelevant. For this problem, 
the only factor that affects the time of interest is 
the burn rate because the initial lengths of the two 
candles were the same. 

Algebraic Representation
Let F(t) = 1 – (1/6)t, 0 ≤ t ≤ 6, and let S(t) = 1 – 
(1/9)t, 0 ≤ t ≤ 9, be functions representing the 
fractions of the faster-burning and slower-burning 
candle, respectively, remaining at time t. Students 
could consider the following: How do these rates, 
expressed in terms of the fraction of the candle 
burned per hour, compare with the rates in inches 
per hour given by students whose work is shown in 
figure 5? 

The desired ratio of the lengths of the two can-
dles, 2:1, occurs when S(t) = 2F(t). A solution to 
this equation is given below:
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Graphical Representation
By graphing F(t) and S(t), we can approximate 
when S(t) is twice F(t) (see fig. 6). Alternatively, 
because there appears to be a point (between 4 
hours and 5 hours) at which S(t) = 2F(t), it follows 
that if we graph S(t) and 2F(t) on the same axes, 
then the graphs must intersect between 4 hours and 
5 hours (see fig. 7).

From this graph, we can see that the desired 
time is t = 4.5 hours. To facilitate a discussion of 
the graphs, we ask the following types of questions: 

• How many times is the length of the faster-
burning candle half the length of the slower-
burning candle? Explain the significance of your 
response in the problem context.

• What do the y-intercepts in figure 6 and figure 
7 represent, if anything? 

Fig. 5  Students used a table to solve the candle problem. 
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• Why are the y-intercepts of the two graphs the 
same in figure 6 but different in figure 7? 

Because most rate problems deal with combin-
ing the rates of two people or machines working 
together or against each other, this problem extends 
the rate problems discussion to include the compar-
ison of two rates. Rarely do students have to focus 
on comparing rates of work and the effects of dif-
ferent rates of work. Note that the different repre-
sentations used in this problem highlight different 
aspects of the functions. The graphical and tabular 
representations offer a generalized input-output 
process that makes it possible to estimate the actual 
solution by defining a small interval in which the 
solution must be contained.

Although the algebraic approach does not readily 
highlight such an interval, all three representations 
highlight the sameness of the y-intercepts for S(t) 
and F(t) and thus point to the fact that the rate of 
burning is the only factor to consider in determin-
ing the desired time.

Extensions of this problem may include start-
ing with two candles of the same length or different 
lengths and changing the question as follows: For what 
rates is it possible for the faster-burning candle to burn 
to half the length of the slower-burning candle?

THE BIKER PROBLEM 
Students’ struggles with this problem demonstrate 
their misconception that the biker’s average speed 
should be the mean of the average speeds of the two 
laps. Typically, students give an incorrect solution 
that is similar to the following:

25
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The misconception here is that the biker would 
take the same amount of time to travel each of the 
two laps. 

We now present functional reasoning solutions, 
using both rate functions and distance functions. 
Consider figure 8, which shows a graph of the 
biker’s average speed.

From our earlier discussion, we know that the 
area-under-the-rate graph represents work done. 
From this graph, we can see that the biker will need 
a total of 1/4 hour to complete the 10-mile distance. 
However, using

time (hr.) = 
distance

speed
mi.

=
5

25 mph
mi.
mi.

 hr.

 hr.  hr.,

=

= == = hr.= = hr.

5
25
1

1
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we know that he already used 12 minutes to com-
plete the first lap, leaving only 3 minutes for the 
second lap. The question is reduced to this: What 
speed will allow the biker to cover 5 miles in 
3 minutes? Alternatively, what speed will ensure 
that the area-under-the-rate graph in the interval 
from 12 minutes to 15 minutes, a 1/20-hour inter-
val, is 5 miles? Figure 9 shows the biker’s speed 
over two laps; because the width of the area of 
interest is 1/20 hour, the height must be 100 mph. 

Now let R(t) represent the instantaneous rate of 
change function. Then

Fig. 8  The area of the rectangle represents the distance 

traveled.

Fig. 6  The graphs show that somewhere between 4 hours 

and 5 hours S(t) is twice F(t).

Fig. 7  Graphing S(t) and 2F(t) provides an intersection point.
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where x represents the biker’s speed during the sec-
ond lap. Using R(t), we can find an x that gives an 
average speed of 40 mph:
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The biker problem, as does the candle problem, 
stretches the discussion beyond what the typical 
problem might accomplish. The rate function is 
now a piecewise defined function, a concept stu-

dents encounter and struggle with in precalculus. 
Students are engaged in a discussion of the distinc-
tion between average and instantaneous rates of 
change. Discussions about realistic speeds for a dirt 
bike as well as an instant change in speed from 
25 mph to 100 mph are also relevant. Ask students 
whether, realistically, a biker who rides the first lap 
at 25 mph has any chance of qualifying.

Now consider approaching the problem using 
a distance-vs.-time graph (see fig. 10). For this 
graph, we use minutes as the units for time to 
emphasize that the time left for the second lap is 
much less than the time allowed for the first lap. 

The goal is to find the total time needed to travel 
the two laps at the two speeds, which is the same as 
the time needed to travel the distance at a fixed speed 
of 40 mph. We already know that the biker traveled 
the first 5 miles at 25 mph; thus, we can expect that a 
line segment from (t = 0, d = 0) to (t = 12, d = 5) repre-
sents the distance-vs.-time graph during the first lap. 
Because the goal is to get to 10 miles before the time 
expires, it follows that the distance-vs.-time graph for 
the remaining lap is represented by a line segment 
connecting (t = 12, d = 5) to (t = 15, d = 10). The slope 
of the graph on that interval is 5 mi./3 min. Convert-
ing the slope to mph is a routine unit conversion: 
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Alternatively, let D(t) represent the distance 
traveled by the biker at time t. Then
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where x represents the biker’s speed during the sec-
ond lap. Using D(t), we can find an x that gives a 
total distance of 10 miles:

Fig. 9  The biker must average 100 mph on the second lap.

Fig. 10  The biker’s distance traveled at time (t) is a 

piecewise function.
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As with the rate graphs, this approach also 
involves piecewise defined functions and highlights 
a difference between average and instantaneous 
rate of change, two concepts that receive significant 
discussion in precalculus and calculus. Notice that 
the solution given using the distance function is 
equivalent to the following calculus question: 

Solve 
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OPPORTUNITIES FOR TEACHERS
Functional reasoning is a central theme in the K–16 
mathematics curriculum through which many con-
cepts can be explored. The functional approaches 
presented here are avenues through which teachers 
can engage students in grade-appropriate activities 
to enhance and build on their functional reasoning, 
support conceptual understanding of rate, and pre-
pare students for concepts that they will encoun-
ter later in the curriculum. If these functional 
approaches are appropriately implemented, con-
cepts such as integrals, derivatives, and piecewise-
defined functions will not be foreign to students 
when they reach calculus.

These approaches create opportunities for teach-
ers to enrich discussions around rate problems and 
for students to make connections among important 
concepts such as the area of a rectangle, slope, and 
calculus concepts. In addition, functional reason-
ing lends itself to deeper and faster explorations 
of rate problems using technology. We offer these 
functional approaches not as replacements for more 
typical approaches but as alternatives to comple-
ment the traditional approaches while presenting 
opportunities for students to gain a better under-
standing of functions. 

To expect students to discover the relationships 
discussed here without guidance is unrealistic. 

We help students make these connections through 
carefully planned questioning and deliberate use 
of multiple representations. Exploring multiple 
representations to represent rate and work func-
tions, accompanied by questioning to scaffold the 
students’ thinking about the functions, results in 
deeper understanding of these concepts. 
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