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M
any preservice teachers come into 
teacher education programs with a 
rule-based view of mathematics, a 
view that is to a large extent indica-
tive of their previous school experi-

ences (Ball 1988; Ryan and Williams 2007; Roberts 
and Tayeh 2011). When asked to explore a new 
problem, they tend to respond, “I need a formula!” 
However, when a formula is given or known, such 
as the Pythagorean theorem, some may still have 
difficulty expressing the formula’s meaning when 
they try to match its parts with those of the prob-
lem being modeled. 

In general, preservice teachers seem to possess 
what Skemp (1978) characterized as an instrumen-
tal understanding of mathematics; although proce-
durally useful in everyday situations, it is strikingly 
distant from the kind of relational mathematical 
understanding that NCTM (1991, 2000) envisions 
for teachers and students. Research suggests that 
preservice teachers’ preconceptions and miscon-
ceptions are valuable resources in reshaping and 
enriching their personal views about mathematics 
and mathematics teaching (Llinares and Krainer 
2006; Ryan and Williams 2007). 

In teaching preservice elementary school teach-
ers, I have used their instrumental understanding 

as the starting point for rich discussions about the 
fundamental ideas of mathematics and meaning-
ful mathematics teaching. Reshaping preservice 
teachers’ mathematical understanding in methods 
courses is a challenging process. Preservice teach-
ers must become convinced that their rules and 
formulas, which they have learned mostly by rote, 
have serious limitations. More important, these 
rules and formulas are grounded in solid math-
ematical relations. This is a unique aspect of pre-
service mathematics teacher education: Teacher 
educators must engage teacher candidates to 
unpack, or unlearn, their rule-based understand-
ing of mathematics for the benefit of their future 
students and their own professional growth (Ball 
1988).

In this article, I focus on preservice elementary 
school teachers’ reconstruction of meaning for 
the midpoint formula, highlighting the interplay 
between instrumental and relational understand-
ing (Skemp 1978)—in other words, the interplay 
between procedural and conceptual knowledge 
(Silver 1986) in learning mathematics for teaching. 
I further provide alternative perspectives on the 
relationship between midpoint and average to suit 
the needs of readers at various levels of mathemat-
ics learning and instruction.

The relationship between a midpoint and an average 
showcases the interplay between procedural knowledge and 
conceptual knowledge in learning mathematics for teaching.
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THE CONTEXT
The discussion about midpoints was part of an 
elementary (K–9) content and methods course on 
Euclidean and coordinate geometries offered at 
Southern Illinois University Carbondale. At the 
time, two sections of the course were offered, and 
the combined enrollment was forty-five preservice 
teachers. Their initial responses in both sections 
were very similar regarding the midpoint of two 
points in the Cartesian system. Before the lesson 
on the midpoint formula, the preservice teachers 
reviewed the coordinates of points in the Carte-
sian system and developed the distance formula as 
a direct application of the Pythagorean theorem. 
During the midpoint lesson, they were expected 
to revisit and make sense of the midpoint concept 
and the formula through examples and geometric 
reasoning. 

INITIAL REACTIONS TO THE MIDPOINT 
CONCEPT AND FORMULA
The preservice teachers were initially given a few 
pairs of special points and asked to find their mid-
point. One problem stated, “Find the midpoint of 
the segment joining A (2, 5) and B (4, 7).” This 
was an easy exercise; it did not take long before 
someone observed that, given P (a, b) and Q (c, d), 

the coordinates of M, the midpoint of segment PQ, 
are ((a + c)/2, (b + d)/2). Most preservice teachers 
seemed to know the formula and were comfortable 
with the summary that the x-coordinate of M is 
the midpoint of the x   -coordinates of P and Q and 
that the y-coordinate of M is the midpoint of the 
y-coordinates of P and Q (see fig. 1).

The student’s observation above is based on a 
major assumption about the midpoint. So I asked 
the class, “Why is (a + c)/2 the midpoint of a and c
if we are looking only at the x-coordinates of point 
P and point Q?” (see fig. 1). Some of the teachers 
referred to the examples, but the majority argued 
that (a + c)/2 was the average of a and c, as if the 
midpoint were the average of two points and vice 
versa and required no further explanation. Indeed, 
in many textbooks we can find similar statements, 
which typically are not followed by a detailed 
justification.

Could there be any deeper connection between 
the two concepts that has led to the fact that the 
numerical value of the midpoint and the average 
of the two numbers are the same? Or should we 
have just accepted this fact and moved on to more 
advanced ideas? The latter choice, obviously, was 
contrary to the course objectives, so I probed the 
teachers’ thinking for a possible explanation.
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Gelfand and Shen (1993) provide a similar 
justification in the context of the arithmetic mean 
of two numbers and their representations on the 
number line. It can be established in a meaningful 
manner that for any two points on the number line, 
the midpoint has the same value as the average of 
the two corresponding numbers. Although equating 
the midpoint with the average of two numbers (or 
points) on the number line may be mathematically 
harmless, this approach may pose challenges in 
other situations in which three or more numbers 
are involved and in which the average is certainly 
not the same as the midpoint. 

A variety of similar cases in school mathematics 
demonstrate the rich connections among math-
ematical ideas. For example, a composite number 
is an integer that can be represented in a rectan-
gular array of more than one row and column or, 
alternatively, as an integer that is the product of at 
least two nontrivial integer factors. The solution 
to a linear system in two variables, if unique, is 
the intersection of the graphs of the two equations 
or a pair of numbers that satisfy both equations. 
Indeed, the Pythagorean theorem and its converse 
are examples that integrate geometry and algebra 
in appealing ways. These mathematical connec-
tions are among the critical features of understand-
ing in learning and teaching mathematics (NCTM 
2000); thus, they should be carefully investigated 
with preservice teachers to reshape their views 
on the nature of mathematics and mathematics 
teaching.

In professional mathematical practices, formulas 
are the final products of mathematical reasoning 
and sense making. However, formulas do tend 
to redefine or offer alternative perspectives on 
the meaning of a mathematical concept, perspec-
tives that may not be similar to the original line of 
thought. 

The quadratic formula, for example, is originally 
a consequence of solving quadratic equations by 
completing the square. Once the formula is estab-
lished, however, it allows us to analyze the solution 
set in terms of a discriminant. In the case of the 
midpoint, most preservice teachers are inclined 
to accept the formula as valid, requiring no fur-
ther discussion. Nonetheless, when encouraged to 
explain, some preservice teachers could recreate a 
rationale for the mathematical idea on the basis of 
the formula. The formula, which may have been 
mastered by rote learning, now points to new 
dimensions of the original idea.

A classroom vignette relating to the midpoint 
formula demonstrates the complexity of preservice 
teachers’ relearning or unlearning the mathematics 
that they have been exposed to in a largely instru-
mental manner. 

THE INTERPLAY BETWEEN A FORMULA 
AND THE CONCEPT
When making arguments for the midpoint using 
the idea of an average (see fig. 1), the preservice 
teachers were apparently reinterpreting the for-
mula rather than trying to find the underlying 
meaning of the term midpoint. They were familiar 
with the mathematical idea behind the average of 
two numbers—namely, a sum divided by 2—which 
does in fact correctly represent the coordinates of 
the midpoint. However, few of the teachers could 
provide an alternative or an explanation of the con-
nection. It would be interesting to find out how 
students who have not previously seen the formula 
figure out the midpoint between two numbers, such 
as 6 and 14, on the number line. 

The concept of midpoint is, literally, a geometric 
idea, whereas the concept of average is primarily 
an arithmetic or algebraic idea. A person with a 
relational understanding of the ideas is able to navi-
gate through the multiple representations and the 
connections among them (NCTM 2000). However, 
the preservice teachers were focused mostly on the 
formula because of their learned habits about the 
use of mathematical formulas. Most formulas in 
mathematics are improved forms of a final product 
of lengthy reasoning; the product does not necessar-
ily reveal the process. When finding the midpoint 
between a and c on the number line (assuming that 
a < c), we can readily reason that it is a plus half 
the difference between c and a. Therefore, the mid-
point is

a
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Fig. 1  The preservice teachers were aware of the rule for fi nding the midpoint of 

two points in the coordinate system. 
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JANE’S INTERPRETATION 
OF THE MIDPOINT FORMULA
Jane (all names are pseudonyms) was a nontradi-
tional student in the class. She consistently tried 
hard to make connections and seek meaning about 
the class work. Regarding the midpoint of x1 and 
x2 on the number line, she accepted the average 
formula, as did the rest of the class. When asked 
to explain the formula, she made some drawings 
in her notebook (I had encouraged the teachers to 
make drawings) and, through a picture on a class-
room tablet computer, shared her idea with the 
class (see fig. 2). Jane further provided an example 
to illustrate the validity of her explanation: The 
midpoint of 2 and 4 is (2 + 4)/2. 

Jane’s drawing caught the attention of Linda, 
who remarked, “It is just like folding the whole 
thing [x1 + x2].” In a numeric sense, Jane was still 
finding the average because she added the two 
pieces and divided the sum by 2. Further, she had 
trouble explaining why the average is the midpoint. 
Perhaps she had some intuitive ideas about the 
connections between the average—that is, the for-
mula—and the midpoint. But Linda’s comment led 
me to construct a plausible geometric explanation 
of the midpoint formula for the class.

On reflection, I realized that the complexity 
could have come from the multiple meanings of 
points on the number line. The term point, such as
B, could be interpreted as a geometric point, a num-
ber, the distance from the origin O to the point B, 
or, alternatively, as the length of segment OB. Con-
sequently, midpoint also has multiple meanings, 
depending on the context or a student’s specific 
perspective. To find the midpoint of two points on 
the number line, we need to coordinate the multiple 
meanings of points.

In fact, Jane’s idea can be extended to construct 
a geometric explanation for the midpoint formula, 
as shown in figure 3, where points A and B are 
interpreted as the distances from the origin O to 
A and B, respectively. To find the midpoint of A
and B, we first connect OA and OB to make a long 
segment (shown as segment O1A1W in fig. 3). 
Then, we fold the whole segment O1A1W in half. 
In effect, we are folding the difference between 
OB and OA—that is, AB or A1B1—to get point M. 
Point M is therefore equally distant from A and 
B because of its construction. In other words, 
because segment A1B1 has the same buffer on both 
ends—the length of OA—folding the combined 
segment O1A1W in half splits the middle part, 
A B

1 1
, as well as the whole, yielding the desired 

midpoint M. Thus, in a geometric sense, M is the 
midpoint of A and B; in a numeric sense, it is the 
average of length OA and length OB, or half the 
sum of OA and OB.

ALTERNATIVE PERSPECTIVES
There is, in fact, another perspective on the 
midpoint-average connection: the idea of a convex 
combination, which characterizes the midpoint 
between points A and B on the number line as a 
special linear combination of A and B. A convex 
combination of points A and B is a point C = s • A + 
t • B, with s, t ≥ 0 and s + t = 1. Geometrically, C can 
be any point along segment AB. Similarly, a con-
vex combination of three points A, B, and C in the 
plane is a point D such that D = s • A + t • B + u • C, 
with s, t, u ≥ 0 and s + t + u = 1. Geometrically, point 
D can be any point on �ABC, including its interior. 

Let a, b, m be the coordinates of, respectively, A, 
B, and their midpoint M on the number line. Then, 
m = s • a + t • b, with s, t = 1/2. Although convex com-
binations are less relevant in school mathematics, 
they can be used as a pedagogical prompt to design 
an informal, dynamic model to illustrate the connec-
tion between the ideas of a midpoint and an average. 

Because, in a metaphorical sense, an average 
has the connotation of give-and-take to reach the 

Fig. 2  Jane came up with an idea to explain the midpoint formula by connecting 

two segments (the superscripts shown here are not correct).

Fig. 3  The midpoint can be found by folding the combined segment in half. 

Fold segment O1W so that O1 and W overlap.
In effect, this is like folding segment AB.
Point M is thus the midpoint between A and B.
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same level, we can design an activity as shown in 
figure 4. Given points A and B, we relate them 
to two turtles (or any moving objects), A′ and B′, 
respectively. Initially, A′ is at A and B′ at B. Then, 
both turtles start moving at the same speed in very 
small steps toward each other. Whereas B′ gives
away a certain advantage, A′ takes that advantage. 
The two points are therefore moving toward a 
common midpoint, and, accordingly, the idea of an 
average is realized as the midpoint, because both 
have traveled the same distance when they meet in 
the middle. Of course, we assume that the turtles 
would walk in such a way that they would not 
walk past each other. As a metaphor, this dynamic 
model has its advantages. In light of the balance of 
give-and-take, it is straightforward to show that 
(a – m) + (b – m) = 0, a property of average that can 
be extended to multiple points on the number line. 

If we move one step further, we could develop 
an algebraic explanation. Because a midpoint M is 
a point that is equally distant from two endpoints 
(assuming that a < b), then m – a = b – m, which 
gives m = (a + b)/2 (e.g., Gelfand and Shen 1993).

Extension to Midpoints in the Plane
The folding perspective on the midpoint can be 
extended from the number line to the plane to 
explain the formula for the midpoint of points 
P and Q (refer to fig. 1). Because two coordinates 
are related to a point in the plane, finding the mid-
point directly by folding segment PQ is difficult. 
However, we could find the horizontal midpoint 
E of the x-coordinates and the vertical midpoint 
D of the y-coordinates of point P and point Q, 
respectively (see fig. 1). Then we need to show 
that E and D correspond to the x- and y-coordinate, 
respectively, of the midpoint of PQ. For that goal, 
we draw a vertical line through E that is parallel to 
the y-axis and intersects PQ at M. Next, we connect 
M and D. We need to show that MD is parallel to 
EC. We reason as follows.

Because �PEM and �PCQ are similar and E is 
the midpoint of PC, then M is the midpoint of PQ
and ME is congruent to DC. It is clear that quad-
rilateral CDME is a rectangle and therefore MD

is parallel to EC. Thus, the x-coordinate of E and 
the y-coordinate of D are, respectively, the x- and 
y-coordinates of M.

EXTENDING THE VIGNETTE
Many ideas in elementary school mathematics are 
sophisticated in their multidimensional connections 
and thus have profound implications for teaching 
and learning mathematics with understanding 
(Ma 1999; Harel and Sowder 2005; Wu 2009). 

The midpoint vignette is just one case, with its 
obvious limitations for knowledge transfer, but it 
has a place in the education case knowledge for 
mathematics teachers for its potential to guide “the 
work of a teacher, both as a source for specific 
ideas and as a heuristic to stimulate new think-
ing” (Shulman 1986, p. 12) about mathematics 
and mathematics teachers. At another level, the 
midpoint vignette has been enlightening for the 
author himself as he strives to understand the 
complexity of educating mathematics teachers. 
Whether the midpoint scenario could be replicated 
with other groups of preservice teachers under a 
teacher educator’s guidance remains an open ques-
tion. Further, numerous cases in preservice teacher 
education share similar themes—such as dividing 
fractions, setting up basic proportions, multiplying 
negative numbers, or solving linear equations—for 
which the midpoint vignette may be informative.

So why, from the perspective of educating math-
ematics teachers, is the midpoint an average? It is a 
mathematical fact that can be established through 
sense making and reasoning across geometry, arith-
metic, and algebra, including teacher candidates’ 
personal interpretations. A relational understand-
ing of the midpoint and the corresponding average 
consists in making meaningful connections across 
the multiple dimensions of the mathematical idea. 
In essence, “understanding involves making con-
nections” (NCTM 2000, p. 64).
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