The Dog Pen Problem

My favorite lesson is the Dog Pen problem:

Suppose that you had 64 meters of fencing with which to build a rectangular pen for your large dog.

- What are the dimensions of some different pens that you can make if you use all the fencing?
- What dimensions are best to allow the most space for the dog to run?
- What dimensions will allow the most play area? What dimensions allow the least play area?

This problem is quite flexible, with variations that can address different learning objectives. Further, the discussions before, during, and after work on the problem can focus on almost every one of the Common Core Standards for Mathematical Practice. The problem requires little background knowledge, is based on a familiar situation, and has many entry points.

Although the problem asks only for "some different pens," questioning during work time usually results in lists of at least all whole-number possibilities (see fig. 1). Students generally arrive at solutions by using some combination of strategies: drawing a picture, creating a table, guessing and testing, following a pattern, or using variables. Discussion

The Back Page provides a forum for readers to share a favorite lesson. Lessons to be considered for publication should be submitted to mt.msubmit.net. Lessons should not exceed 600 words and are subject to abridgment.

Edited by Jennifer Wexler, wexlerj@newtrier .k12.il.us, New Trier High School, Winnetka, IL

Width	Length	Area
1 m	31 m	$31 \mathrm{~m}^{2}$
2 m	30 m	$60 \mathrm{~m}^{2}$
3 m	29 m	$87 \mathrm{~m}^{2}$
4 m	28 m	$112 \mathrm{~m}^{2}$
5 m	27 m	$135 \mathrm{~m}^{2}$
\vdots	\vdots	\vdots
14 m	18 m	$252 \mathrm{~m}^{2}$
15 m	17 m	$255 \mathrm{~m}^{2}$
16 m	16 m	$256 \mathrm{~m}^{2}$
17 m	15 m	$255 \mathrm{~m}^{2}$
18 m	14 m	$252 \mathrm{~m}^{2}$
\vdots	\vdots	\vdots

Fig. 1 This list includes some of the wholenumber solutions to the Dog Pen problem.
during and after the student work session encourages good use of mathematics vocabulary, which helps improve student understanding of area and perimeter. Further, by the end of the discussion, students know that rectangles with the same perimeter may not be congruent or have the same area; thus, their understanding of how perimeter, area, and congruence relate to each other has increased. They also see that there can be more than one way to solve a problem successfully and that problems can have more than one accurate answer. But the learning does not have to stop there.

Questions about patterns can lead to rich discussions that help develop students' expertise in looking for structure. Although students may not readily notice any pattern in the sequence of areas of pens with integral sides, questioning usually helps some notice that
differences in areas form a sequence of consecutive odd numbers.

To explore still more variations on this lesson, consider adding questions such as these:

- Which rectangular pen has the largest area? Does your result hold for any length of fence?
- What about pens that are not rectangles? Do any of them have a larger area?
- If x is either the length or the width and $f(x)$ is the area, what does the graph of $f(x)$ look like?

I am still discovering new questions to ask about this problem. After reading Steven Siegel's "The Ratio of Perimeter to Area" (Reader Reflections, MT May 2010, vol. 103, no. 9, p. 632), I look forward to asking students to use the Dog Pen problem to investigate Siegel's concept of density: "the ratio of perimeter to the area of the region it bounds."

I have also used a variation of the lesson to focus on pedagogy when working with preservice and in-service teachers. Asking teachers first to find the area and perimeter of a square and a nonsquare rectangle and then to compare these tasks with the Dog Pen problem demonstrates clearly the difference between an exercise and a true problem.

JUDITH MACKS, jmacks@ towson.edu, is a lecturer in the mathematics department at Towson University in Maryland. She is interested in improving the learning and teaching of mathematics by working with preservice and in-service mathematics teachers.

Welcome Back to School with New Books from NCTM

NCTM Members Save 25\%! Use code MT813 when placing order. Offer expires 9/30/13.*

NEW TITLES ON SECONDARY MATHEMATICS EDUCATION

NEW I Success from the Start:
Your First Years Teaching Secondary Mathematics BY ROB WIEMAN AND FRAN ARBAUGH © 2013, Stock \# 13952 ©Book

NEW I One Equals Zero and Other Mathematical Surprises
BY NITSA MOVSHOVITZ-HADAR AND JOHN WEBB
Previously published by Key Curriculum Press ©2013, Stock \# 14553 ©Book

NEW Second volume of bestselling title!
Cartoon Corner 2
EDITED BY PEGGY HOUSE
©2013, Stock \#14373 eBook

NEW BOOKS ON THE COMMON CORE

NEW SERIES!

Look for more titles in this series to come.
FRANCES CURCIO, SERIES EDITOR

Implementing the

Common Core State Standards through Mathematical Problem Solving: High School
BY THERESA GURL, ALICE ARTZT, AND ALAN SULTAN
© 2012, Stock \# 14329 Book

NEW | Connecting the NCTM Process Standards and the CCSSM Practices
by COURTNEY KOESTLER, MATHEW D. FELTON, KRISTEN N. BIEDA, AND SAMUEL OTTEN
©2013, Stock \# 14327 ©Book

NEW | Curriculum Issues in an Era of Common Cores State Standards for Mathematics
BY CHRISTIAN HIRSCH, GLENDA LAPPAN, AND BARBARA REYS ©2012, Stock \# 14319 ©Book

Find the whole series on www.nctm.org/catalog

MORE NEW BOOKS

NEW I Defining Mathematics Education: Presidential Yearbook Selections 1926-2012 EDITED BY FRANCIS (SKIP) FENNELL AND
 WILLIAM SPEER ©2013, Stock \#14551 ©Book

NEW TITLES in the Bestselling Essential Understanding Series rose mary zbiek, series editor

Developing Essential Understanding: Statistics 9-12

BY ROXY PECK, ROB GOULD, AND STEPHEN MILLER
© 2013, Stock \#13804 ©Book

Developing Essential
Understanding:
Proof and Proving for
Teaching Mathematics in Grades 9-12

BY KRISTEN BIEDA, ERIC KNUTH AND AMY ELLIS
©2013, Stock \# 13803 Book
*This offer reflects an additional 5\% savings off list price, in addition to your regular 20\% member discount.

Special Offer for Math and Science Educators

TI-Nspire CX Navigator Rewards Program

Tl offers a special promotion for educators that will help you equip your math or science classroom. For a limited time, when 60 of your students buy a TI-Nspire"' CX or TI-Nspire ${ }^{m " \prime}$ CX CAS handheld, we'll reward your school with a 30-user TI-Nspire"' CX Navigator" System.

[^0]To find out more about the program and resources to help you communicate the value of TITechnology to parents, visit education.ti.com/go/navrewards.
*SAT and AP are registered trademarks of the College Entrance Examination Board. IB is a registered trademark of the International Baccalaureate Organization. ACT is a registered trademark of ACT, Inc. None were involved in the production of nor do they endorse these products. Policies subject to change. Visit www.sat.org, www.act.org and www.ibo.org.
†Learn more at education.ti.com/research.
For complete rules on the TI-Nspire ${ }^{T m}$ CX Navigator Rewards Program,
visit education.ti.com/go/navrewards/rules.

[^0]: Take advantage of this special, limited-time program today. Offer expires September 30, 2013.

