
Vol. 107, No. 5 • December 2013/January 2014 | MatheMatics teacher  341

Through KenKen puzzles, students can explore parity, counting, 
subsets, and various problem-solving strategies.

harold B. reiter, John thornton, and G. Patrick Vennebush

Using KenKen
to Build Reasoning Skills

K
enKen® is the new Sudoku. 
Like Sudoku, KenKen 
requires extensive use of logi-
cal reasoning. Unlike Sudoku, 
KenKen requires significant 

reasoning with numbers and operations 
and helps develop number sense. 

The creator of KenKen puzzles, 
Tetsuya Miyamoto, believed that “if 
you give children good learning materi-
als, they will think and learn and grow 
on their own” (Nextoy 2012). We 
agree. KenKen puzzles help develop 
perseverance and stamina, and in the 
classroom they promote problem solv-
ing, reasoning, and communication. 
Because KenKen puzzles can vary in 
difficulty, they can be used effectively 
in middle school classrooms, high 
school classrooms, extracurricular 
math clubs, mathematics courses for 
nonmajors, and methods courses for 
preservice teachers. 
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At their core, KenKen puzzles involve simple 
arithmetic, but solving them requires a combination 
of logic, algebra, number theory, and combinator-
ics. While solving the puzzles, students practice 
addition, subtraction, multiplication, and division; 
consider multiple factorizations and partitions of 
numbers; and invoke deductive reasoning. In a high 
school classroom, KenKen puzzles can also be used 
to develop algebraic thinking, explore syllogisms 
and isomorphism, investigate topics in discrete 
math, and reinforce geometry concepts.

Before reading further, you might try to solve a 
puzzle for yourself. We suggest the sample problem 
in figure 1. This is a 3 × 3 puzzle in which the 

numbers 1, 2, and 3 occur once in each row and 
column. The two numbers in the [1–] “cage” have 
a difference of 1, and the six numbers in the [10+] 
cage have a sum of 10. The notation [n*] is used to 
indicate a cage for which the operation * is used to 
obtain a result of n. (For additional examples, visit 
http://illuminations.nctm.org/kenken, where four 
new puzzles appear daily.)

You may not want to read the following solution 
until you have attempted the puzzle on your own 
(this advice applies to all puzzles presented here):

•	 The [3] cage must be filled with a 3.
•	 The sum of all nine entries is 3 × (1 + 2 + 3) = 

18, so the sum of the entries in the [1–] cage 

must be 18 – 3 – 10 = 5. Consequently, the [1–] 
cage must be filled with 2 and 3, and their order 
is dictated by the 3 in the [3] cage.

•	 Once a 2 and two 3s are placed in the [3] and 
[1–] cages, the rest of the numbers fall into place. 
The solution is shown in figure 2.

In general, the rules for KenKen are as follows:

•	 For an n × n grid, fill each row and column with 
the numbers 1 through n. A number may not be 
repeated within any row or column. 

•	 Each heavily outlined set of cells, called a cage, 
contains a mathematical clue that consists of a 
number and an arithmetic operation: +, -, ×, or 
÷. The numbers in that cage must combine (in 
any order) to produce the target number using 
the mathematical operation indicated. 

•	 Cages with just one cell should be filled with the 
target number.

•	 A number may be repeated within a cage, pro-
vided it is not in the same row or column.

We will demonstrate several mathematical rea-
soning strategies that can be used to solve KenKen 
puzzles and to highlight some benefits of using 
numerical puzzles in the classroom. In particular, 
KenKen puzzles allow students to explore basic 
operations, factors, parity, symmetry, modular 
arithmetic, congruence, isomorphism, and algebraic 
thinking. Perhaps more important, however, they 
allow students to engage in the mathematical prac-
tices identified in the Common Core standards. As 
we review strategies for solving KenKen puzzles, 
we will attempt to indicate opportunities where 
these strategies can be used with students.

STRATEGIES
The two requirements of a KenKen solution are 
that the digits 1 through n must be used in an n × n 
grid and that the mathematical clues must be satis-
fied. Within a puzzle, each cage may have just one 
set that fulfills the clue, or there may be several 

Fig. 1  The grid can be filled in only one way that satisfies 

all the requirements of this puzzle.

Fig. 2  This is the solution to the sample 3 × 3 KenKen 

puzzle that appears in figure 1.

KenKen puzzles allow students 
to explore basic operations, 

factors, parity, symmetry, 
modular arithmetic, congruence, 

isomorphism, and algebraic thinking. 
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candidate sets that could fill the cage. Our approach 
depends on the clue as well as the size of the puzzle. 
When appearing in a 6 × 6 puzzle, for example, the 
two-cell cage [7+] has three candidate sets—{1, 6}, 
{2, 5}, and {3, 4}. In a 4 × 4 puzzle, however, the 
same cage has a unique candidate set—{3, 4}. 

This idea of candidate sets is important when 
considering strategies. The examples that follow 
highlight the importance of this idea.

The X-Wing Strategy
The X-wing strategy is borrowed from Sudoku. 
As the name implies, cells from multiple rows and 
cages are used in tandem to eliminate candidates. 
In essence, the X-wing strategy is a process of creat-
ing an organized list and eliminating possibilities, a 
problem-solving technique listed by Pólya in How to 
Solve It (1945). 

Because k parallel lines cannot have more than k 
copies of a given number, we can eliminate candi-
date sets for the second and third rows of the 6 × 6 
KenKen puzzle in figure 3. 

Observe that the [15×] cage has only one possi-
ble candidate set: {1, 3, 5}. On the other hand, the 
[18×] cage has two possible candidate sets: {1, 3, 6} 
and {2, 3, 3}. When {1, 3, 5} is used to fill [15×], 
however, it would be impossible to fill [18×] with 
{2, 3, 3} because three 3s would appear in these 
two rows—a violation of the rules. Consequently, 
[18×] must be filled with {1, 3, 6}.

Fault Lines and Parity 
A fault line is a heavy horizontal or vertical line 
that cuts entirely through a puzzle, dividing it into 
two pieces. Pólya advised, “If you can’t solve a 
problem, then there is an easier problem you can 
solve: Find it” (1945, p. 114). Fault lines cut a 
puzzle into smaller rectangles of manageable size. 
The parity of a cage is even (odd) if the sum of 
the entries of the cage is even (odd). For example, 
[11+] is an odd cage because the sum of the entries 
is 11, which is an odd number. The parity of some 
two-cell cages is determined, even though the 
candidates are not. For example, [2–] is an even 
cage because the entries are either both even or 
both odd; in both cases, the sum of the entries is 
even. On the other hand, some two-cell cages can 
be either even or odd. For example, [12×] has two 
pairs of candidates; one is {2, 6}, which is even, 
and the other is {3, 4}, which is odd. 

Parity can be used to make progress in the first 
row of the puzzle in figure 3. Because the sum of 
the six entries is 1 + 2 + 3 + 4 + 5 + 6 = 21, an odd 
total, the row must have either one or three odd 
cages. Since the two [1-] cages are odd, the [12×] 
cage must also be odd. Therefore, the [12×] cage 
must be filled with {3, 4}.

Parity is a topic from number theory that can 
also be useful even when no fault line exists. Con-
sider the second and third rows from the puzzle in 
figure 3.

Notice that three cages—[18×], [6+], and [12+]—
are even cages, whereas [15×] is an odd cage. The 
sum of all entries in these two rows is 2 × 21 = 42. 

Therefore, parity logic dictates that the entry in the 
top cell of the [11+] cage must be odd, so it has to be 
filled with 5.

KenKen puzzles often have multiple solution 
paths. We have used the previous example to high-
light the use of parity, but we do not mean to suggest 
that parity is the only viable method. For instance, it 
could be noted that the [20×] cage in the fourth row 
must be filled with {4, 5}, so the lower cell in the 
[11+] cage must be 6 and the top cell must be 5. 

That KenKen puzzles can be solved in multiple 
ways is one reason why they are so powerful in 
the classroom. A discussion about various strate-
gies allows students to “identify correspondences 
between different approaches” (CCSSI 2010), an 
idea emphasized in the Common Core standards.

Fig. 3  This KenKen puzzle can be used to demonstrate a number of solution strategies.

That KenKen puzzles can be  
solved in multiple ways is one 
reason why they are so powerful  
in the classroom. 
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•	 If the only candidate sets are {1, 3} and {3, 5}, 
then [2–] must contain a 3.

•	 If [2–] must contain a 3, then [24×] cannot  
contain a 3.

•	 If [24×] cannot contain a 3, then it must be filled 
with {1, 4, 6}.

•	 If [24×] is filled with {1, 4, 6}, then [2–] must  
be filled with {3, 5}.

•	 If [24×] is filled with {1, 4, 6} and [2–] is filled 
with {3, 5}, then the last cell in the sixth row 
must be filled with 2.

Parallel and Orthogonal Cages
Orthogonal cages are two [n*] cages oriented at 
right angles to each other. As a result, the two cages 
cannot be filled with the same set of numbers. The 
two [12×] cages that appear in the first row and the 
sixth column of the puzzle in figure 3 are orthogo-
nal cages. Because [12×] cages have only two pos-
sible candidate sets, {3, 4} and {2, 6}, one of those 
sets must appear in each [12×] cage. The results 
from the stacked cages strategy dictate that {2, 6} 
must fill the [12×] cage in the last column, so {3, 4} 
must be used for the [12×] cage in the top row.

Related to orthogonal cages are parallel cages, 
which are two-cell [n*] cages that appear in paral-
lel lines in the same position within the line. The 
required uniqueness of the solution implies that the 
two cages cannot be filled with the same two-element 
set. If they were filled with the same set, it would be 
impossible to know the order of the  numbers.

As an example, consider the third and fifth rows 
of the puzzle that appears in figure 3. Both rows 
contain a [6+] cage occupying the fourth and fifth 
cells. There are only two possible candidate sets: 
{1, 5} or {2, 4}. Therefore, we must use each of 
these sets in one of the [6+] cages. Further, the first 
cell of the third row contains a 5, so the [6+] cage in 
the third row must be filled with {2, 4}.

In addition to allowing students to apply deduc-
tive logic, orthogonal and parallel cages also provide 
an opportunity to use geometric terms outside the 
regular curriculum.

Elimination
We have already determined that the [12×] cage in 
the top row must be filled with {3, 4}. That leaves 
us with {1, 2, 5, 6} to fill the two [1–] cages in the 
top row. We can do so only if we use {1, 2} in one 
of the [1–] cages and {5, 6} in the other. Because 
{5, 6} is used to fill the [11+] cage in the first col-
umn, {1, 2} must be used to fill the first [1–] cage 
in the top row, and {5, 6} must be used to fill the 
second [1–] cage.

A similar but simpler process of elimination can 
be used in the fifth row. We know that the last cell 
in the fifth row must contain a 6 and that the [6+] 

Stacked Cages
Some puzzles have two or more cages confined to 
a single row or column. These stacked cages can be 
used to eliminate candidate sets. 

In the classroom, students construct syllogisms 
by connecting pieces of information. Information 

about the stacked cages in the bottom row of the 
puzzle in figure 3 can be used to exemplify the 
type of deductive reasoning in which students 
might engage while solving a KenKen puzzle:

•	 The candidate sets for [24×] are {1, 4, 6} and  
{2, 3, 4}.

•	 If the candidate sets are {1, 4, 6} and {2, 3, 4}, 
then [24×] must contain a 4.

•	 If [24×] contains a 4, then [2–] cannot contain a 
4.

•	 If [2–] cannot contain a 4, then the only candi-
date sets are {1, 3} and {3, 5}. 

In addition to allowing students to 
apply deductive logic, orthogonal 
and parallel cages also provide an 

opportunity to use geometric terms 
outside the regular curriculum.

Fig. 4  The 6 × 6 KenKen puzzle that appears in figure 3 has been partially solved. 

A blue numeral has been determined for the cell, whereas red numerals are possible 

candidates.
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cage must be filled with {1, 5}, so the [24×] cage 
can be filled only with {2, 3, 4}.

As a result of the strategies used thus far, the 
puzzle is now partially completed (see fig. 4). (A 
large numeral indicates that the number for that 
cell has been determined; several smaller numer-
als within a cell indicate candidates.) There is still 
work to be done, but the remainder of the reason-
ing is straightforward.

For instance, the [1–] cage and the [12+] cage in 
the upper-left corner of the puzzle must each con-
tain a 2. Consequently, the X-wing strategy dictates 
that the first two cells of the [24×] cage in the fifth 
row cannot contain a 2; further, because the first 
cell of the [24×] cage cannot be a 3, it must be a 4. 
By elimination, the middle cell must be a 3.

Similar reasoning can be used to complete the 
puzzle. Good luck!

OTHER STRATEGIES
The 6 × 6 puzzle in figure 3 was used to illustrate 
several strategies, but not all solution strategies can 
be shown in a single puzzle. Here we provide addi-
tional examples to highlight other strategies that 
may be useful when solving KenKen puzzles.

Advanced Parity 
Parity is an integral topic in number theory, and 
advanced uses of parity can be helpful in solving 
KenKen puzzles.

Consider the two rows of a 6 × 6 KenKen puzzle 
shown in figure 5. The set for the [12×] cage must 
be one of {1, 3, 4}, {1, 2, 6}, or {2, 2, 3}. (This last 
set is possible because the cage is L shaped; the two 
2s can occupy different rows and columns.) But par-
ity can be used to exclude {1, 2, 6} and {2, 2, 3}  
because both are odd. The cages [3×] and [10+] are 
both even, and the two [1-] cages are both odd. 
Because the sum of the entries in the two rows must 

be 42, the number of odd cages must be even. There-
fore, the [12×] cage must be even, so the only pos-
sible candidate set is {1, 3, 4}.

Parity refers specifically to numbers modulo 2,  
but a similar idea can be used with other bases.  
For an example using modulo 3, see puzzle 3  
in the additional puzzles and solutions provided at  
www.nctm.org/mt047.

Counting
As the name implies, counting uses basic arithmetic 
facts to determine the number for a cell. However, 
because algebra is the generalization of arithmetic, 
KenKen puzzles provide an opportunity to promote 
algebraic thinking.

Figure 6 shows one row from a 6 × 6 puzzle. 
What is the value of x? Because the sum of the 
entries in the row must be 21, x = 1. 

The example shown in figure 7 demonstrates a 
more advanced use of the counting technique. The 
eleven entries in the [37+] cage have a sum of 37, but 

Fig. 6  An isolated row from a 6 × 6 puzzle provides an 

opportunity to apply a counting strategy.

Fig. 5  Two isolated rows from a 6 × 6 puzzle illustrate a 

parity strategy.

Fig. 7  Counting techniques can also be used in situations like this.

Fig. 8  The unique candidate rule can be used to complete 

this Latin square.
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the sum of the entries in the row is a + b + c + d +  
e + f = 21, and the sum of the entries in the column is  
g + d + h + i + j + k = 21, yielding the following:

(a + b + c + d + e + f ) + ( g + d + h + i + j + k) =
(a + b + c + d + e + f + g + h + i + j + k) + d 

                                                           21 + 21 = 37 + d 
                                                                   42 = 37 + d
Consequently, d = 5.

The Unique Candidate Rule
Once n – 1 copies of a digit have been placed, the 
location of the last copy is determined. The unique 
candidate rule can be exploited to complete the  
3 × 3 Latin square shown in figure 8.

The lower-right corner must contain a 3 because 
a 1 already appears in the third row and a 2 already 
appears in the third column. Then the second cell 
of the third row must be a 2. At this point, the 
unique candidate rule can be invoked: Because both 
the second and third rows as well as the second 
and third columns contain a 2, the last remaining 
2 must appear in the upper-left corner. Filling the 
remaining cells is straightforward.

The unique candidate rule is powerful for solv-
ing KenKen puzzles, especially when many cells 
have been filled. However, this rule is a general 
Sudoku strategy and not specific to KenKen. More-
over, all Sudoku strategies are relevant to KenKen 
because both types of puzzles rely on Latin squares. 

Subset Analysis
The 6 × 6 puzzle shown in figure 9 contains two 
vertical fault lines. Consider the cells in the third, 
fourth, and fifth columns. Two cages in these  

Fig. 9  This 6 × 6 KenKen puzzle contains two vertical fault lines.

columns have just one candidate set. They are 
[120×], which has only {4, 5, 6}, and [5–], which 
has only {1, 6}. But notice that the two [3÷] cages 
are orthogonal, meaning that they must be differ-
ent, so one is {1, 3} and the other is {2, 6}. Thus, 
all three of the 6s in these three columns have been 
used, implying that the [30×] cage must be filled 
with {2, 3, 5}. Taken together, these five cages 
account for {1, 1, 2, 2, 3, 3, 4, 5, 5, 6, 6, 6}, leaving  
{1, 2, 3, 4, 4, 5} to fill the remaining two-cell cages: 
[1–], [1–], and [3–]. 

At this point, we can use subset analysis. If  
{2, 5} were used to fill the [3–] cage, there would 
be no way to match the 1 with another digit to fill a 
[1–] cage. Consequently, the [3–] cage must be filled 
with {1, 4}, and the two [1–] cages must be filled 
with {2, 3} and {4, 5}. 

VARIANTS
Some variations of KenKen puzzles use slightly 
modified rules. For instance, Turbo KenKen uses 
characters other than 1 through n, and Primal Ken-
Ken uses only prime numbers. In Abstract KenKen, 
the characters need not be numbers, and the opera-
tions need not be the four binary operations. 

KENKEN AND MATHEMATICS
We have used KenKen puzzles successfully and in 
myriad ways with students from prekindergarten 
through college. As a class exercise, one author 
gave each student two copies of a different KenKen 
puzzle. Students solved the problem on one copy 
and then used the second copy to explain their 
solution to a partner. Through these discussions, 
a number of the strategies that we have discussed 
here were uncovered, and the other strategies were 
then shared with a class of highly engaged students.

Increased discourse is just one of the reasons to 
use KenKen puzzles in a mathematics classroom. 
They encourage problem solving, reasoning, and 
mathematical communication, and they also pro-
mote important mathematical practices, such as 
perseverance and the ability to examine the rea-
sonableness of a result. In addition, students must 
reason quantitatively to solve a KenKen puzzle, but 
they must reason abstractly when creating a puzzle 
on their own. When one high school teacher had 
his students solve and then create KenKen puzzles, 
he found that the enthusiasm and results exceeded 
his expectations. 

Arithmetic is at the heart of KenKen, and the 
concepts of factor and partition are ubiquitous. But 
more advanced topics can be explored as well. Mod-
ular arithmetic and congruence are standard topics 
in number theory; isomorphism and mapping func-
tions can be used to show the relationship between 
two puzzles; parity and algebra can be used to make 
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progress on a puzzle; and linking several results to 
form an extended syllogism is a form of deductive 
proof.

Not only have we had success reaching students 
using KenKen, but we have also had quite a bit of 
fun ourselves. 

Do you KenKen? We think you should.
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For additional KenKen puzzles and their 
solutions, download one of the free apps 
for your smartphone and then scan this 
tag to access www.nctm.org/mt047.  


