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s
ince ancient Greek times, the study of 
prime numbers has fascinated genera-
tions of mathematicians, including 
Pythagoras, Euclid, and Eratosthenes. 
In the more modern era, contributors 

have included Thabit ibn Qurra, Girard, Fermat, 
Mersenne, Goldbach, Leibniz, Euler, Stern,  
Dirichlet, Cataldi, Fibonacci, Lucas, Legendre, 
Gauss, Bertrand, Chebyshev, Riemann, and  
Hadamard. Work done by these mathematicians 
has led to many types of primes (search “prime” 
at mathworld.wolfram.com), as well as algorithms 
and theorems attributed to them. 

The notion of home primes is relatively new in 
the chronicle of mathematics. Heleen (1996–97) 
first described a procedure called prime factor splic-
ing, hereafter referred to as PFS. The exploration of 
home primes is interesting and accessible to anyone 
who understands prime factorization. 

To begin, let’s consider any posi-
tive integer and resolve this integer 
into its prime factorization. Then we 
concatenate the prime factors in order 
of increasing or equal magnitude to form 
a new integer. If the new integer is com-
posite, we repeat the first two steps. For 
example: 15 = 3 • 5 → 35 = 5 • 7 →  
57 = 3 • 19 → 319 = 11 • 29 → 1129 
(prime), and 24 = 23 • 3 = 2 • 2 • 2 • 3 → 
2223 = 3 • 3 • 13 • 19 → 331319 (prime).

The prime number eventually obtained 
in each of these two examples is known as 
the home prime of the original number. That 
is, 1129 is the home prime of 15, and 331319 
is the home prime of 24. We will consider 
1129 as the “parent” of the “child” 15, and, 
similarly, 331319 as the “parent” of the “child” 24. 
Note that the number 15 requires four iterations of 

The process of prime factor splicing to generate home primes 
raises opportunity for conjecture and exploration.
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keeping the focus on the set of positive integers. 
Through class discussion, we frame students’ 
thoughts as questions such as these: 

•	 If	we	start	with	a	given	prime	number	child,	
what is its parent?

•	 Does	every	composite	child	have	a	parent?	If	so,	
can we find the parent using our available CAS 
technologies? 

•	 How	many	PFS	iterations	are	needed	to	secure	
the parent of a given composite child? Moreover, 
is there a pattern to the number of iterations 
needed to find parents? 

•	 Is	it	possible	for	more	than	one	composite	child	
to have the same parent? 

•	 Is	every	prime	number	the	parent	to	some	com-
posite child? If not, what characteristics make a 
prime number a parent? 

The students then develop strategies for finding 
answers to their questions. In response to some of 
their questions, they recognize the need for clear 
mathematical definitions. We know that the only 
factor of 1 is itself, which is not a prime, so it can 
be argued that we cannot prime-splice 1. We also 
know that the only factors of a prime are that num-
ber and 1, so a prime is its own home prime. All 
prime numbers are considered to reach their home 
prime in zero iterations. We quickly find that start-
ing with a composite integer is more interesting.

 
CONJECTURES ON COMPOSITE CHILDREN
Students have found building tables useful when 
pursuing their questions. As a homework assign-
ment, they work on finding the parents for the sev-
enty-four composite integer children between 1 and 
100, inclusive. They are encouraged to use any CAS 
in their calculations and may later compare their 
results with those available at the World of Numbers 
forum. Table 1 summarizes the home prime results. 

Some students have become disappointed when 
trying to determine the parents for the children 49 
and 77. One issue that arises is that the PFS process 
continues for many iterations. Second, even the 
most sophisticated technology fails to completely 

the PFS process to reach its home prime parent and 
that the number 24 requires two iterations. 

Computer algebra system (CAS) packages 
facilitate more extensive investigations than hand 
calculations and promote the exploration of many 
conjectures. Figure 1 illustrates the steps needed 
to reach the parent of 24 using three different CAS 
technologies. The fact that factoring 331319 yields 
itself tells us that 331319 is prime. It would take 
considerably more time to determine by hand that 
331319 is prime.

Heleen’s algorithm for PFS initiated fascina-
tion with the topic of home primes and served as 
the impetus for mathematicians around the globe 
to delve more deeply into computation methods 
and conjectures. CAS technologies are now used 
to explore new mathematical insights and content. 
Some ongoing efforts to compute home primes and 
explorations of home prime properties are available 
at the World of Numbers recreational mathematics 
online forum (worldofnumbers.com/topic1.htm).

Investigating home primes can be a valuable 
experience at the secondary school level, a creative 
activity that fires the imagination of students as it 
introduces them to the research process. We have 
introduced the notion of home primes as part of a 
number theory unit in an effort to show students 
that mathematics is an ever-growing field of study, 
with new topics and themes continually emerging 
and developing, rather than being a stagnant field of 
facts. Although our students were preservice teach-
ers, the following ideas can be adapted to students at 
many different levels in various classroom settings. 

Students begin by finding all primes between 
1 and 100 using the sieve of Eratosthenes. From 
there, we typically investigate applications of 
prime factorization, such as determining the num-
ber of factors for a given composite number, find-
ing the greatest common factor and least common 
multiple of a given set of numbers, and establish-
ing whether or not the decimal representation of 
a given fraction terminates or repeats. We then 
introduce home primes by demonstrating the PFS 
process. We challenge students to come up with 
ideas that could be considered for further study, 

Fig. 1  cas steps generate prime factorization needed for splicing.

   
 (a) TI-89  (b) TI-Nspire CAS (c) Mathematica

factor(24)             23 • 3
factor(2223)  32 • 13 • 19
factor(331319)              331319

Mathematica reports
{prime factor, exponent of the factor}

   In[1]=    FactorInteger[24]
Out[1]=    {{2, 3}, {3, 1}}
   In[2]=    FactorInteger[2223]
Out[2]=    {{3, 2}, {13, 1}, {19, 1}}
   In[3]=    FactorInteger[331319]
Out[3]=    {{331319, 1}}
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Table 1  Home Prime Parents for Composite Children, 1 to 100

Integer Number of 
Iterations

Home Prime  Integer Number of 
Iterations

Home Prime

4 2 211  55 2 773

6 1 23  56 3 37,463

8 13 3,331,113,965,338,635,107  57 2 1129

9 2 311  58 1 229

10 4 773  60 2 35,149

12 1 223  62 3 31,237

14 5 13,367  63 1 337

15 4 1129  64 6 1,272,505,013,723

16 4 31,636,373  65 19 1,381,321,118,321,175,157,763,339,900,357,651

18 1 233  66 1 2311

20 15 3,318,308,475,676,071,413  68 2 3739

21 1 37  69 3 33,191

22 1 211  70 1 257

24 2 331,319  72 3 1,119,179

25 3 773  74 2 379

26 4 3251  75 2 571

27 4 13,367  76 3 333,271

28 1 227  77 unknown still composite at 109th iteration

30 2 547  78 8 3,129,706,267

32 2 241,271  80 31 313,169,138,727,147,145,210,044,974,146,858,220,729,781,791,489

33 1 311  81 9 193,089,459,713,411

34 5 31,397  82 1 241

35 3 1129  84 1 2237

36 2 71,129  85 3 3137

38 2 373  86 17 6,012,903,280,474,189,529,884,459

39 1 313  87 18 41,431,881,512,748,629,379,008,933

40 9 3,314,192,745,739  88 2 719,167

42 2 379  90 3 71,171

44 9 22,815,088,913  91 7 236,122,171

45 6 3,411,949  92 2 331,319

46 1 223  93 1 331

48 15 6,161,791,591,356,884,791,277  94 2 1319

49 unknown still composite at 110th iteration  95 4 36,389

50 2 3517  96 28 172,929,671,097,972,226,356,946,608,292,031,596,899,264,419

51 1 317  98 1 277

52 1 2213  99 2 71,143

54 1 2333  100 3 317,047
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factor the very large integers that appear. To ease 
students’ frustration, we inform them that some 
mathematical problems remain open despite the 
best efforts of even the most world-renowned math-
ematicians. We have found that the ability of cur-
rent CAS technology to complete the factorization 
of a large composite number is contingent on the 
second largest prime factor. When this prime factor 
has more than, say, thirty digits, the factorization 
process can become stalled. (In computer science 
parlance, the algorithm used to generate the factors 
of a composite integer cannot be achieved in poly-
nomial time and is termed NP Hard.) 

Following their table 1 homework, students 
build table 2 in class, counting the number (“fre-
quency of occurrences”) of composite children 
requiring a given number of iterations to reach 
their parents. For example, three composite chil-
dren (i.e., 40, 44, and 81) require nine iterations. 
Through this organization of data, students have 
discovered that only one or two iterations are 
needed to determine the parent of slightly more 
than half the composite children under consider-
ation; further, of the known number of iterations, 
31 is the maximum. 

The numbers 49 and 77 have caught the curi-
osity of our students for another reason. Some 

notice that in the first iteration of PFS, we have 
49 = 7 • 7 → 77, leading to the same steps and 
eventually (if it exists) the same prime as for 77. 
Thus, the children 49 and 77 must have the same 
parent, even though this home prime is currently 
unknown by the mathematical community. A 
check of table 1 indicates that it is possible for 
other sets of composite children to share a com-
mon parent. Such numbers can be classified as 
“siblings” belonging to the same home prime 
“family.” This finding inspires students to create 
table 3, showing sets of children from table 1  
that have a common parent. Note that table 3 
does not provide an exhaustive list of children 
for each parent because we limited our original 
set of composite children to natural numbers less 
than or equal to 100. For example, although two 
children—namely, 42 and 74—are listed for the 
parent 379, the composite number 237 is another 
child (237 = 3 • 79 → 379). 

As a result of developing these three tables, stu-
dents have wondered whether we can find other 
families of two or three siblings and whether we 
could find larger families with four or five siblings. 
These problems are open-ended with respect to 
the possibility of multiple correct answers. In each 
case, students would be expected to show PFS work 
to prove that the numbers they provide indeed have 
the same parent. Students could also be asked to 
explain their strategies for finding their solutions. 
One strategy is to examine a chain of iterations and 
flesh out the iterated composite children along the 
way to the parent. 

CONJECTURES ON PARENTS
In addition to these specific problems relating to 
children, students have also come up with ques-
tions concerning parents. For example, they have 
inquired whether any composite child could have 
the parent 7, 17, 23, 37, 47, or 53. These problems 

Table 2  Occurrences of Composite Children 
as a Function of PFS Iterations

Number of Iterations
Frequency of 
Occurrences

unknown 2

1 20

2 19

3 10

4 6

5 2

6 2

7 1

8 1

9 3

13 1

15 2

17 1

18 1

19 1

28 1

31 1

Table 3  Siblings

Set of Composite 
Integers Common Home Prime

{49, 77} unknown

{4, 22} 211

{12, 46} 223

{9, 33} 311

{42, 74} 379

{10, 25, 55} 773

{15, 35, 57} 1129

{14, 27} 13,367

{24, 92} 331,319
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are directly related to the following questions: Is 
every prime number the parent to some composite 
child? If not, what characteristics make a prime 
number a parent? Students have also queried 
whether the parent 773 can have children other 
than 10, 25, and 55. This question leads to a fur-
ther one: How do we secure a child from any given 
parent? We have been surprised and impressed by 
our students’ formation of problems of this type 
because addressing these questions requires revers-
ing the PFS process. In the following examples, 
the direction of the arrows is reversed to show the 
backward process from the parent to the child. 

Our students reason their way through the fol-
lowing conjectures: Single-digit primes (2, 3, 5, 7) 
cannot come from a concatenation procedure and 
thus cannot be considered parents. Similarly, two-
digit teen primes (11, 13, 17, 19) do not come from 
a concatenation of two primes (the digit 1 is not 
prime) and thus cannot be considered parents. On 
the other hand, by PFS definition, two-digit prime 
numbers are parents if and only if the two individ-
ual digits are primes in ascending order. For exam-
ple, the prime number 23 is the parent to the child 
6. If we work backward, 23 would have had to have 
been found from concatenating the primes 2 and 3, 
whose product is 6 (23 ← 2 • 3 = 6). Similarly, the 

prime 37 is the parent to the child 21 (37 ← 3 • 7 = 
21). The prime 47 cannot be a parent because the 
digit 4 is not prime. The prime 53 cannot be a par-
ent because, although its digits are prime, its digits 
are not in ascending order.

As instructors, we help our students formalize 
their logical deductions. Suppose that our two-digit 
primes take on the form ab. Then we can express 
our current conjecture this way: ab will be the par-
ent of a child a • b if and only if a and b are prime 
and a ≤ b. We encourage students to extend this 
thinking to larger-digit numbers, and we allow 
them to work in groups to figure out when three- 
and four-digit primes will work as parents. Strong 
reasoning skills must be used in this process, and 
many of our students do not find it easy to sort out 
the following patterns. However, we believe that, in 
the end, their struggles are rewarded with stronger 
logical thinking skills.

Three-digit primes work as parents if and only if 
the three individual digits are primes in increasing 
order (e.g., 227 ← 2 • 2 • 7 = 28; 233 ← 2 • 3 • 3 = 
18; 257 ← 2 • 5 • 7 = 70) or if the digits can be split 
left to right into a single-digit prime and a double-
digit prime (e.g., 229 ← 2 • 29 = 58; 241 ← 2 • 41 
= 82). For three-digit primes of the form abc, these 
two conditions can be expressed as 

¼ + = % < - > ÷ x¼ + = % < - > ÷ x¼ + = % < - > ÷ x¼ + = % < - > ÷ x¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) × 
½ ± µ ¾ ¢ 90° y½ ± µ ¾ ¢ 90° y½ ± µ ¾ ¢ 90° y½ ± µ ¾ ¢ 90° y½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x
< - > ÷ x< - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y
¢ 90° y¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y
x3 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x
$ ¼ + = % < - > ÷ x$ ¼ + = % < - > ÷ x$ ¼ + = % < - > ÷ x$ ¼ + = % < - > ÷ x$ ¼ + = % < - > ÷ x$ ¼ + = % < - > ÷ x$ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y
× ½ ± µ ¾ ¢ 90° y× ½ ± µ ¾ ¢ 90° y× ½ ± µ ¾ ¢ 90° y× ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x
% < - > ÷ x% < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y
¾ ¢ 90° y¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y
÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x

¼ + = % < - > ÷ x
 (a+b) × ½ ± µ ¾ ¢ 90° y

± µ ¾ ¢ 90° y
¼ + = % < - > ÷ x

 (a+b) × ½ ± µ ¾ ¢ 90° y
± µ ¾ ¢ 90° y
¼ + = % < - > ÷ x

 (a+b) × ½ ± µ ¾ ¢ 90° y  $ ¼ + = % < - > ÷ x
 (a+b) × ½ ± µ ¾ ¢ 90° y

 (a+b) × ½ ± µ ¾ ¢ 90° y
 $ ¼ + = % < - > ÷ x

 $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y
 (a+b) × 

 (a+b) × ½ ± µ ¾ ¢ 90° y
 (a+b) × ½ ± µ ¾ ¢ 90° y

 $ ¼ + = % < - > ÷ x
 (a+b) × ½ ± µ ¾ ¢ 90° y

 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % 
 (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ 

 (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷  $ ¼ + = % < - > ÷ 
 $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2

 (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) 
 $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = 

 (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) × ½ ± µ 
 (a+b) × ½ ± µ ¾ ¢ 90° y (a+b) × ½ ± µ ¾ ¢ 90° y2 $ ¼ + = % < - > 

 $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x33 (a+b) × ½ ± µ ¾ ¢ 90°  (a+b) × ½ ± µ ¾ ¢ 90° 

x

¼ + = % < - > ÷ x  $ ¼ + = % < - > 
 (a+b) × ½ ± µ ¾ ¢ 90° y  (a+b) × ½ 

± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x  (a+b) × ½ ± µ ¾ ¢ 90° y2 $  $ 
¼ + = % < - > ÷ x  $ ¼ + = % < - >  $ ¼ + = % < - > 

 (a+b) × ½ ± µ ¾ ¢ 90° y  (a+b) × ½  (a+b) × ½ 
± µ ¾ ¢ 90° y2 $ ¼ + = % < - > ÷ x  (a+b) × ½ ± µ ¾ ¢ 90° y22 $ 
¼ + = % < - > ÷ x  $ ¼ + = % < - >  $ ¼ + = % < - >  $ ¼ + = % < - > 

 (a+b) × ½ ± µ ¾ ¢ 90° y  $ ¼ + = % < - > ÷ x $ ¼ + = % < - > ÷ x3 (a+b) × ½  (a+b) × ½ 
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Table 4  Parent Sieve of First 550 Prime Numbers

2 3 5 7 11 13 17 19 23 29 31 37 41 43 47

53 59 61 67 71 73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173 179 181 191 193 197

199 211 223 227 229 233 239 241 251 257 263 269 271 277 281

283 293 307 311 313 317 331 337 347 349 353 359 367 373 379

383 389 397 401 409 419 421 431 433 439 443 449 457 461 463

467 479 487 491 499 503 509 521 523 541 547 557 563 569 571

577 587 593 599 601 607 613 617 619 631 641 643 647 653 659

661 673 677 683 691 701 709 719 727 733 739 743 751 757 761

769 773 787 797 809 811 821 823 827 829 839 853 857 859 863

877 881 883 887 907 911 919 929 937 941 947 953 967 971 977

983 991 997 1009 1013 1019 1021 1031 1033 1039 1049 1051 1061 1063 1069

1087 1091 1093 1097 1103 1109 1117 1123 1129 1151 1153 1163 1171 1181 1187

1193 1201 1213 1217 1223 1229 1231 1237 1249 1259 1277 1279 1283 1289 1291

1297 1301 1303 1307 1319 1321 1327 1361 1367 1373 1381 1399 1409 1423 1427

1429 1433 1439 1447 1451 1453 1459 1471 1481 1483 1487 1489 1493 1499 1511

1523 1531 1543 1549 1553 1559 1567 1571 1579 1583 1597 1601 1607 1609 1613

1619 1621 1627 1637 1657 1663 1667 1669 1693 1697 1699 1709 1721 1723 1733

1741 1747 1753 1759 1777 1783 1787 1789 1801 1811 1823 1831 1847 1861 1867

1871 1873 1877 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987

1993 1997 1999 2003 2011 2017 2027 2029 2039 2053 2063 2069 2081 2083 2087

2089 2099 2111 2113 2129 2131 2137 2141 2143 2153 2161 2179 2203 2207 2213

2221 2237 2239 2243 2251 2267 2269 2273 2281 2287 2293 2297 2309 2311 2333

2339 2341 2347 2351 2357 2371 2377 2381 2383 2389 2393 2399 2411 2417 2423

2437 2441 2447 2459 2467 2473 2477 2503 2521 2531 2539 2543 2549 2551 2557

2579 2591 2593 2609 2617 2621 2633 2647 2657 2659 2663 2671 2677 2683 2687

2689 2693 2699 2707 2711 2713 2719 2729 2731 2741 2749 2753 2767 2777 2789

2791 2797 2801 2803 2819 2833 2837 2843 2851 2857 2861 2879 2887 2897 2903

2909 2917 2927 2939 2953 2957 2963 2969 2971 2999 3001 3011 3019 3023 3037

3041 3049 3061 3067 3079 3083 3089 3109 3119 3121 3137 3163 3167 3169 3181

3187 3191 3203 3209 3217 3221 3229 3251 3253 3257 3259 3271 3299 3301 3307

3313 3319 3323 3329 3331 3343 3347 3359 3361 3371 3373 3389 3391 3407 3413

3433 3449 3457 3461 3463 3467 3469 3491 3499 3511 3517 3527 3529 3533 3539

3541 3547 3557 3559 3571 3581 3583 3593 3607 3613 3617 3623 3631 3637 3643

3659 3671 3673 3677 3691 3697 3701 3709 3719 3727 3733 3739 3761 3767 3769

3779 3793 3797 3803 3821 3823 3833 3847 3851 3853 3863 3877 3881 3889 3907

3911 3917 3919 3923 3929 3931 3943 3947 3967 3989      
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(i) a • b • c, where a, b, and c are prime and  
a ≤ b ≤ c; and

(ii) a • bc, where a and bc are prime. 

With respect to the latter three-digit condition, 
numbers such as 211, 311, and 379 are attention-
grabbing because they each have at least two chil-
dren (see table 3). This is due either to the fact 
that we can find a composite child for each of two 
backward iterations (211 ← 2 • 11 = 22 ← 2 • 2 = 4; 
311 ← 3 • 11 = 33 ← 3 • 3 = 9) or to the fact that an 
integer within the backward procedure could have 
come from different concatenations (379 ← 3 • 79 
= 237 ← 2 • 3 • 7 = 42; or 379 ← 3 • 79 = 237 ← 
2 • 37 = 74). Numbers like 223 are also intriguing 
because they satisfy either condition, leading back 
to two children (223 ← 2 • 2 • 3 = 12, or 223 ← 2 • 
23 = 46). If the backward procedure contains multi-
ple iterations, then multiple children can be found. 
For example, 773 is the parent to the children 10, 
25, 55, and 511:

 
773 ← 7 • 3 = 511 ← 5 • 11 = 55 ← 5 • 5 

= 25 ← 2 • 5 = 10

As we extend the number of digits of a prime 
under consideration, conditions for being a parent 

become more complicated. We conjecture that four-
digit primes of the form abcd can be considered 
parents if and only if

(i) a • b • c • d, where a, b, c, and d are prime and  
a ≤ b ≤ c ≤ d 

 (e.g., 2237 ← 2 • 2 • 3 • 7 = 84); 
(ii) a • b • cd, where a, b, and cd are prime and a ≤ b 
 (e.g., 2213 ← 2 • 2 • 13 = 52); 
(iii) a • bcd, where a and bcd are prime 
 (e.g., 3251 ← 3 • 251 = 753 ← 7 • 53 = 371 ←  

3 • 71 = 213 ← 2 • 13 = 26); or 
(iv) ab • cd, where ab and cd are prime and ab ≤ cd 
 (e.g., 3137 ← 31 • 37 = 1147 ← 11 • 47 = 517 ←  

5 • 17 = 85). 

Again, multiple children may be found for a 
given parent. For example, 3373 ← 3 • 3 • 73 = 657 
and 3373 ← 3 • 373 = 1119 ← 11 • 19 = 209 give us 
3373 as the parent of 209, 657, and 1119. 

We have not found the sets of conjectures pre-
sented here in the literature, but we believe that we 
have formulated substantial ideas that seem to hold 
true (albeit without proof). Using our conjectures, 
we consider the first 550 primes in table 4. Gray 
cells indicate nonparents; blue cells indicate the 
parents of children between 1 and 100, inclusive 
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(previously found in table 1); and white cells  
indicate parents of at least one composite integer 
child that is larger than 100 (e.g., 271 is the parent 
to 142). We have not found anything similar to  
table 4 in the literature, and we encourage readers 
to confirm and build on our work thus far. 

POSSIBILITIES FOR RESEARCH
In the twentieth century, computers have provided 
the tools and calculation techniques for generating 
data on prime numbers for theorists to consider. 
Today, computing projects such as the Great 
Internet Mersenne Prime Search (mersenne.org) 
continue to produce some of the largest prime num-
bers. An interesting mathematical fact is that the 
likelihood that a randomly generated integer having 
a large number of digits is prime decreases as we 
consider increasingly larger integers. Yet the num-
ber of positive primes is infinite. 

Today’s mathematicians find advancements 
in and new findings in home primes exciting and 
fascinating but also, from a theoretical standpoint, 
serious for the contribution these findings make 
to mathematical theory. The home prime conjec-
ture asserts that a prime number (the parent) will 
be obtained after finitely many PFS iterations on 
an initial positive integer (the child) other than 1. 
In other words, every composite number (child) 
has a home prime (parent) under the PFS pro-
cess. Heleen (1996–97) and others have actively 
immersed themselves in attempting to resolve this 
conjecture for 49, 77, and other composite integers. 
That is, despite the fact that the PFS process is 
relatively straightforward, securing home primes 
for composite integers is an active area of ongoing 
research in computational number theory. 

We encourage readers to have fun building on 
our discoveries, exploring other conjectures about 
home primes, or even proving the conjectures 
that our students made. Possibilities for continued 
exploration include the consideration of primes 
larger than four digits, further investigation of 
home prime families (the existence of multiple chil-
dren and their identities), and the examination of 
a modified PFS process that involves concatenating 
prime factors in reverse order (i.e., in decreasing 
magnitude, such as 15 = 5 • 3 → 53 [prime]). 
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