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i
This situation is ideal for giving 

students the opportunity to develop 
proofs. The students notice something 
interesting about their tables: Sara’s 
conjecture hints at a relationship that 
the teacher knows will always hold. 
Moreover, the teacher wants the 
students to use this opportunity to 
understand more about the quadratic 
relationship between the rectangles’ 
heights and areas. She asks the stu-
dents to work in pairs and reminds 
them to focus on justifying their ideas. 

When sharing their work, the 
students explain that the first dif-
ferences represent how much area is 
added each time the rectangle grows. 
The second differences represent 
“the area of the amount added to 
the previous area,” explains Bianca. 
Tai agrees: “It’s the amount added to 
the amount added to the area.” The 
students share drawings of growing 
rectangles and identify the additional 
area from one iteration to the next. 
For instance, when the original blue 
rectangle in figure 3 grows to become 
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Fig. 1 A set of growing rectangles opens the door to a discussion about proof.

Imagine an eighth-grade classroom 
where students are exploring rela-
tionships between the heights and 
areas of rectangles (Ellis 2011). 
They are investigating a special set 
of rectangles that grow in a particu-
lar way by iterating the height and 
length values so that the rectangles 
remain similar. One set of these 
rectangles is seen in figure 1. The 
students create tables, comparing 
the rectangles’ heights and areas, and 
notice something interesting: The 
second differences for the area are 
always constant, no matter what type 
of rectangle the students use (see 
fig. 2). One student, Sara, makes the 
conjecture that this will be the case 
for any rectangle. 

The teacher recognizes this as an 
opportunity to discuss proof. She asks 
her students the following questions: 

•	 What do the second differences 
mean?

•	 Why are they constant?
•	 Will they always be constant?
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the second rectangle, 3 additional 
rectangular units of area are added. 
When it grows again to become the 
third rectangle, 5 additional rectangles 
are added. The difference between the 
3 additional rectangles and the 5 ad-
ditional rectangles is 2 units of area, or 
the second difference, 12 square cm. 

Pleased with how the students 
made sense of the first and second 
differences, the teacher then asks 
them to justify why the second dif-
ferences remain constant for any set 
of rectangles whose dimensions grow 
proportionally. In this case, however, 
each student’s proof relies on the use 
of a specific example. 

Sara draws a 1 cm × 3 cm rectangle 
and shows that the second differ-
ences would be 6 square centimeters 
each time the height grows by 1 cm 
and the length grows by 3 cm. Other 
students make similar arguments 
with different rectangles, and some 

students rely on tables of values that 
they create, showing that the pattern 
holds for several different tables. The 
teacher asks the students whether they 
have any other way to form a proof, 
but none can answer. All the students 
are convinced that Sara’s conjecture is 
true, but they cannot do anything be-
yond providing examples to prove it. 

IS PROOF REASONABLE  
IN MIDDLE SCHOOL?
The scenario above may be familiar 
to teachers who try to help their 
students develop proofs. Forming 
deductive arguments that go beyond 
examples is difficult for students at all 
grade levels (Balacheff 1988; Knuth, 
Choppin, and Bieda 2009; Martin 
and Harel 1989). Students find 
examples-based arguments convinc-
ing, and they may also be convinced 
by arguments that appeal to author-

ity, rely on perception, or otherwise 
depend on a justification that is not 
deductive (Harel and Sowder 2007). 
For instance, consider the following 
hypothetical proofs when students 
attempt to prove the identity  
2(n – 1) = 2n – 2 (a problem taken 
from Boaler and Humphreys 2005):

Janie: I tried it with 3, 5, 10, and 11 
and it works every time, so it must 
be true.

Sam: I tried it with 1 through 5 and it 
worked every time. Then I tried it 
for a really big number, 1000, and 
for a really small number, 0, and it 
still worked. So it probably works 
for every number. 

Malia: I know this is true because last 
year my teacher said that this is 
the distributive property, and you 
can just distribute the 2 across the 
parentheses. 
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Fig. 2 A height and area table, with first 
and second differences, illustrates that 
the second differences are constant. 

Fig. 3 A growing rectangle illustrates 
the second and third iterations.
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Source: Adapted from Boaler and Humphreys (2005)

Fig. 4 These deductive arguments explain the identity 2(n – 1) = 2n – 2. 



524  MatheMatics teaching in the Middle school  ●  Vol. 16, No. 9, May 2011

rely on particular numbers. Another 
student asks her why the second for-
mula has 6 variables but she continues 
to divide by 5, and Hannah explains: 

You can think of e + f as just one 
number. It’s just the same number 
but it has increased by f amount. So 
it’s really still 5 test scores.

This led Isaac to realize the following: 

That means you don’t even have to in-
crease the largest value. If you increase 
any number, the mean has to go up, 
because it’s like adding f to anything!

The teacher uses this discussion to 
launch a deeper exploration about 
which factors affect the mean and by 
how much.

Just as teachers’ actions can help 
students move beyond examples-based 
reasoning and launch deeper investi-
gations, the way that tasks are written 
can also encourage proof in middle 
school (Ball and Bass 2003; Bieda 
2010). Students will be better poised 
to develop proofs if they encounter 
tasks that create the need for substan-
tial mathematical reasoning. 

tiPs FoR classRooM PRactice
Middle school students need explicit 
support to develop appropriate proofs 
and move beyond arguments that rely 
on authority, perception, or examples. In 
addition to modifying tasks to provide 
more proof opportunities, there are 
other ways to support students’ attempts 
as they begin to engage in proofs.

1. Encourage students to make sense 
of existing justifi cations
Students can learn a great deal about 
proving by making sense of others’ 
proofs. In addition to encouraging 
them to share their reasoning, teach-
ers can provide examples of both cor-
rect and incorrect justifi cations using 
a hypothetical student scenario. They 

Janie and Sam rely on examples to 
show that the identity is true; Malia 
relies on an authority-based argu-
ment. To help the class see the fl aws 
in examples-based proofs, the teacher 
asks her students to consider how 
many examples they would need to 
prove the identity. Students reply with 
three, fi ve, and less than ten. Travis, 
another student, argues differently: 

We thought that you have to try 
every single number there is because 
just because it works for, like, maybe 
twenty or thirty of them . . . it might 
not work for thirty-one, ’cause you 
haven’t tried it yet. And so you have 
to fi nd, to make sure that it works for 
everything, you have to try every-
thing. So you have to fi nd some way 
to explain it in words. (Boaler and 
Humphreys 2005)

The teacher highlights Travis’s rea-
soning to help her students under-
stand that examples would not be 
suffi cient to prove the identity. This 
example leads to the creation of sev-
eral viable proofs (see fi g. 4).

Although proof can be diffi cult, 
middle school students and even 
younger can and do create mathemati-
cally appropriate proofs (Ellis 2007; 
Stylianides and Stylianides 2008; 
Zack 1997). In fact, proof has been 
shown to play an important role in 
promoting deep learning in math-
ematics (Hanna 2000; Yackel and 
Hanna 2003), and it can help support 
students’ mathematical discoveries.

Consider Andy’s and Hannah’s 
attempts at proofs in fi gure 5. Andy’s 
response is a typical examples-based 
argument, but Hannah produces a 
more general argument that does not 

Question:
Say you have 5 test scores ranging from low to high. If you increase the 
highest test score, how will it affect the mean? Will it go up, down, stay the 
same, or does it depend on how much the score changes?

Andy’s Response: 
80, 82, 85, 90, 95 Mean = 86.4
80, 82, 85, 90, 100 Mean = 87.4

I tried it with three other examples, and in each case the mean went up. So 
increasing the larger score means that the mean will go up.

Hannah’s Response: 
Since we don’t know what the scores are, I used variables:

a b c d e+ +a b+ +a b + +c d+ +c d
=

5
mean

You know that they’re all positive numbers because they are test scores. So 
say e is the highest score, then you’re going to increase it by some amount, f. 
The new mean will be

a b c d e f+ +a b+ +a b + +c d+ +c d e f+e f

5
,

which has to be bigger than it was before, because you’re dividing a bigger 
number by 5. So it’ll always go up.

Fig. 5 Two students justify their answers in different ways.
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can then introduce ideas in the guise 
of work from a student in a different 
class. When a justification comes  
from another student rather than 
from the teacher, students may be 
more willing to critique it and agree 
or disagree on the basis of the merits 
of the argument. For instance, for the 
identity 2(n – 1) = 2n – 2, a teacher 
could introduce the proof that argues 
that 2(n – 1) can be expressed as  
(n – 1) + (n – 1) (see fig. 4) and gauge 
students’ reaction to this argument. 

It can also, at times, be helpful to 
introduce an argument that is in-
correct to assess what students find 
convincing. A teacher could introduce 
Sam’s answer (see p. 523’s dialogue) 
and ask whether his proof is more 
convincing than Janie’s proof, because 
Sam uses extreme examples in addi-
tion to smaller numbers. 

2. Ask students to explain in a 
different way
It is not uncommon for students to 
get stuck or be unable to produce 
a justification. Pushing students to 
move beyond rudimentary explana-
tions can increase their capacities for 
proof (Ball and Bass 2003). Ask stu-
dents to provide a different argument, 
to use a different representation, or 
to draw a picture. For the 2(n – 1) = 
2n – 2 identity, a teacher could ask 
students to draw a picture of (n – 1) 
and 2(n – 1). This could lead to the 
image in figure 4a. Students who are 
familiar with algebra tiles and an area 
model of multiplication might make a 
picture like that in figure 6. At times, 

students may be too wedded to one 
particular representation to move to a 
more general argument, as in the sce-
nario with the growing rectangles. In 
this case, a teacher might ask students 
to create a different picture that does 
not rely on a specific rectangle or to 
work with an algebraic representation. 

3. Point out what makes a 
justification valid
In addition to understanding why 
particular proofs may not be suffi-
cient, students need help understand-
ing what constitutes a mathematically 
appropriate justification. Emphasize 
what makes a particular justification 
appropriate (Ball and Bass 2003). For 
instance, Hannah’s answer (see fig. 5) 
is a powerful justification because it 
does not rely on specific numbers but 
instead makes a general argument. A 
teacher could emphasize the differ-
ence between Hannah’s answer and 
another hypothetical student’s answer, 
such as Andy’s, and ask students to 
think about how they could further 
generalize Hannah’s justification. 

4. Emphasize explaining “why”
Showing that a conjecture is always 
true may not be strong motivation 
to create a proof, because students 
may already be convinced from trying 
several examples. Ask students to 
explain why a conjecture must be true; 
at that point, proof becomes a way 
for students to make sense of what is 
happening. For instance, the textbook 
example in figure 7, involving interior 
angles of polygons, asks students to 
develop a pattern but does not ad-
dress why that pattern makes sense 
or where it comes from. Being able to 
explain why the formula 180°(n – 2) 
makes sense can encourage students 
to develop a proof that goes beyond 
showing that the pattern works with 
different examples. Extensions to pro-
mote student responses to the “why” 
question are shown in figure 8.

5. Redirect students’ attention to the 
contextual situation
Once students extract a number pat-
tern, it may be natural for them to 
focus on patterns rather than on the 

Fig. 6 This representation of 2n – 2 
may have come from a student’s  
experience with algebra tiles.
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Here are some regular polygons. All the sides have the same length.
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Complete the following table. What is the sum of the interior angles of a 36-gon? 

Name Triangle Square 12-gon

Number of angles 3 4 5

Measure of one 
interior angle

60° 135°

Sum of all  
interior angles

180° 540° 1800°

Source: Adapted from deLange et al. (2006, p. 35)

Fig. 7 A common textbook task can be extended to promote proof opportunities.
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first and second differences for qua-
dratic growth. The students are able 
to eventually create algebraic repre-
sentations of the quadratic relation-
ship between height and area. 

Providing regular opportunities 
for students to prove and explicitly 
supporting students’ emerging proof 
abilities will help middle school 
students not only become more adept 
at proving but also develop a deeper 
understanding of the mathematics 
they investigate. 
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Now that you know the sum of the 
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