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c dents fi nd arithmetic sequences more 
intuitive and easier to grasp. The fi rst 
part of the article focuses on deriving 
the essential properties of arithmetic 
sequences by appealing to students’ 
sense making and reasoning. The 
second part describes how to guide 
students to translate their knowledge 
of arithmetic sequences into an un-
derstanding of linear equations.

Ryota Matsuura originally wrote 
these lessons for his mathematics
course for preservice elementary 
teachers. Patrick Harless used the 
lessons and the described approach 
with his eighth-grade algebra students 
and experienced success. The anec-
dotes drawn from Harless’s experience 
provide insight into how teachers can 
implement these ideas and how his 
students made sense of arithmetic 
sequences and linear equations. 

Two forty-minute periods were 
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needed to introduce arithmetic 
sequences. A third forty-minute 
period was necessary to translate what 
students learned about arithmetic 
sequences into an understanding of 
linear equations. (For complete lesson 
plans, as well as the accompanying 
problem sets, contact Matsuura at 
matsuura@stolaf.edu.) 

aRithMetic seQUence: 
a FigURal RePResentation
The goal of this lesson was for stu-
dents to gain familiarity with arith-
metic sequences. The lesson began 
with the example in fi gure 1a. After 
reviewing the answer, the teacher in-
troduced the notation bn (read “b sub 
n”) to denote the nth box number. For 
instance, we write b3 = 10, because the 
third box has 10 segments.

To acquire more experience with 
this sequence and to practice inter-

Consider the following question, 
which is typically posed to students 
who are studying linear equations:

Suppose a line contains the points 
(-30, -12) and (10, 48). Find its 
equation.

The approach often taught to solve 
such a problem resembles a step-by-
step recipe that starts as follows: 
Step 1: Find the slope using “change 
in y divided by change in x.” Students 
usually memorize this initial step. 
If they can fi nd the equation, one 
wonders whether they understand the 
underlying concepts. 

What follows is an approach to 
teaching linear equations that is based 
on students’ understanding of arith-
metic sequences. Although these two 
concepts are closely related, from our 
experience we have learned that stu-
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preting the new notation, students 
worked on follow-up questions that 
were posed using subscripts (see 
fi g. 1b). Nearly all students drew 
fi gures for the fi rst several box num-
bers. From their numerical data, they 
readily identifi ed the “+ 3” pattern in 
the sequence and explained:

Each fi gure adds a square. Because 1 
line is already connected, you only need 
3 to make another square: 1 on the top, 
1 on the bottom, and 1 on the right.

We add 1 more box, so that’s 4 more, 
but then subtract 1 because of the 
overlap.

Most students attempted to write 
equations of the form y = 3x +  or 
y = x + 3. Those who initially said y = 
x + 3 were trying to capture the “+ 3” 
pattern but quickly realized that the 

equation did not yield the desired in-
crease. Another student who fi rst tried 
y = 3x, recognizing that the repeated 
addition would be captured in multi-
plication by 3, made this comment: 

When I put 1 into 3x, it gave me 3; 
and when I put in 2, it gave me 6. So 
I knew I had to add 1 [because the 
fi rst two box numbers are 4 and 7].

The student thus reasoned that the 
equation must be y = 3x + 1.

When reviewing the answer, 
the teacher noticed that almost all 
students had found a correct equation 
either on their own or with the help 
of classmates. Since the subscript no-
tation was new, students had written 
their equation as y = 3x + 1 instead of 
bn = 3n + 1. They also needed frequent 
reminders about how to interpret ex-
pressions such as bn. The notation did 

become more comfortable with use, 
and students learned to appreciate the 
fact that it helped them distinguish 
between arithmetic sequences and 
linear equations.

Some students may have diffi -
culty making the connection between 
repeated addition (or subtraction) in an 
arithmetic sequence and its formal rep-
resentation as multiplication. To probe 
students’ understanding, a teacher 
might ask those who have made this 
connection to explicitly discuss why the 
“+ 3” pattern is being represented as 
3 times the number of boxes. (“When 
you use bn = 3n + 1, it’s like starting at 
0. When you fi nd the fourth box, it is 
0 to 4. That’s 4 increases of 3, so you 
multiply 4 by 3. You need to multiply 
to see the pattern.”) Other students 
can be asked to interpret and restate 
in their own words the connection 
between the two:
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We’re adding 3 to each box. From the 
beginning, that is 4 increases [for the 
fourth box], so it’s 4 times 3.

Such a discussion may help those who 
are still grappling with the connection 
to begin developing a more mature 
understanding.

An unexpected discussion oc-
curred as to whether bn = 3n + 1 
and bn = 3(n - 1) + 4 could both be 
correct equations. Student justifica-
tions for bn = 3n + 1 have been shown 
above. Those who wrote bn = 3(n - 1) 
+ 4 explained, “The first box num-
ber is 4. Then you add 3 every time 
beginning with the second, so you 
have to subtract 1 [from n].” One 
student suggested bn = 4n - (n - 1) 
and reasoned:

4n is the number of the sides of 
squares if you don’t connect them. But 
if you do, there are segments that are 
connected and counted twice. If there 
are 2 squares, there is 1 connected 
line; if there are 5 squares, there are 4 
connected lines; if there are n squares, 
there are n - 1 connected lines, so 
that’s what you subtract.

Students eventually agreed that 
all three representations were equiva-
lent.  Their flexible thinking about 
arithmetic sequences led to their 
natural inclination to simplify these 
algebraic expressions and establish 
their equivalence. Harless explained 
that the box-number sequence is an 
example of a general way to express a 
pattern. He then defined these terms:

•	 Arithmetic sequence—Any sequence 
with a constant difference between 
the terms.

•	 Constant difference—The fixed 
number that is added. 

For example, the box numbers form 
an arithmetic sequence with a con-
stant difference of 3. Depending on 

Question: The box numbers follow the figural pattern shown below. Each box 
number counts the number of line segments used to create the figure. 

How many segments are in each of the first 4 box numbers?
(a)

1. Find b5, the fifth box number.
2. Find b10. 
3. Find a formula for bn, the nth box number.

(b)

Suppose you have an arithmetic sequence 

a1, a2, a3, a4, a5, . . . ,

with a2 = 11 and a5 = 23.

a. Fill in the table below.

n 1 2 3 4 5 6 7 …

an 11 23 …

b. What is the constant difference of this arithmetic sequence? Describe how 
you found it.

c. If the term a0 were to exist, what would it be?

d. Find a formula for an, the nth term of this arithmetic sequence.

Fig. 1 An introductory problem gave students an opportunity to become familiar with 
subscript notation.

Fig. 2 Students were asked to derive a formula for an arithmetic sequence from two 
given terms.

Fig. 3 This student’s work reflected a line of reasoning, including the increase of 12 for 
each three steps.
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their algebra background, students 
may need to work with more examples 
of arithmetic sequences (in particular, 
using the new notation and general-
izing to equations involving n) before 
moving on. 

aRithMetic seQUence: 
giVen tWo teRMs
In the next lesson, students were 
asked to derive a formula for an arith-
metic sequence, including fi nding the 
constant difference if given two terms 
of the sequence. (See fi g. 2.) After 
completing the table, most students 
claimed that the constant difference 
was “obviously” 4: “From a2 to a5, the 
sequence went up by 12. That took 
3 steps, so it’s an increase of 4 every 
step.” (See fi g. 3.) After this discus-
sion, the teacher summarized their 
work by writing the following:

constant difference
increase in sequence values

=
thttht e number of steps it takes

=
−

=

=

23 11
5 2−5 2−

12
3

4

To fi nd a0, many students sub-
tracted the constant difference of 
4 from a1 = 7 and obtained a0 = 3. 
Kevin also suggested using the given 
term a2 = 11 and subtracting the 
constant difference twice so that 
a0 = 11 – (2)4 = 3.

By now, most students understood 
that a formula for this sequence would 
have the form an = 4n + . Eventu-
ally, Kevin derived the formula an =
3 + 4n. After seeing Kevin’s formula 
on the board, several others were able 
to explain that to fi nd an, they would 
start at a0 = 3 and take n steps for-
ward, where each step is a constant 
difference of 4. 

When asked to fi nd the general 

form of the nth term, some students 
realized right away that a0 would play 
a role in the formula. However, several 
others computed a0 as if it were an 
unrelated problem, then found the 
missing constant term of an = 4n + 
through experimentation. Harless 
heard these comments: “Oh, it’s just 
a0!” or “So that’s why they asked me to 
fi nd a0.” These students then explained 
that “a0 is what you have before you 
start adding the 4s.” 

At this point, students had essen-
tially derived the slope formula on 
their own. They had also found an 
equation of a line, given its two points. 
As you will soon see, all that remained 
was to translate the results about arith-
metic sequences into the language of 
linear equations. 

Later on, students encountered 
the problem in fi gure 4, which asked 
them to derive the general formula 
for arithmetic sequences. Most stu-
dents were comfortable interpreting 
the given formula, as they (like Lena) 
did not use the table to answer ques-
tions (b) and (c). They explained, 
“For the constant difference, 7 is 

multiplied by n, which means that 
everything is a difference of 7” and 
“Lena means that by looking at the 
equation, the constant, which is –3, 
is the answer for d0, and the 7 tells 
her the constant difference.” Finally, 
a student summarized the discussion 
on the board, as shown in fi gure 5, 
which prompted students to make the 
following generalization:

A formula for an arithmetic 
sequence has the form 

  an = a0	+	(constant	difference)	•	n.

But more important than the formula 
itself was the fact that students derived 
it by themselves and thus truly under-
stood the concepts it represented.

Suppose you have an arithmetic sequence 

d1, d2 , d3, d4, d5, . . . ,

where each term is given by the formula dn = -3 + 7n. 

a. Fill in the table below.

n 1 2 3 4 5 6 7 …

dn …

b. What is the constant difference of this arithmetic sequence?

c. If the term d0 were to exist, what would it be?

d. Lena says, “I could have answered questions (b) and (c) without answer-
ing question (a) fi rst.” What does she mean? Explain.

Fig. 5 This symbolic representation 
prompted students to make a meaning-
ful generalization about linear functions.

Fig. 4 Questions about a specifi c arithmetic series helped students derive the general 
formula.
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connection to 
lineaR eQUations
Students translated their experi-
ences with arithmetic sequences into 
a genuine understanding of linear 
equations. This lesson began with the 
question in fi gure 6a. Students had 
trouble getting started on this exer-
cise, even though they were capable of 
plotting points, because the notation 
(n, bn ) confused them. Harless listed 
a few points that would be on the 
graph. For example, the box number 
b3 = 10 corresponds to the point 
(3, 10) on the coordinate plane. 
Students began to see what was being 
asked and could complete the graph 
without further diffi culty. One student 
sketched the graph shown in fi gure 6b
on the board. Notice how she fi rst 
plotted the points (n, bn) from the 
box-number sequence and then drew 
the line passing through these points. 

Students saw that these points ap-
peared to form a line, which was what 
they had expected. When asked why 
they anticipated a line, they responded, 

“Because they increase by the same 
amount each time.” When asked if 
this would be true for any arithmetic 
sequence, they said, “Yes, because 
every arithmetic sequence goes up by 
the same amount each time.”

Then Harless asked whether or not 
bn = 1 + 3n is an equation of this line. 
He reminded students that bn = 1 + 3n
is an equation for the box-number 
sequence from their fi rst exercise 
and asked, “What does n represent?” 
(“It’s the number of boxes.”) “What 
would happen if we let n = 2.4?” 
(“We wouldn’t have a meaningful box 
number.”) He said that on the original 
graph with the points plotted, only 
the box numbers are represented; the 
values of n are the “counting numbers.” 
But on the graph of the line that con-
nects the points, n = 2.4 is included 
even though b2.4 has no meaning as a 
box number. Therefore, the graph of 
bn = 1 + 3n is given by the discrete 
points (n, bn) only and not by the line 
passing through these points. 

The teacher explained that to 

Recall the box number pattern:

       4   7     10      13

Make a graph of the points (n, bn), where bn represents the nth box number.
(a)

(b)

Fig. 6 A knowledge of linear equations and subscript notation was required to complete 
this task.

account for all points on the line 
(not just those from the box-number 
sequence), they must replace n and bn

with x and y. Thus, an equation of the 
line is y = 1 + 3x. To verify this claim, 
suppose x = 2.4. Then, 

y = 1 + 3(2.4) = 8.2.

Students could see from the graph 
that the point (2.4, 8.2) is, indeed, 
on the line. They experimented with 
a few other noninteger values of x. 
The teacher then said that an equa-
tion such as y = 1 + 3x can be used 
as a point tester (i.e., to test whether 
any point on the coordinate plane is 
on the graph of the equation) (EDC 
2009). Given this correspondence 
between an arithmetic sequence (e.g., 
bn = 1 + 3n) and a linear equation 
(e.g., y = 1 + 3x), Harless defi ned the 
slope of a line as the constant differ-
ence of its corresponding arithmetic 
sequence. For example, the line corre-
sponding to the box-number sequence 
has slope 3, because the sequence has 
a constant difference of 3.

Next, students delved into pairs 
of problems like those in fi gure 7. 
They were asked equivalent ques-
tions in two different ways, fi rst in 
the language of arithmetic sequences 
and then in the language of linear 
equations.

Problem 1 was a familiar question, 
and most students found the formula

=cn 555
2
3

+ n

easily. But some students, despite 
having a strong understanding of 
arithmetic sequences, struggled with 
the fact that the constant difference 
was a fraction. They converted it to a 
decimal approximation, as shown by 
the following response:

The constant difference is 0.67. To 
fi nd this, I found the difference be-
tween 21 and 31 and divided that by 
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the difference between the subscripts 
(24 and 39). That equaled 0.67, so 
the constant difference is 0.67. 

Rounding led to incorrect answers 
(for c0 and cn), but also gave the 
teacher an opportunity to discuss the 
merits of using exact values. Prob-
lem 2a went smoothly, with several 
students gleefully declaring, “It’s the 
same problem!” They realized that 
the points (24, 21) and (39, 31) on 
the line corresponded to the terms 
c24 = 21 and c39 = 31 of the arithmetic 
sequence. Thus, students used their 
results from problem 1 to immediately 
conclude that the line has slope 2/3 
and the equation

5
2
3

= +5= +5y xy x5y x5
3

y x
3

= +y x= +5= +5y x5= +5 .

Problem 2b of fi gure 7 prompted 
students to make the connection 
between the start value c0 = 5 of 
the arithmetic sequence and the 
y-intercept (0, 5) of the correspond-
ing line. The teacher did not yet 
introduce the term y-intercept in this 
lesson. Students readily recognized 
that “the line crosses the y-axis at 
5. It’s the value of c0.” Thus, when 
later introducing the formal term of 
y-intercept, students will have a solid 
understanding of the concept, and 
the term will be easily connected to 
already established ideas.

Problem 2c was an application 
of the point-tester notion. All stu-
dents were comfortable with it and, 
aside from those who converted their 
answers to decimal approximations, 
had no diffi culty with its implementa-
tion (see fi g. 8). Students continued 
to work on similar pairs of problems. 
They found the questions about 
arithmetic sequences more intuitive 
and easier to understand. Problem 2 
is a typical question that students face 
when studying linear equations, but it 
required nothing more than a simple 
translation from the language of 

arithmetic sequences to that of linear 
equations.

Students then worked on the 
question in fi gure 9, which gave them 
more fl exibility when using arithmetic 
sequences by allowing n to take on all 
integer values (including negatives). 
Students felt comfortable with this 
problem, and the negative subscript 
did not present any diffi culty. They 
considered the number of steps 

between –6 and 18 when fi nding the 
constant difference, which was 2/3. 
To fi nd d0, most students took 18 
steps back from d18 = 17 by subtract-
ing 2/3 × 18 from 17. Finding the 
formula

5
2
3

d nd nd n5d n5
2

d n
2

= +d n= +5= +5d n5= +5n

was routine by this point. 
Finally, students were asked:

1. Consider an arithmetic sequence with c24 = 21 and c39 = 31. What is its 
constant difference? What is c0? The formula for cn?

2. Suppose a line contains the points (24, 21) and (39, 31).

 a.  Find the slope and equation of this line. (Hint: This should be easy if 
you have completed question 1.)

 b.  Where does the line cross the y-axis? How is this point related to the 
original arithmetic sequence from problem 1?

 c.  Is the point (102, 73) on the line? How do you know?

Fig. 7 Students were asked equivalent questions in two different ways, fi rst in the 
language of arithmetic sequences and then in the language of linear equations.

Suppose you have an arithmetic sequence

. . . , d-3, d-2, d-1, d0, d1, d2, d3, . . . , 

which extends infi nitely in both negative and positive directions. Moreover, 
suppose that d-6 = 1 and d18 = 17. What is its constant difference? What is 
d0? The formula for dn?

Fig. 9 Flexibility was added to this problem in that arithmetic sequences allowed n to 
take on all integer values (including negatives).

Fig. 8 This student response used the equation that was derived as a point tester.
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her activity sheet. When asked about 
an arithmetic sequence with a1 = 3 and 
a4 = 15, she found the constant dif-
ference using an approach that made 
sense to her (see fig. 11b). Next, when 
asked about a line containing (1, 3) 
and (4, 15), she computed the slope 
using the traditional slope formula, 
then recognized the connection be-
tween the two concepts (see fig. 11c). 

Similar to Katie, several students in 
Harless’s class had a cursory and rote-
memorized understanding of linear 
equations. Such students benefited as 
much or even more from these lessons 
than the students for whom the topic 
was essentially new.

Note: To implement these lessons 
in your classroom using the activity 
sheets and the lesson plans, contact 
the author at matsuura@stolaf.edu. 
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�Suppose a line contains the points 
(-30, -12) and (10, 48). Find its 
equation.

Many approached this problem by first 
translating the given points to terms of 
an arithmetic sequence. One student 
commented, “I found this by chang-
ing it into a problem [an arithmetic 
sequences problem] not coordinates. 
Then I did the same things as the other 
problems.” Several students clearly 
articulated the correspondence between 
the line passing through (-30, -12) and 
(10, 48) and the arithmetic sequence 
with a-30 = –12 and a10 = 48. By this 
time, none of the arithmetic sequences 
posed a challenge, and students under-

stood that they could recast the linear 
equations problem in the language of 
arithmetic sequences and then apply 
the familiar techniques (see fig. 10).

CONCLUSION
We have described a way of learning 
linear equations in which students 
first study arithmetic sequences. Our 
approach, which relies on the intuitive 
nature of arithmetic sequences, makes 
learning linear equations more acces-
sible to students.

We end with a story about Katie, 
who had a formulaic understanding of 
linear equations before these lessons 
were taught. In fact, Katie had written 
the notes in figure 11a at the top of 

Download one  
of the free  

apps for your smart-
phone. Then scan  
this tag to access 
www.nctm.org/mtms019 to find a 
continuation of the activity sheet.

(a)

(b)

(c)

Fig. 11 Learning arithmetic sequences allowed Katie to draw deeper connections, as 
shown by these explanations.

Fig. 10 Students understood that they could recast the linear equations problem in the 
language of arithmetic sequences and then apply familiar techniques. 
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from the March 2012 issue of

Name ______________________________

aRithMetic seQUences
1. You have seen that the fi rst four box numbers are 4, 7, 10, and 13, as shown below.

 a. Find b5 (i.e., the fi fth box number). 

 b. Find b10.

 c. Find b100.

 d. Find bn (i.e., a formula for the nth box number).

 e. challenge: Is 5000 a box number? Why, or why not?

2. Determine if each sequence below is an arithmetic sequence. Explain how you know.

 a. 2, 9, 16, 23, 30, 37, 44, 51, . . .

 b. 1, 2, 3, 4, 5, 6, 7, 8, . . .

 c. 3, 7, 13, 21, 31, 43, 57, 73, . . . 

 d. 7, 7, 7, 7, 7, 7, 7, 7, . . .

 e. 25, 19, 13, 7, 1, −5, −11, −17, . . .



from the March 2012 issue of

Name ______________________________

activity sheet (continued)

3.	Suppose you have an arithmetic sequence 
	 a1, a2, a3, a4, a5, . . .
	 with the following properties:

	 • a2 = 11 (i.e., the second term is 11)
	 • a5 = 23 

 	 a. Fill in the table.

n 1 2 3 4 5 6 7 . . .

an 11 23 . . .

	 b. What is the constant difference of this arithmetic sequence? Describe how you found it.

	 c. If the term a0 were to exist, what would it be?

	 d. Find a100.

	 e. Find an (i.e., a formula for the nth term of this arithmetic sequence).

4.	Suppose you have an arithmetic sequence
	 c1, c2, c3, c4, c5, . . . 
	 with the following properties:
 
	 • c20 = 99
	 • c31 = 154

	 a. What is the constant difference of this arithmetic sequence? Describe how you found it.

	 b. If the term c0 were to exist, what would it be?

	 c. Find c100.

	 d. Find cn.

	 e. If cn = 359, find n. What does your answer mean?

A continuation of the activity sheet is online at www.nctm.org/mtms019.


