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Using Clairaut’s historic-genetic 
approach and dynamic geometry tools 
in middle school can develop students’ 
conceptual understanding before they 
encounter formal proof in geometry. 
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ggGeometry is a major area of study in 
middle school mathematics, although 
it typically receives far less atten-
tion than topics such as algebra and 
rational numbers. In fact, middle 
school and secondary students have 
diffi culty learning important geomet-
ric concepts although these concepts 
are a much more visible part of 
their daily lives than algebra. Some 
conjecture that students experience 
diffi culty learning school geometry 
and connecting it to everyday geom-
etry because of the premature focus 
on rigorous and formal proof before 
meaningful conceptualization of key 
ideas (Battista 2009). 

In the geometry strand of the 
Common Core State Standards for 
Mathematics (CCSSM) (CCSSI 
2010), middle school students are 
expected to “use informal arguments 
to establish facts about the angle 
sum and exterior angle of triangles, 
about the angles created when parallel 
lines are cut by a transversal, and the 
angle-angle criterion for similarity of 
triangles” (p. 56) In grade 8, students 
are expected to “Explain a proof of the 
Pythagorean Theorem and its con-
verse” (p. 56). These statements refl ect 
the need to develop a conceptual foun-
dation based on exploration, discovery, 
and explanation prior to an emphasis 
on formal proof. The activity described 
below supports these goals. 

We consider two opportunities for 
increasing the conceptual focus on 
geometry in the middle grades. One 
is to rethink how to introduce and 
develop concepts of school geometry. 
In particular, we consider Clairaut’s 
approach that emphasizes engaging 
student curiosity about key ideas and 
theorems instead of directly teaching 
theorems before their application in 
real life. The second related oppor-
tunity is use of computer technology 
that enables and promotes student 
exploration and engagement. 
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claiRaUt’s aPPRoach
Clairaut, a famous eighteenth-century 
French mathematician and astrono-
mer, prepared a geometry text that 
drew on what he called the natural 
human thought process. His approach 
is characterized by combining logi-
cal and intuitive elements, instead of 
building elements of geometry on a 
purely logical basis. In fact, Clairaut 
criticized Euclid’s logico-deductive 
approach, which he felt made learning 
diffi cult because of its dull and boring 
development.

Clairaut was also critical of an 
alternative that addressed the limita-
tion of Euclid’s approach by including 
applications following formal work on 
theorems. Instead, Clairaut drew on 
the historic-genetic principle, which 
dated from the seventeenth century 
and recognized that discoverers them-
selves were beginners in the history 
of mathematics. He theorized that 
the discoverers’ trajectory of develop-
ment—initiated by a particular need 
and formalized gradually—might 
also be benefi cial to later generations 
of beginning learners. The result was 
his masterpiece Elémens de Géométrie,
published in 1741.

Clairaut’s approach to geometry 
instruction can be characterized by 
two principles: practical necessity and 
intuition-driven. It is in contrast to 
Euclid’s rigorous approach, which 
moves toward formalization before 
learners are necessarily motivated 
by a need to know. Euclid’s method 
starts with defi nitions, axioms, and 
postulates that often do not excite 

or engage the average learner. On 
the other hand, Clairaut begins with 
practical necessity, mimicking the mo-
tivation of the inventors of geometry, 
as the fi rst step in exploring an idea. 
Clairaut’s approach does not insist on 
rigorous exactness of mathematical 
proof. Rather, justifi cation is intuitive 
and used only when necessary.

Although Clairaut acknowledged 
criticism that his approach relied 
too much on the testimony of the 
eyes and neglected the strictness 
of demonstration, he defended the 
approach. He argued that the focus 
for beginners should be on big ideas, 
not propositions whose truth may be 
discovered by the smallest degree of 
attention. For example, consider 
these statements:

• “In any triangle, the greater 
side subtends the great angle.”

• “A circle does not cut another 
circle at more than two points.” 

• “If two circles touch one another, 
then they will not have the same 
center.”

Although Euclid labored to demon-
strate these ideas, Clairaut thought 
trivial propositions such as these did 
not warrant students’ attention by a 
strict demonstration. Stamper (1909) 
noted that Clairaut “was ready to sac-
rifi ce logic for the sake of interest and 
practical necessity.”

Clairaut’s ideas are particularly 
appropriate for middle school math-
ematics where formalization is not the 
goal. As an example of Clairaut’s 

theory, we consider the idea that the 
sum of the interior angles of a tri-
angle is constant. Unfortunately, most 
students are not curious about this 
idea and are not given the opportunity 
to discover it. According to Clairaut’s 
method, teachers can support student 
engagement by asking them to consid-
er ideas and to investigate their truth. 
For example, the teacher might pose 
the following challenge to students:

It has been said that the sum of the 
angles of a triangle (any triangle) 
is equal to the sum of the angles of 
any other triangle. Is this true?

Because we cannot be satisfi ed 
with measured values of the angles 
of a triangle (measurement is never 
exact), we must look for another way 
to investigate the claim. Clairaut’s 
strategy can be suggested as a method. 
He used the reasoning that two of 
three angles in a triangle decide the 
size of the remaining angle. That is:

Using fi gure 1, suppose vertex C
goes up along AC. It is certain 
that angle C closes gradually and 
angle B opens gradually the other 
way. We can assume the portion of 
decrease of angle C and increase of 
angle B are the same, so whatever 
the slope of BC to AC and AB, the 
sum of the three angles of triangle 
ABC is always constant. (Clairaut 
1741) 

The assumption about the equiva-
lence of the decrease in angle C and 

According to Clairaut’s method, teachers can 
support student engagement by asking them 
to consider ideas and investigate their truth.
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complimentary increase in angle B is 
natural for students. At a later time 
(e.g., high school), formal proof of  
the theorem can be developed using  

alternate angles in parallel lines. 
Although this exploration might be 
of interest to some students, a current 
tool such as dynamic software can 
provide a more motivating, interac-
tive, and student-driven method for 
students’ exploration of claims.

dYnaMic geoMetRY tools 
and claiRaUt’s Method
In Clairaut’s time, the implementa-
tion of his approach was constrained 
by the tools that were available during 
his lifetime. In the triangle example 
in figure 1, for instance, the use of 
dynamic geometry software allows 
the quick generation and animation 
of examples. Today, we can use his 
theory via a dynamic environment 
aided by technology. In other words, 
thanks to the instruments of technol-
ogy, his method can be reborn. In this 
section, we illustrate a few examples 

of topics to which Clairaut’s approach 
using dynamic geometry tools are ap-
propriate (e.g., properties of isosceles 
triangles, the sum of angles at a point 
on a line, the sum of interior angles 
of a triangle, and the properties of 
inscribed angles).

Dynamic geometry software can 
help students visualize that a particu-
lar theorem holds under varying fac-
tors (size of angles, length of segment, 
and so on). Students can change the 
factors as many times as they want 
instead of viewing only one static im-
age in the paper-and-pencil environ-
ment. In this case, the medium creates 
an environment where it is easier to 
recognize, explain, and even general-
ize geometrical properties. 

Examples of Clairaut’s approach 
using a dynamic geometry tool  
(e.g., The Geometer’s Sketchpad®, 
GeoGebra, NCTM’s Core Math 

Fig. 1 The idea that the sum of interior 
angles of a triangle is constant can be 
produced by changing the slope of BC to 
AC and AB.
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Tools) are described here. Although 
the static constraint of print inhibits 
the full presentation of the examples, 
we explain the advantage and efficacy 
in each case and encourage readers to 
test the ideas in a computer environ-
ment. The geometric constructions 
suggested can be demonstrated by the 
teacher or developed by motivated 
students. In either case, the focus is on 
students learning geometric concepts 
and properties by manipulating visual 
shapes and exploring geometrical vari-
ants and invariants dynamically.

Example 1 
 The sum of angles having a  
common point on a straight line  
is 180 degrees. Furthermore, the 
sum of angles around a point 
equals 360 degrees. 

(Clairaut 1741, LVII and 
LVIII of the first part)

The exploration in figure 2, in 
which all five angles can be variants, 
allows students to “see” a geomet-
ric property: The sum of the angles 
around a point is 360 degrees. Stu-
dents can change the size of any 
particular angle by pivoting AB, AC, 
AD, AE, or AF (without overlapping 
an adjacent line), yet the sum of the 
angles is constant. Students conclude 
that “the sum of angles around a 
point equals 360 degrees.” The same 
method of exploration is appropriate 
for angles on a straight line and their 
sum of 180 degrees.

Example 2 
 The sum of interior angles  
of a triangle is constant. 

(Clairaut 1741,  
LXII of the first part)

The constancy of the sum of three 

angles of a triangle is quite intuitive 
(see fig. 1), but very surprising. In this 
example, students see that holding 
one angle constant while changing 
another angle affects the third angle. 
In a dynamic environment, they can 
see the constant sum of 180 degrees, 
whatever the shape of the triangle 
(see fig. 3). It is helpful for students 
to experience and explore this idea  
by dragging vertices of a triangle 
before entering into a formal proof 
of the theorem. The combination of 
Clairaut’s idea of exploration about 
the constant sum and its realization 
via a dynamic representation is con-
vincing to students.

Example 3 
 Any point on a semicircle forms 
a right angle when connected to 
the ends of the diameter of the 
semicircle. In other words, every 

Fig. 2 Students can use software to explore the fact that the 
sum of angles around a point equals 360 degrees by dragging 
points to change the measure of the angles. They will notice 
that their sum is always 360 degrees.

Fig. 3 Exploring triangles dynamically will allow students to 
conclude that the sum of interior angles of a triangle is constant.

Stamper (1909) noted that Clairaut “was ready to sacrifice  
logic for the sake of interest and practical necessity.”
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inscribed angle of a semicircle 
measures 90 degrees. 

(Clairaut 1741, 
XIII of the third part) 

Following the steps that Clairaut 
suggested, one can construct a circum-
circle of any triangle with constant 
AB, as shown in fi gure 4a. When the 
third vertex of the triangle varies, the 
circumcenters of the triangles ABC
and ABE approach the segment AB. 
The circumcenter of the triangle ABG, 
an obtuse triangle, goes below AB. 
When is the center located on AB? 
What kind of triangle is this?

To answer the question, see 
fi gure 4b. When circumcenter M is 
located on AB, AB is a diameter of 
circle M because point M is the center 
of a circle. In other words, sector AFB
is a semicircle, and segments MA, 
MF, and MB are all the same length. 

Triangles AMF and FMB are isosceles 
and angles MAF and MFA and MFB
and MBF are congruent, respec-
tively. Therefore, angle AFB is a right 
angle in triangle ABF. When using a 
dynamic geometry tool as shown in 
fi gure 5, students can confi rm that 
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angle ABC consistently measures 90 
degrees after dragging point B along 
arc ABC. 

This property allows users to won-
der whether the same kind of property 
might hold for any segment AB even 
though it is not a diameter (see fi g. 4c). 

 (a) (b) (c)

Fig. 4 Clairaut suggested these diagrams be placed in sequence to lead explorations of 
properties about an inscribed angle.
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What if AB is not a diameter, but  
the third vertex varies along its same  
circumcircle? The inscribed angles 
ACB, AEB, and AFB will not measure  
90 degrees, but will its measure 
change? Clairaut described this idea 
as shown in example 4.

Example 4 
 All inscribed angles that subtend 
the same arc are equal. 

(Clairaut 1741,  
XIV of the third part)

Students can explore this idea in 
a dynamic environment (see fig. 6). 
If segment AC is considered fixed, 
students see and recognize that angle 
ABC is constant after dragging point 
B along arc ABC, thereby visually 
confirming the property. 

claiRaUt, the teacheR,  
and technologY
We describe Clairaut’s method of 
capitalizing on students’ intuitive 
ideas about geometry using a dy-
namic computerized environment. 
Until recently, Clairaut’s ideas 

could not be fully realized in class-
rooms. The availability of dynamic 
geometry software now makes it 
possible. By pursuing his ideas with 
current technology, we can engage 
students in exploration and discovery. 

Of course, the teacher’s role is 
crucial to the success of the method. 
Teachers establish the classroom 
environment that allows student 
exploration to flourish. In addition, it 
is important to identify and create the 
scenarios under which students can 
and will explore important ideas. Also 
crucial is considering when techno-
logical tools are more efficient than 
paper-and-pencil exploration and for 
which ideas. Teachers orchestrate and 
monitor the flow of student ideas, 
prompting students to, for example, 
recognize invariants. They must also 
make time for a full discussion and 
reflection of the ideas following the 
software-aided exploration. 

One key principle in using dy-
namic software is to identify geo-
metric ideas that can be understood 
better in the condition of dynamicity. 
That is, dynamicity helps learners 

discriminate between variants and 
invariants. When students change 
the shape of a geometrical figure by 
dragging a point, they are expected 
to notice variants and invariants. In 
our examples, invariants show the 
intended property. Therefore, teach-
ers must be ready to draw attention 
to the invariants and ask, “What 
changes when you drag a vertex?” or 
“What appears to stay the same?”

Although dynamic explorations 
such as those described here are likely 
to be interesting to students because 
of their novelty and because they are 
student-directed, the intended learn-
ing outcomes do not happen automat-
ically. They require guided reflection 
in which the teacher encourages stu-
dents to think back on the meaning of 
their own work. Dynamic geometry 
software is a tool, and the purpose of 
using it is to learn the concepts and 
properties of geometry.

Clairaut’s approach does not 
replace the need for formal proof in 
geometry. In fact, Clairaut provided 
the logical proofs after introducing 
intuitive approaches in most cases. At 

Fig. 5 The fact that every inscribed angle of a semicircle measures 
90 degrees is more convincing to students when they can move 
point B and explore the change, or lack of change.

Fig. 6 This sketch helps enforce the idea that all inscribed 
angles that subtend the same arc are equal.
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the middle school level, we believe 
the intuitive approach should be 
emphasized because it builds student 
curiosity and can lay the foundation 
for later formalization. Current tech-
nology gives us a perfect opportunity 
to revisit Clairaut’s approaches, thus 
improving opportunities for student 
learning in the middle-grades math-
ematics classroom.

ReFeRences
Battista, Michael, T. 2009. “Highlights of 

Research on Learning School Geom-
etry.” In Understanding Geometry for a 
Changing World, 2009 Yearbook of the 
National Council of Teachers of Math-
ematics (NCTM), edited by Timothy 
V. Craine and Rheta Rubenstein, pp. 
91-108. Reston, VA: NCTM.

Clairaut, Alexis-Claude. 1741. 1920. 
Élémens de Géométrie. Gauthier-Villars 
et Cle, Editeurs. 

Common Core State Standards  
Initiative (CCSSI). 2010. Common 
Core State Standards for Mathematics. 
Washington, DC: National Governors 
Association Center for Best Practices 
and the Council of Chief State School 
Officers. http://www.corestandards 
.org/assets/CCSSI_Math%20 
Standards.pdf

Stamper, Alvar Walker. 1909. A  
History of the Teaching of Elementary 
Geometry. New York: Columbia  
University, Teachers College. http://
books.google.com/books/about 
/A_history_of_the_teaching_of_ 
elementary.html?id=E2XQAA 
AAMAAJ

hyewon chang,  
hwchang@snue.ac.kr, is 
an associate professor at 
Seoul National University 
of Education in South 
Korea. She participated 
in developing current 
national curriculum for 
mathematics and is inter-

ested in research on learning geometry 
and using history of mathematics for 
mathematics education. Barbara J. Reys, 
reysb@missouri.edu, is Curator’s  
Professor and the Lois Knowles Faculty 
Fellow at the University of Missouri-
Columbia. She directs the Center for the 
Study of Mathematics Curriculum, focus-
ing on improving mathematics education 
through research and development efforts 
related to mathematics curriculum.


