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T o challenge students’ reasoning and to 
align with a physical fitness unit that 
students were studying, Scott Frye and 

Signe Kastberg adapted a ratio comparison 
problem from Lamon (1994) to include athletes 
and doctors who share pizza (see fig. 1). 

“I know that you found a common number 
of pizzas in your two mathematical tables. 
Do you think that you’ll ever have the same 
number of people on your tables if you keep 
counting up?” 

Ashley and her partner considered Stevie’s 
question about their solution (see fig. 2) to the 
Pizza problem but were unsure what Stevie was 
asking. They asked for clarification. 

Stevie’s questioning disposition and  
Ashley’s effort to understand the question 
illustrate norms that Frye had worked all year 
to establish in his sixth-grade classroom. Social 
norms develop across all disciplines. In Frye’s 

The authors adapted Lamon’s 
(1994) ratio comparison Pizza 
problem to include athletes and 
doctors.

Consider the following drawings of 
people and pizza. Who gets more pizza, 
the athletes or the doctors?
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Mathematical Proficiency
Norms and  
How do classroom behavioral expectations support the development of 
students’ mathematical reasoning? A sixth-grade teacher and his students 
developed this example while discussing a ratio comparison problem. 
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class, persisting and challenging and question-
ing were expected behaviors in all academic 
discussions. In mathematics class, however, 
these norms took on new dimensions as 
“sociomathematical norms” (Yackel and Cobb 
1996), or expected ways of engaging in math-
ematical discussions. These particular ways in 
turn contributed to students’ “mathematical 
proficiency” (Kilpatrick, Swafford, and Findell 
2001). Sociomathematical norms for participa-
tion can be fostered when students’ attention 
is focused on contributing to mathematical 
discussions, understanding one another’s 
ideas, and exploring the merits of those ideas. 
To illustrate sociomathematical norms that 
developed, as well as students’ mathematical 
proficiency, the authors draw examples from 
Frye’s students’ discussion of the Pizza problem 
near the end of the academic year.

“Do you think that you’ll ever have the same number of 
people on your tables if you keep counting up?”
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Mathematical Proficiency
By Signe E. Kastberg 
and R. Scott Frye
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Proportional reasoning  
and the Pizza problem 
By May, Frye’s students had developed number 
sense (Sowder 1992) and precision in numeri-
cal computation. They often used estimation 
and quickly solved the types of problems usu-
ally found on standardized tests. Frye asked 
Kastberg, his former university mathematics 
instructor, to observe his class. During the 
course of several months, the two teachers 
noticed that Frye’s students did not describe 
units of measure (quantities) in problem-
solving situations. For example, in comparing 
mixtures of water and cherry syrup (see fig. 3), 
students divided 6 by 53. When asked what 
the resulting quotient meant, students were 
unsure. They could not yet explain their answer 
in terms of a ratio (Lobato and Ellis 2010) of 
syrup to water, which made comparing the two 
quotients representing concentrations difficult 
for them. This example was just one piece of 
evidence that prompted the teachers to further 
explore the concept of ratios and proportions 
with the children. 

Lamon (1994) noted that “associated sets” 
problems, like the one in figure 1, “had the effect 
of eliciting more of the language of ratio” (p. 51) 
than students typically use in comparison prob-
lems. Lamon also found that students tend to 
solve this type of problem using ratios as units 
rather than computing and comparing num-
bers. For example, in the Cherry Syrup problem 
(see fig. 3), the units of water and syrup were the 
same, which encouraged the computation of a 
number that was no longer seen as connected to 
the units of syrup or water. In the Pizza problem 
(see fig. 1), the context discouraged students 
from dividing numbers and encouraged rea-
soning with ratios. If three people share one 
pizza, then students generate a variety of ratios, 
including 1 pizza: 3 people or 1/3 pizza per per-

son. Frye and Kastberg felt that some students 
would reason with ratios, whereas others would 
apply the computational approach used in the 
Cherry Syrup problem. With both approaches 
available, potential existed for a rich discussion 
of ratios and the units involved. 

Frye valued working with Kastberg and pro-
viding an opportunity for his students to engage 
with her. Kastberg was motivated to join Frye 
and his class because the work of teachers and 
children gave her the chance to build under-
standing of the teaching and learning of math 
in the elementary grades. The students in Frye’s 
sixth-grade class were considered to be of mixed 
academic ability. All students were expected to 
contribute to mathematics discussions; Frye 
and the students treated each contribution as an 
opportunity to learn.

The norm of persisting
Frye and his class defined persistence as 
“working to identify solution paths; finding 
solutions; working past these solutions to 
explore other methods of solving the problem; 
and extending the problem beyond the stated 
question.” For example, when students are 
presented with a question and discover their 
perceived solution, they should never believe 
they are finished. In Frye’s class, students ask 
two types of questions aimed at persistence 
when they finish any academic work. In the 
context of mathematics, these questions focus 
on reflecting on the processes they used to 
solve the problem and on extending their find-
ings. The first type of question relates to the 
students’ problem-solving process. Frye uses 
this analogy: A motorsports engineer is look-
ing at a newly constructed Formula One race 
car. The engineer revisits the design and con-
siders how to make the car faster and safer. So, 
too, students reflect on their work with such 
key questions as the following:

• What other mathematical concepts could we 
have used to solve this problem? 

• Which strategy is the most efficient?
• What mistakes did I make that others could 

learn from?

The second type of question relates to how a 
problem could be extended or a solution pro-
cess generalized for use on other problems: 

students’ inability to use ratios to explain their answers 
to the Cherry syrup problem (National Center for 
educational statistics 1996) prompted the authors to 
revisit the concept with the following problem.

Luis mixed 6 ounces of cherry syrup with 53 ounces of water 
to make a cherry-flavored drink. martin mixed 5 ounces of the 
same cherry syrup with 42 ounces of water. Who made the drink 
with the stronger cherry flavor?
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• What other problems might I be able to solve 
using this method?

• What other questions might I pose and 
answer about the problem situation?

Jessica’s presentation in Frye’s class illus-
trates how the norm of persistence in the 
context of mathematics enables her team and 
the class to focus on the unit ratio, just as Frye 
and Kastberg had hoped for in their planning. 
Jessica selected one element of her solution 
to the Pizza problem as the focus of her pre-
sentation. She emphasized what she viewed 
as the most important point of her investiga-
tion: when she changed her fractional answer 
to a decimal (see fig. 4) and was unsure what 
the decimal represented. “I had to track my 
work back to the point where I knew what the 
numbers represented,” she said. Jessica went 
on to describe the quantities involved in her 
answer. She converted the ratios of three piz-
zas to seven athletes to 3p/7a and one pizza to 
three doctors to 1p/3d and then to 0.43p/1a 
and 0.33p/1d. Comparing these results gener-
ated a difference of approximately one-tenth 
pizza per person (see fig. 4), with each athlete 
receiving the larger portion of a pizza. “So I 
feel that we would rather be athletes,” Jessica 
explained, “because we would receive one-
tenth more pizza than each of the doctors. 
This is made clearer by changing the fraction 
back to a decimal one-tenth (0.1),” she con-
tinued. “Each athlete would receive one-tenth 
more pizza than each of the doctors.” 

Because Jessica did not stop at number 
computation, she developed a deeper under-
standing of the unit rate. She reflected on her 
solution and was able to identify the meanings 
of the quantities and the difference in por-
tion size. Jessica calculated an answer to the 
problem within minutes. Yet her persistence 
in the form of looking back over her process 
and looking for ways to extend the problem 
resulted in questions about the numbers she 
had computed, her understanding of ratios, 
and further exploration of the problem in 
terms of differences in portion sizes. Her 
approach of moving past the original problem 
to further explore and confirm her findings 
exemplifies the persistence expected of every-
one in Frye’s class. 

A sociomathematical norm: 
mathematical difference
Jessica’s work illustrates the social norm of 
persistence, but it also shows how the socio-
mathematical norm of exploring mathematical 
difference is enacted during a presentation. 
Yackel and Cobb, citing their work with Wood 
(Cobb, Yackel, and Wood 1989; Yackel, Cobb, 
and Wood 1991), noted that social norms in 
classrooms include “explanation, justification, 
and argumentation” (Yackel and Cobb 1996, 
p. 460), but sociomathematical norms involve 
the examination of the mathematics in various 
solution paths. Persistence is one example of 
a social norm, because it is not unique to the 
work in communities of mathematicians. Yet 
in Jessica’s work, we see how persistence helps 
Jessica and her classmates focus on the math-
ematics involved in her solution. Jessica shared 
with her peers her original process of comput-
ing quotients. The results of her computations 
are then compared with her understanding of 
the decimals as unit ratios of quantities. The 
students discussed the difference between  
Jessica’s two approaches. Her comparison was 
one of many instances during the year when 
the sociomathematical norm of “mathematical 
difference” was developed. When the teacher 
and students discuss conceptual differences 
between solutions and processes used to gener-
ate solutions, they focus on the mathematics. 

Jessica’s representation of her solution illustrates the social norm 
of persistence and the sociomathematical norm of difference.
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This emphasis moves students beyond simply 
engaging in productive academic ways toward 
building understanding of ideas unique to 
mathematics.

Mathematical proficiency, as described by 
Kilpatrick, Swafford, and Findell (2001), includes 
five interwoven skills and dispositions needed 
for successful mathematics learning. Frye’s stu-
dents consistently demonstrated three of these: 
(1) strategic competence, (2) adaptive reason-
ing, and (3) productive disposition. Strategic 
competence is the ability to “formulate, repre-
sent, and solve mathematical problems” (2001, 
p. 116). To solve problems and learn mathemat-
ics, students who use adaptive reasoning will 
think logically, will reflect, will explain, and will 
justify (p. 116). Productive disposition, one that 
“see(s) mathematics as sensible, useful, and 
worthwhile,” combined with a belief in the pro-
ductive potential in one’s own diligence (p. 116), 
are often difficult to foster. 

Frye’s focus on persistence in mathematics 
promotes productive dispositions and adaptive 
reasoning. Students like Jessica come to view 
mathematics as a sense-making discipline. In 
her presentation, Jessica described an initial 
confusion about the meaning of the quotients 
she had computed. To eliminate her confusion, 
she carefully reviewed each unit in her compu-
tation to make sense of her results as ratios. She 
assumed that the numbers in her work should 
make sense. 

Abbey, Jessica’s peer, commented on the gen-
eral attitude toward persistence in this class:

All of us recognize how important it is to use 
every minute of problem-solving time we 
have to make us better mathematicians. This 
is not about following steps or getting done 
first; it should be deeper than that. We try to 
really understand why we are doing what we 
are doing. When we solved this problem, you 
can tell we looked at it like a real-world prob-
lem. If we were hungry for pizza, would we 
rather be a doctor or an athlete? That is a rel-
evant, applicable application. … I like pizza.

Abbey, like Jessica, shares a view of math as 
“sensible, useful, and worthwhile” (Kilpatrick,  
Swafford, and Findell 2001), a productive 
disposition and one facet of mathematical 
proficiency.

The norm of challenging and 
questioning
In Frye’s class, every student is responsible for 
developing understanding and contributing to 
and supporting the understanding of others. 
Frye encourages students to be curious about 
others’ ideas and reasoning in all academic  
disciplines. In mathematics, this curiosity 
takes the form of questioning. Students are 
encouraged to demonstrate the value of peer 
solutions by asking thoughtful questions about 
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the problem-solving process and solutions. 
Students eventually come to compare 
processes and results and challenge peers to 
build strategies that are more efficient and 
mathematical justifications that are more 
convincing. 

In another solution to the Pizza problem, 
Ashley and her partner created a table (see 
fig. 2) and found a common number of pizzas 
using a “build-up strategy” (Lamon 1994). This 
strategy allowed students to generate propor-
tions based on the original ratio: If three doc-
tors can share one pizza, then six doctors can 
share two pizzas, and so on. 

Ashley explained their findings: 

Seven athletes would share three pizzas, 
and nine doctors would share three piz-
zas. Therefore, I would rather be an athlete, 
because we would be sharing with a fewer 
number of people.

Stevie, who was introduced at the beginning 
of this article, had used several different strate-
gies to solve the problem, including Ashley’s. 
Stevie found that twenty-one athletes would 
share nine pizzas and twenty-one doctors 
would share seven pizzas. At this point, Stevie 
challenged Ashley. “I know that you found a 
common number of pizzas on your mathemat-
ical table. Do you think that you’ll ever have the 
same number of people on your table if you 
kept counting up?” 

The presenters thought Stevie wanted to 
know if extending the tables would produce a 
number of doctors and athletes with the “same” 
amount of pizza. 

Ashley responded, “If you keep adding to the 
doctors’ and athletes’ column, the number of 
pizzas will be getting bigger also. So, they will 
never be the same.” 

Stevie reframed his question: “I mean, would 
just the number of athletes and doctors be the 
same? The number of pizzas could be different. 
You know, if you were to continue adding to 
your column of people?” 

Now Ashley understood Stevie’s point; she 
shared her thinking:

Right here [pointing to the table], when you 
look at three doctors and seven athletes, if 
you keep going, you’ll arrive at twenty-one in 

both columns. I already have twenty-one ath-
letes, and over here [adding to the table while 
counting by threes], if you keep going, you’ll 
end up with fifteen, eighteen, and twenty-one 
doctors. So, that’s a different way to solve the 
problem and arrive at the same answer. Cool.

Ashley responded to Stevie’s challenge by adapt-
ing the strategy she had applied to the athletes 
and pizzas, to arrive at a 21:7 ratio of doctors 
to pizzas. 

Reflecting on the Pizza problem and his chal-
lenge, Stevie pointed out that— 

the goal isn’t just for me and my classmates to 
learn during presentations. It is also impor-
tant for the presenter to be learning, too. 
Other classmates have done the same thing 
for me in the past.

Stevie described his own learning and that of his 
classmates as the impetus for his challenging 
and questioning:

We don’t have to use the same approach, but 
we should understand each other’s strategies 
to determine which we believe is more effi-
cient, and we all know that the more ways we 
can solve a problem, the deeper we under-
stand it. Everything just becomes clearer.

Stevie’s description illustrates that he and his 
peers value “mathematical differences” in 
search of efficient solutions. His emphasis on 
efficiency suggests that a second sociomath-
ematical norm developed in Frye’s class: “math-
ematical sophistication” (Yackel and Cobb 1996, 
p. 461). In Frye’s class, efficient strategies that 
were generalized and could be applied to new 
mathematics problem situations were valued as 
more mathematically sophisticated than those 
strategies that appeared to apply to only one 
problem-solving situation. Stevie’s reflection 
and interaction with Ashley illustrate the value 
he gives to efficient approaches to problems, 
his work to generalize their approach, and the 
mathematical sophistication that is valued by 
his peers and teacher. 

The social norm of questioning and chal-
lenging that Frye and his students value con-
tributed to the development of mathematical 
proficiency as illustrated in the discussion of 
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the Pizza problem. Ashley adapted her reason-
ing as she responded to Stevie’s challenge. She 
made sense of Stevie’s question and related it to 
her own solution. She recognized that Stevie’s 
idea was different from her own. Focusing on 
the mathematical difference between strategies 
and on solving other problems that require a 
comparison between ratios will also encourage 
students to identify what is common among 
strategies. Students’ strategic competence and 
understanding of ratios will evolve as they use 
strategies that they have developed with ratios 
to solve similar problems.

From social norms to 
sociomathematical norms
The value that Frye and his students’ place on 
behaviors identifi ed with the social norms he 
called persisting and challenging and question-
ing in the context of mathematics encouraged 
the students to focus on mathematical differ-
ences. Morgan, Frye’s student, described the 
social value of developing this norm:

You can see why everyone who goes to the 
board thinks they are right. They go so deeply 
into it [the process of solving the problem] so 
that you understand how they are thinking. In 
life, if you want to show why you are right and 
you really care, then you have to go deeply 
into it [your reasoning]. You have to love each 
other to change people’s mind. In our class, 
we love each other so you can change each 
other’s mind. You share facts and statistics 
and reasons. For the other person to know 
that you love and care about them makes it 
easier [to challenge them] because they know 
why you are trying to change their mind.

Morgan’s description of her experience in 
Frye’s class highlights the signifi cance of a com-
munity of respect and care for others in being 
able to genuinely confront or question the 
problem-solving process or fi ndings of a peer. 
Students in Frye’s class, like Morgan, shared 
their processes and findings so that peers 
understood how the presenter was thinking. 
Challenges came after the problem-solving 
process and fi ndings were understood and dif-
ferences among ideas were identifi ed. Because 
the children care about one another and know 
that they are cared for, they understand that a 

challenge is an opportunity to learn and that 
changing your mind because a peer has con-
vincingly justifi ed his or her claim is part of 
building understanding. Although challenging 
and questioning would be considered a social 
norm, the students’ discussions that focused 
on identifying and understanding differences 
in solutions and processes and evaluating their 
effi ciency were sociomathematical norms. 

The development of mathematical profi-
ciency can emerge from teachers’ efforts to 
establish sociomathematical norms. Encourag-
ing and drawing attention to students’ com-
parison and evaluation of mathematical ideas 
is an important fi rst step. In Frye’s class, the 
discussion and comparison of students’ solu-
tions helped build mathematical profi ciency. 
Because students were supported in persisting, 
representing, and sharing their findings and 
methods—as well as debating the differences 
in fi ndings and solution methods—they devel-
oped strategic competence, adaptive reasoning, 
and productive dispositions. Building social 
norms is native to every teacher. Frye’s story 
illustrates how attention to students’ discussion 
of their fi ndings and processes can help develop 
sociomathematical norms and mathematical 
profi ciency.

Common Core
Connections

6.RP.A.2
SMP 1 
SMP 3
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