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What Does Research Tell Us about Fostering Algebraic 
Reasoning in School Algebra?

Decades ago, Freudenthal (1977) characterized school 
algebra as including not only the solving of linear 
and quadratic equations but also algebraic thinking, 

which entails the ability to describe in a general way the pro-
cedures used in solving problems as well as the mathemati-
cal relations that underpin algebraic objects. His character-
ization remains timely today because it captures not only 
the symbolic aspects of algebraic activity but also the kinds 
of relational thinking that underlie algebraic reasoning and 
that distinguish it from arithmetic activity, which is typically 
computational in nature. This research brief focuses on two 
specific areas of school algebra: the solving of word prob-
lems and the activity of conjecturing and proving. In deal-
ing with the research-supported ways in which algebraic rea-
soning can be fostered in these two areas, specific attention 
is given to the role of teacher questioning. Past research has 
shown how critical the role of teacher questioning is to the 
development of mathematical reasoning across a variety of 
domains (e.g., Stigler & Hiebert, 1999; Herbel-Eisenmann & 
Cirillo, 2009). An additional aspect that cuts across various 
mathematical areas, and which is emphasized in the second 
part of the research brief on conjecturing and proving, is the 
need to support such activity with appropriate tasks where 
students engage in higher-level reasoning processes such as 
reflecting, explaining, and justifying (e.g., Henningsen & 
Stein, 1997; Kieran & Guzmán, 2010). Additional research-
based examples of teacher questioning and task activities that 
have proved successful in encouraging students to reason al-
gebraically in a variety of situations, including word-problem 
solving and conjecturing and proving, can be found in, for in-
stance, Greenes and Rubenstein (2008), Kieran (1992, 2007), 
and in the NCTM (2010) resource, Focus in High School 
Mathematics: Reasoning and Sense Making in Algebra.

Promoting Algebraic Reasoning in Solving 
Word Problems
The use of problem-solving situations, including word prob-
lems, to give meaning to algebraic activity is widely accept-
ed in the mathematics education community. However, re-
search has provided ample evidence of students’ preferences 
for arithmetic reasoning and their difficulties with the use of 

equations to represent algebra word problems (e.g., Stacey & 
MacGregor, 1999; Koedinger & Nathan, 2004). In fact, stu-
dents typically believe that the whole aim of problem solving 
is to find the answer, even in the context of their algebra class-
es. The aspect of algebraic reasoning that involves represent-
ing the relationships between the givens and the unknowns 
often gets lost in the use of word problems as a vehicle for 
algebra learning. 

Research on the use of word problems in algebra has 
found that a teacher’s questions, if well conceived, can en-
courage students to make explicit their problem-solving ap-
proaches and to represent them in a general way. The report 
of a study of eighth graders by Smith (2004) begins by con-
trasting what could be called an ineffective approach to the 
teaching of algebra problem solving (Teacher 1), followed by 
a much more effective alternative (Teacher 2) that promotes 
algebraic reasoning. 

Teacher 1 gave her students a problem like the one in fig-
ure 1. To help them get started, she drew three columns on the 
blackboard (labeled Day, Tom, and Freddy). While students 
were working on the problem, Teacher 1 encouraged those 
who had already found a solution to look for another way to 
solve the problem. When it was time to compare solutions 
and solution methods, one student came forward, filled the 
table on the blackboard with numerical values, and arrived 
at a correct answer. Teacher 1 then asked if anyone had used 
a different method. No one offered any and the “discussion” 
on the problem, as well as the lesson, ended. Teacher 1 was 
disappointed that she had not been able to get her students to 
think of any other methods.

Tom and his younger brother, Freddy, went to the can-
dy store one day to buy some chewing gum. Tom bought 18 
ten-piece packages of gum and Freddy bought 24 five-piece 
packages. Every day, each boy finishes one whole package of 
gum. One day, they looked at how much gum each boy had 
left. Tom noticed that his brother had more pieces of gum 
left than he had. How many days has it been since the boys 
bought the gum?

When Teacher 2 gave her students the Chewing Gum 
problem (see fig. 1), she first wrote it on the board and had a 
student read it aloud. Then she drew two rectangles, one for 
Tom and one for Freddy. The students counted out 18 circles 
and displayed them on Tom’s rectangle to represent the 18 
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packages of gum, but counted them by tens to emphasize the 
number of pieces of gum that Tom had started with. A simi-
lar process was followed for Freddy’s gum. Then Teacher 2 
asked all the students to try to solve the problem. Notice that 
the teacher did not model a solving method for the students as 
had Teacher 1, but rather the problem situation itself.

As the students worked on the problem, the teacher circu-
lated around the classroom to see which methods they were 
using and encouraged them to explain their answers in a way 
that would allow others to understand what they had done. 
About halfway through the period, she asked a first group of 
students to come forward to present their method. They used 
a third rectangle and moved into it a “package of gum” from 
Tom’s rectangle and a package from Freddy’s rectangle, ex-
plaining that at the end of the first day Tom had 170 pieces 
of gum and Freddy had 115. They kept doing this until the 
younger brother had more pieces of gum left. Teacher 2 then 
summarized their approach: “You took one circle from each 
boy, counting down by tens for Tom and by fives for his broth-
er until his brother had more gum. This is good, but it could 
take a long time when the numbers get bigger. Did anyone 

find an easier way than this?” (Smith, 2004, p. 101). 
Another group came forward and drew a table of values 

on the board with three columns labeled: Day, Tom, and Fred-
dy. The values they entered into this table showed that on the 
thirteenth day, the younger brother Freddy had more gum. 
However, Teacher 2 did not stop there. She continued with 
the following:

Now I wonder if any of you thought of a way to show how 
many pieces of gum each boy had every day. Many of you 
may not have thought of this way that we will do it, but 
that is okay, we will try it anyway. I would like you to add 
some columns to Group 2’s table like this (headers: Day, 
Equation, Tom, Equation, Freddy) and think of an equa-
tion Group 2 might have used to find out how many piec-
es of gum each boy had. What would Day 1 look like? 
(Smith, 2004, p. 102)

When one student from Group 2 responded that they took 
10 away from 180 for Tom and 5 away from 120 for Freddy, 
the teacher filled this information on the first line of the ta-
ble (180 – 10 = 170; 120 – 5 = 115) and asked the students 
to continue working on the task of completing the table. This 
table-of-values approach with its explicit documentation of 
the operations that produce those values is a significant and 
noteworthy aspect of Teacher 2’s algebra teaching practice 
on word problems. When some students appeared to be con-
fused, she asked them to stop and look at the two numbers for 
a given day and to decide what computation they needed to 
do to get each number. If they found one way to do this, she 
asked them to think about whether there might be easier ways 
to do it. As the students continued working, the teacher asked 
two students to put their work on the board (see fig. 2). 

Fig. 1. The Chewing Gum problem  
(adapted from Smith, 2004)

Tom and his younger brother, Freddy, went to the candy 
store one day to buy some chewing gum. Tom bought 18 
ten-piece packages of gum and Freddy bought 24 five-piece 
packages. Every day, each boy finishes one whole package of 
gum. One day, they looked at how much gum each boy had 
left. Tom noticed that his brother had more pieces of gum 
left than he had. How many days has it been since the boys 
bought the gum?

Day Student 1 Student 2 Tom Student 1 Student 2 Freddy

1 180 – 10 = 170 180 – 10 = 170 170 120 – 5 = 115 120 – 5 = 115 115

2 170 – 10 = 160 180 – 20 = 160 160 115 – 5 = 110 120 – 10 = 110 110

3 160 – 10 = 150 180 – 30 = 150 150 110 – 5 = 105 120 – 15 = 105 105

4 150 – 10 = 140 180 – 40 = 140 140 105 – 5 = 100 120 – 20 = 100 100

5 140 – 10 = 130 180 – 50 = 130 130 100 – 5 = 95 120 – 25 = 95 95

6 130 – 10 = 120 180 – 0 = 120 120 95 – 5 = 90 120 – 30 = 90 90

7 120 – 10 = 110 180 – 70 = 110 110 90 – 5 = 85 120 – 35 = 85 85

8 110 – 10 = 100 180 – 80 = 100 100 85 – 5 = 80 120 – 40 = 80 80

9 100 – 10 = 90 180 – 90 = 90 90 80 – 5 = 75 120 – 45 = 75 75

10 90 – 10 = 80 180 – 100 = 80 80 75 – 5 = 70 120 – 50 = 70 70

11 80 – 10 = 70 180 – 110 = 70 70 70 – 5 = 65 120 – 55 = 65 65

12 70 – 10 = 60 180 – 120 = 60 60 65 – 5 = 60 120 – 60 = 60 60

13 60 – 10 = 50 180 – 130 = 50 50 60 – 5 = 55 120 – 65 = 55 55

Fig. 2. The arithmetic equations produced by two students to yield the values in the Tom and 
Freddy columns (adapted from Smith, 2004)
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1.	 Perform the indicated operations: (x – 1)(x + 1); (x – 1)(x2 + x + 1).
2.	 Without doing any algebraic manipulation, anticipate the result of the following product: 
	 (x – 1)(x3 + x2 + x + 1)
3.	 Verify the above result using paper and pencil, and then using the calculator.
4.	 What do the following three expressions have in common? And, also, how do they differ? 
	 (x – 1)(x + 1); (x – 1)(x2 + x + 1);, and (x – 1)(x3 + x2 + x + 1). 
5.	� How do you explain the fact that when you multiply: i) the two binomials above, ii) the binomial with the  

trinomial above, and iii) the binomial with the quadrinomial above, you always obtain a binomial as the product?
6.	 On the basis of the expressions we have found so far, predict a factorization of the expression x5 – 1. 
7.	 Explain why the product (x –1)(x15 + x14 + x13 + … + x2 + x + 1) gives the result x16– 1. 

Fig. 3. Some of the initial tasks of the activity involving predicting, comparing, and explaining
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The students of the class were then asked which of the 
equation-types (that of Student 1 or that of Student 2) would 
be more helpful if the number of Days got really large. They 
decided that Student 2’s equation was the better of the two 
because it was more generalizable. They remarked: “All you 
need to know is how many days so you can multiply it by how 
many pieces of gum are in each package, ten or five” (Smith, 
2004, p. 102). Because they then ran out of class time, the 
teacher concluded the lesson by asking the students to think 
about a more general way of writing the equation that would 
give them the number of pieces of gum each boy had on what-
ever day. One general formulation that they could possibly 
have generated is: (starting number of pieces) – (number of 
days) × (number of pieces chewed per day) = (number of 
pieces remaining). 

It is noted that Teacher 2 specifically probed students to 
give more detailed and connected explanations. She also 
helped them to construct another solution method. In Teacher 
2’s class, solution methods were analyzed and compared—
something that did not happen in Teacher 1’s class because 
only one solution method was presented. Thus, in Teacher 
2’s class, students were able to develop mathematical con-
nections across solution methods. Last but not least, this re-
search-based example has shown that, in algebra problem-
solving situations, it is not merely getting the answer that 
counts; even more important, these situations are about re-
lationships among solving methods and finding ways to rep-
resent these relationships and methods with equations that 
are as generalizable as possible. Related research that bears 
upon these issues can also be found in Boaler and Humphreys 
(2005).

Reasoning, Conjecturing, and Proving in  
Algebra
Reasoning, conjecturing, and proving are at the heart of all 
mathematical activity. However, too few algebra classes are 
the sites of such activity. Classrooms where conjectures are 
generated and then tested by finding evidence that goes be-
yond numerical cases and that is based on mathematical rela-
tions and properties are rare indeed. Research shows that stu-
dents need to be taught how to do this and that such activity 
needs to be valued in the algebra classroom (Healy & Hoyles, 
2000). However, research also indicates that teaching prac-
tice that fosters such activity needs to be supported by tasks 
where students are encouraged to reflect, conjecture, explain, 
and justify. Engaging in these processes allows students to 
go deeper into the mathematical relations that underpin al-
gebraic objects. 

The following research-based example involved tenth-
grade students with tasks that focused on explaining, predict-
ing, comparing, conjecturing, and proving (Kieran & Dri-
jvers, 2006). The core of the task set was factoring xn – 1, for 
integral values of n. The first part of the activity (or task set) 
was aimed at developing awareness of the (x – 1) factor (see 
fig. 3). Notice the content of the task questions: anticipating/
predicting a result (Q2 and Q6); comparing expressions for 
similarities and differences (Q4); and explaining the reason 
for a particular kind of result (Q5 and Q7). 

The next part of the task set required confronting and rec-
onciling students’ paper-and-pencil factorizations of xn – 1, 
for integral values of x from 2 to 13, with the factorizations 
produced by the digital tool at their disposal. Following this 
was the conjecturing task (see fig. 4), which required explain-
ing the reasons for the produced conjectures. The last part of 
the task set involved trying to prove one of the conjectures 
that had just been generated (see fig. 5). 



The students struggled for about fifteen minutes on the 
proving part of the task set, having had little prior experience 
with such tasks. During this time, the teacher circulated so 
as to see what kinds of proofs the small groups of students 
were generating. One of his pivotal comments while circulat-
ing around the class was:

 
Teacher:	 “You need more than just examples. You need to 
think about where the (x + 1) comes from.”

When the teacher sensed that most of the students had ar-
rived at some kind of “proof,” he opened the floor for whole 
class discussion, during which time students would share 
their approaches. He invited selected students, one at a time, 
to come to the board, to write down their proof, and to explain 
it to the rest of the class. Student 1 offered the following: 

Student 1: My theory is that whenever xn – 1 has an even 
value for n, if it’s greater or equal to 2, that, one of the fac-
tors of that would be x2 – 1, and since x2 – 1 is always a fac-
tor of one of those, a factor of x2 – 1 is (x + 1), so then (x + 
1) is always a factor.

The teacher then asked the class: “Is everyone willing 
to accept his explanation?” One student volunteered what 
he considered to be a counterexample, x12 – 1, maintaining 
that this could be factored down to include a sum and dif-
ference of cubes, thereby yielding (x + 1), but without pass-
ing through the x2 – 1 factor. However, other students argued 

that x12 – 1 could produce x2 – 1 if it were factored differently. 
Then the teacher stepped in with a question of his own: “Just 
out of interest, what would happen if this was x14 – 1? Where 
does that leave your proof?” According to Student 1’s proof, 
this binomial with its even exponent would lead to (x7 + 1)
(x7 – 1), but not to x2 – 1. The teacher then remarked that this 
“proof ” had a gap in it. 

The next student who was asked to come forward offered 
a generic proof that had been constructed by her and her part-
ner and which involved factoring by grouping (note that a ge-
neric proof involves the use of a generic example; although 
a particular case might seem to be the focus, it is not used as 
a particular case, but rather as an example of a more general 
class of objects): 

Student 2: When n is an even number

Teacher:	 Write it on the board, show it on the board [he says 
to Student 2].

Student 2: [She writes “x8 – 1” and below it: (x – 1)(x7 + x6 + 
x5 + x4 +x3 + x2 + x + 1)—the general rule that had emerged 
earlier from their work within the task set].

Teacher: OK, listen, ’cause this is interesting [addressed to 
the rest of the class]; it’s a completely different way of look-
ing at it, to what most of you guys did. OK, so explain it 
[to Student 2].

Student 2: When n is an even number [she points to the 8 
in the x8 – 1 that she has written], the number of terms in 
this bracket is even, which means they can be grouped and 
a factor is always (x + 1). 

Teacher: Can you show that?

Student 2: [She groups the second factor as follows: x6(x + 
1) + x4(x + 1) + x2(x + 1) + 1(x + 1), which the class could 
now see would yield (x + 1)(x6 + x4 + x2 + 1) with the re-
quired (x + 1) factor].

Student 2 argued, as she presented her proof at the board 
using x8 – 1 as an example, that it would work for any even n. 

Notice how the teacher, while circulating, had encouraged 
the students to move toward a proof that would be structur-
ally based rather than merely numerical. Notice too how the 
presentation of the students’ work proceeded from an incom-
plete approach to a more complete and acceptable strategy. 
The generic proof of Student 2 was one that was not only a 
valid proof but also one that explained (in the sense of Han-
na, 1995)—one that the teacher had sensed would be acces-
sible to the students with their limited experience in proving, 
which indeed it was. Research suggests that generic proofs 
merit much greater attention in algebra teaching practice than 
they currently receive. 

Notice too that the teacher did not hesitate to point out 
where the gap was in Student 1’s proof by offering a coun-

Conjecture, in general, for what numbers n will the 
factorization of xn – 1:

i) contain exactly two factors?
ii) contain more than two factors?

iii) include (x + 1) as a factor?
Please explain.

Fig. 4. Task involving conjecturing and explaining

Prove that (x + 1) is always a factor of xn – 1 for 
even values of n.

Fig. 5. The proving task 

What Does Research Tell Us about Fostering Algebraic Reasoning  
in School Algebra? 

4



terexample (x14 – 1) to that approach. Clearly, teacher inter-
vention is often needed, at appropriate moments, to help stu-
dents understand the weaknesses of their proving approaches 
so that they might evolve in this kind of mathematical activ-
ity. In fact, one student in the class was so intrigued by the 
x14 – 1 counterexample (with its factor of x7 + 1) that he went 
on to generate a novel proof that would work for such exam-
ples—a proof involving the factoring of xn + 1 for odd values 
of n (see Kieran & Guzmán, 2010, for further details). Lastly, 
note that the proving part of the task set had been preceded by 
a considerable amount of work on developing the related rea-
soning processes of predicting, comparing, explaining, and 
conjecturing. Without such process-related activity and with-
out appropriate teacher intervention, students risk being in-
adequately prepared to participate in meaningful discussions 
about mathematical proofs. 

Further research involving conjecturing and proving in 
algebra has been carried out by, for example, Martinez and 
Castro Superfine (2012), with tasks that they elaborated from 
the basic Calendar Algebra problem of Bell (1995). Other 
kinds of problems that have been found appropriate for con-
jecturing and proving activity with high school students in-
clude number-theoretic tasks such as, “Show that the addition 
of any three consecutive integers will always give a multiple 
of 3 and that the sum will always be the triple of the second 
number” (e.g., Arcavi, 1994; Kieran, 1997).

This research brief has reported on the ways in which alge-
braic reasoning can be fostered in two specific areas of school 
algebra. The first area, in algebra problem solving, involved 
a focus on the relationships among solving methods and on 
finding ways to represent these relationships and methods 
with equations that are as generalizable as possible. A key as-
pect of this part of the research brief was the role of teacher 
questioning. The second area that was reported on involved 
the activity of conjecturing and proving. Here, the research 
brief emphasized the development of students’ reasoning pro-
cesses of predicting, comparing, explaining, and conjectur-
ing—supported by tasks and teacher intervention that aim at 
encouraging such reasoning.

By Carolyn Kieran
Université du Québec à Montréal, Canada (Emerita)
Michael Fish, Series Editor
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