What Is the Anatomy of a Good Review?

What makes a good review?

- The strengths and weaknesses of the article are indicated.
- The comments are as specific as possible.
- The mathematics and the pedagogy are examined carefully.
- The tone and substance of the review are respectful.
- The comments that you include are appropriate to forward to the author.

Just as you would guide your students, mention the strengths of the manuscript first and the weaknesses later. Frame the criticisms of the manuscript in a way that suggests steps that the author might take to improve the piece. *Each author needs specifics if he or she is to improve the content or style of the manuscript.* There is a place on the form to include confidential comments to the staff or Editorial Panel that you DO NOT want the author to see. However, what goes in the main review should be professional and offer constructive criticism, irrespective of the quality of the manuscript.

Although the Editorial Panel and journal editors will examine the mathematics, it is also the referee’s responsibility to check the mathematics thoroughly. We make every effort to produce a high-quality, error-free journal; that goal can only be accomplished with careful attention to accuracy by everyone involved in the process.

What are your recommendation options?

You will be asked to select one of these three categories for your final recommendation: reject, revise, or accept.

REJECT: Recommend that a manuscript be rejected if you feel the topic or its treatment is already well known by the journal readers. If the author’s ideas are difficult to understand or are not well executed and you feel that the author will be unable to improve the quality of the manuscript significantly, then it should be rejected. Also recommend REJECT if you feel that the ideas in the manuscript have the potential to make a contribution to the journal but the manuscript requires an extensive revision in style or organization.

REVISE: These manuscripts show strong promise but may need some stylistic improvement and some minor additions or deletions in the text. If you choose this option, the authors may be sent your comments and will be given a deadline by which to return the revision for a final review. The Editorial Panel may request that the revised manuscript be sent to you for a second review.

ACCEPT: Manuscripts in this category should address important topics in a clear, readable fashion. Minor editorial changes may be needed but these should be ones
that the author can easily complete. Remember that comments from the referees are sent to the author as an aid in revising the article.

What does the review look like?

To help you get started, examine the items in this packet. They will give you guidelines for your review as well as an example of a published manuscript. The items include:

- Quick Reference Guide: Characteristics of a Helpful Review
- Manuscript Evaluation Form for Referees
- Case Study:
 - Part 1: Manuscript
 - Part 2: Referee Recommendations to Panel and Feedback to Author
 - Part 3: Editorial Panel Feedback to Author
 - Part 4: Published Article

Thank you for your interest in serving the mathematics education community by volunteering for this important task. If you have any questions, please e-mail the journal editor.

Teaching Children Mathematics: tcm@nctm.org
Mathematics Teaching in the Middle School: mtms@nctm.org
Mathematics Teacher: mt@nctm.org
Quick Reference Guide: Characteristics of a Helpful Review

1. Read the review criteria and the questions on the evaluation form before reading the manuscript.

2. Summarize the intent and content of the article.

3. Provide a rationale for your recommendation to reject, revise, or accept.

4. Read the manuscript with these basic issues in mind:
 - Does the article add new information/ideas to the field or does it duplicate available materials?
 - Is the writing either too basic or too technical?
 - Did you identify any incorrect mathematics or inappropriate pedagogy?
 - Is the length adequate/appropriate for the topic?
 - Are all the figures necessary? Do the figures add something new to the text?
 - Is the manuscript appropriate for the audience? (Is it useful to teachers at various levels across grades, to mathematics supervisors, special educators, or teacher educators?)

5. Begin with positive comments. Point out both strengths and weaknesses of the article.

6. Include specific suggestions for improvements:
 - Correct mathematics as appropriate
 - Suggest deletions and/or additions
 - Consider reorganization of the manuscript as well as possible changes in title, subheadings, introduction, and conclusion.

7. Avoid personal biases.

8. Make comments that can be reproduced and shared with the author. Your comments and suggested revisions may be submitted in bulleted form. Where applicable, please refer to the manuscript page number and line number.
Teaching Children Mathematics
Manuscript Evaluation Form for Referees

1. For which audience is this manuscript appropriate?

 a. Classroom Teacher:
 □ Preschool
 □ K-2
 □ 3-6
 □ K-6

 b. University:
 □ Teacher Educator
 □ Preservice Teacher

 c. Other:
 □ Teacher Leader
 □ Other

2. Select the appropriate ratings for this article:

 a. Supports the mathematical development of children:
 □ Poor
 □ Fair
 □ Good
 □ Outstanding

 b. Contributes to the professional or mathematical knowledge of teachers:
 □ Poor
 □ Fair
 □ Good
 □ Outstanding

 c. Promotes a culture of equity in the teaching of mathematics:
 □ Poor
 □ Fair
 □ Good
 □ Outstanding
d: Quality of writing:
 o Poor
 o Fair
 o Good
 o Outstanding

2. Are there any mathematical errors or concerns?
 o Yes
 o No

 If so, please explain

3. What is your recommendation for this article? (select one)
 o Reject
 o Revise and Resubmit
 o Accept

4. Would you be willing to work with the author(s) to get the manuscript into publishable form?
 o Yes
 o No

5. Regardless of your rating, please include the rationale for your evaluation below. Portions of your review may be sent to the author(s) in support of the Panel’s decision.

 Please respond to the following points in your review.

 Summarize the article in a couple of sentences.

 What are the strengths of the article?
What are the weaknesses?

What specific comments/suggestions might be shared with the author on how to improve the manuscript? Please focus comments on the substantive content and organization of the manuscript and not on mechanical errors.

Confidential comments for the Editorial Panel or NCTM staff (Not to be shared with the author(s).)

Other
CASE STUDY
Part 1: Manuscript
Encouraging Controversy in the Mathematics Classroom

Is the long side of an index card 5 inches or 7 inches? Do ten flats represent ten hundred or one thousand? Is 4 x 8 the same as 8 x 4, or are they different? To an adult, these may seem like trivial questions. How can an index card have two different lengths? Don’t ten hundred and one thousand represent the same value? Aren’t 4 x 8 and 8 x 4 both alike and different? As teachers, though, we recognize that these questions represent big mathematical ideas that young children do not necessarily find so straightforward. In fact, given the right setting these questions can lead to mathematical controversies within the classroom, with students arguing their different points of view. Controversies such as these can serve to ignite the mathematics classroom as they engage students in presenting and defending their stance on the issues at hand.

Mathematical controversies arise when a mathematical issue presents itself, sparking debate as students “take sides.” Such controversies provide students with the opportunity to think about the mathematics in an effort to make sense of the situation and thereby make the correct choice. The proceeding discourse that surrounds the controversy allows the students to organize their own thoughts, formulate arguments, consider other students’ positions, and communicate their own positions to their classmates. Such mathematical activity leads to internal “disequilibrium” for the learner, a term introduced by Piaget.
and proof (NCTM 2000), teachers are often willing to be reactive in the sense that if a controversy occurs they will allow it to develop and encourage the discourse that surrounds it. But, is it possible to be proactive and actually facilitate the development of the controversy as a means for engaging students in these important mathematical processes? The purpose of this article is to share strategies for facilitating the development of controversy in the mathematics classroom. After a brief overview of the characteristics of issues that lead to controversy, three strategies will be described along with examples to support each strategy.

Characteristics of Issues that Lead to Controversy

As teachers who have purposefully planned to engage students in mathematical controversies, we have identified three characteristics of an issue that will allow it to become a controversy in the classroom. First, the issue is recognized by the students. If, for example, it comes in the form of two solutions that contradict (or seem to contradict) one another, the students view it as problematic that opposing solutions are being offered. Second, the issue is accessible to the students. Regardless of their mathematical backgrounds, all students are able to engage in the mathematics being discussed. Often, the availability of concrete manipulatives can provide this accessibility for some students who might otherwise not have access. Finally, the third characteristic is that the issue is debatable by the students. The students have the necessary background knowledge to debate the issue as they share the mathematical
reasoning behind their views. Issues should not, for example, center around syntax or vocabulary as these are ideas that are not debatable.

Strategies for Encouraging Mathematical Controversies

Our work with a third grade class revealed three strategies that successfully facilitated the development of mathematical controversies. These strategies are described below along with a sample task or scenario to support the reader’s understanding of the strategy.

Utilize Tasks that Reveal Students’ Misconceptions

Tasks that are designed to reveal students’ misconceptions provide the opportunity for controversies to arise. As an example, consider the broken ruler task, which is designed to reveal students’ misconceptions regarding measurement of length. In this task, students were given a paper ruler like the one pictured in figure 1 and asked to utilize it to measure the long side of an index card, which was 5 inches in length. Having read about using a broken ruler (Barrett, Jones, Thornton, & Dickson 2003), we anticipated that the task would lead to a controversy surrounding the index card’s length, as some students would report the actual length (5 inches) but others would misread the ruler. As the lesson unfolded, three separate controversies arose. First, some students reported that the index card measured 5 ½ inches AND 6 inches, leading to the controversy of whether or not the long side of the index card could have 2 different lengths. Second, as students provided their arguments regarding the possibility of 2 different lengths, the controversy of whether to count the lines on the ruler or the spaces in between the lines arose. Finally, the controversy of where to line up the index card, either at the initial line or the end of the ruler, surfaced.
Figure 2 contains dialogue from the initial controversy dealing with whether or not an object can have two different lengths. From the students’ responses, one can see that by utilizing a task that would reveal students’ misconceptions, a controversy arose enabling students to share their ideas and defend their reasoning. In doing so, they clearly have met the expectations of the Process Standards (NCTM 2000).

Design Writing Prompts that Force Students to Choose a Side

A second strategy for facilitating the development of a controversy in the math classroom is designing writing prompts that force students to choose a side. Having begun our multiplication unit by looking at groups of different sizes, we very quickly found ourselves considering the role of the factors in an expression such as 4 x 8. Students were given the writing prompt in **figure 3**.

Figure 3 displays three students’ initial responses to the prompt. In **figures 4a** and **4b**, students indicated that these expressions are the same because they have the same product. In **figure 4c**, the student wrote that the two expressions were different, basing his decision on the representations of each. By providing the students with the opportunity to write first, they had time to think through their ideas before listening to their classmates. Through the expression of different opinions, the controversy arose, but more importantly students engaged in communicating their reasoning to their classmates. In the initial discussion, the prevalent viewpoint was that the two expressions were the same, since they had the same answer. Note that in **figure 4c** the student has erased the word “not” in his sentence after hearing a fellow student’s argument. As the class discussion progressed, students began representing the two expressions with equal-sized groups as a means of demonstrating that the two expressions were different.
The day after the controversy, students were given the opportunity to respond to the prompt again. Figure 5 contains the follow-up writings of the students from figure 4. Notice that in each case, the student has recognized the difference between the representations of 4×8 and 8×4. Notice that the student if figure 5b writes that the two expressions are both different and alike.

Ask Open-ended Questions

A third strategy for facilitating mathematical controversies is asking open-ended questions. From a planning perspective, it is sometimes difficult to know ahead of time whether the discussions that arise from such questions will lead to a controversy in the classroom. If, however, teachers utilize their previous experiences in working with students they can anticipate with great accuracy how students will respond and therefore anticipate the controversy that will arise.

Take, for example, the question posed in figure 6. In previous lessons, the third-grade students in our classroom had represented and decomposed 3-digit numbers with base-10 blocks. Therefore, this seemed like a natural question for them to consider. The controversy occurred when the students had to decide whether the 10 flats were equivalent to ten hundred or one thousand, an issue that arose through their own sharing of ideas. As an adult, the issue of ten hundred versus one thousand may not seem like an issue at all. In fact, one might feel it is just an issue of syntax or vocabulary, resulting in treating this as a non-issue. With this view, the adult’s tendency would be to just say the 10 flats represent one thousand which has a value of ten hundred. Doing so would not help students like Kendra, though, who sees one thousand as being much larger than ten hundred. The issue is not in how to read the number 1000. Instead, the mathematics underlying this issue includes the understanding that a value can be represented
and expressed in multiple ways as well as the structure of the base-10 system that allows for 10 of one unit (in this case 10 hundreds) to be equivalent to 1 of another unit (in this case 1 thousand). These ideas around place value are key mathematical concepts and therefore worthy of attention.

Conclusion

As teachers, it is most likely the case that we utilize tasks, writing prompts, and questions similar to those presented here. It is not the case, however, that we always recognize the potential that these have for evoking mathematical controversies. As demonstrated in the previous examples, by encouraging controversy we are engaging students in important mathematical processes; namely reasoning, proof, and communication. These processes in turn promote learning. Although learning is clearly important, just as important is the classroom atmosphere that is created that allows learning to occur. When students are presenting and defending their ideas, math class becomes fun for everyone!

Footnote

1 The students in this classroom often utilized circles and stars for representing multiplication with equal-sized groups. For example, 4 x 8 would be represented with 4 circles, each containing 8 stars. See Burns (2001) for an explanation of the game “Circles and Stars.”

References

Figure Captions

Figure 1. Broken ruler used for measuring.

Figure 2. Vignette of the broken ruler controversy.

Figure 3. Writing prompt for multiplication.

Figure 4. Student writing samples prior to controversy.

Figure 5. Student writing samples following the controversy.

Figure 6. Student arguments from the ten flats controversy.
Frank: There’s two answers.
Teacher: Is it possible for something to have two different lengths? Outside of a piece of gum that can be stretched . . . If you can’t stretch it, is it possible for something to have two different lengths?
Jenaria: Like what Brianna said like you can either round and it can go up to 6 inches or you don’t have to round. You can just leave it like it is at 5 ½ inches or you can round it and have it be 6 inches.
Karl: Yes, if you do it like that (motions to 2 sides of the index card). . . . (After clarification that the students were just measuring the long side of the card.) Oh, no. Because the ruler only can be like (pause) if you do it like that you’ve still got the same thing. (pointing toward the numbers on the ruler). Only if you turn it around. Teacher: So that changes the length of the card when you move the ruler.
Karl: Not exactly.
Frank: (Using the broken ruler to demonstrate at the front of the class, Frank aligns the end of the index card with the end of the ruler.) Now, there’s 1, 2, 3, 4, 5, and a half. (Afterwards, he slides the index card so that it aligns with the 3-inch mark.) But now, um, there is 1, 2, 3, 4, 5, 6. (Note, that Frank is counting the inch marks on the ruler and not the spaces in between them.) You didn’t need to move the ruler because this is in centimeters.
Karl: [I disagree with] him doing the centimeters. We are not learning about centimeters. . . .That’s mostly the only way you can do it two times. That’s the only way you can get 2 different measurements – using centimeters and inches.
Ayona: If he changes the ruler to here (aligning the edge of the index card with the edge of the broken ruler) then you have to count this part too (motioning to the initial part of the index card before the 3-inch mark). Frank: Yes, I was counting this (pointing toward the part of the card after the final inch mark); it’s a half.
Ayona: But you weren’t counting this (pointing toward the initial part of the index card before the 3-inch mark). Frank: Oh yeah.
Figure 3

4 groups of 8
4 x 8

8 groups of 4
8 x 4

In your journal, complete this statement.
I think 4 x 8 and 8 x 4 are / are not the same because . . .

Figure 4

Figure 4a

Warm-up
I think four times eight and eight times four are the same because they equal the same.

Figure 4b

I think 4 x 8 and 8 x 4 are not the same because . . . I disagree with this statement because 8 x 4 equals 32 and 4 x 8 equals 32 so it does not matter if they are switched around they still have the same answer. It is not different.

Figure 4c

I think 4 x 8 and 8 x 4 are not the same because 4 groups of 8 you got 4 things of 8 and 8 groups of 4 you got 8 things of 4.

I think it is right.
Figure 5

Figure 5a

Figure 5b

Figure 5c

These are different. One you have to draw eight and four stars. One has more circles.

They are different because they are different number of stars and circles, but they equal the same number.

One has more circles than the other and one group has more stars in the circle. One has 8 stars and one has 4 stars.
Figure 6

Teacher: If 10 units can be put together to form 1 long, and 10 longs can be put together to form 1 flat, what do we have when we put 10 flats together? *After requiring the students to think inside their heads and then share with a partner.*

Alan: You think it’s ten hundred but it can’t go above ten hundred so I’d have to all go to one thousand. . . So, I mean, it would start over but at a higher level, one thousand.

Doug: (Standing at the board) The way how I did it, it had these zeroes and one one (Writes “1000” on board). And, and, and after- (trying to get the attention of the students) Look. And after there are three numbers, I put a comma (puts a comma between the 1 and first zero). That’s what I thought. . . Because, if it – if he thought it was ten hundred (erases the comma), that wouldn’t make sense. . . . Nope, that would be wrong (X’s out the “1000” on the board and writes “1,000” out to the right). But, this is right (puts a check mark by the “1,000”).

Kendra: I want to say I disagree with all of them because if you count on your fingers you’re gonna get one hundred, two hundred, three hundred, four hundred, five hundred, six hundred, seven hundred, eight hundred, nine hundred, ten hundred. How in the world can you skip from all the way to ten hundred…From one hundred to a thousand? . . . When you count on your fingers, you’re going to get to ten hundred and that’s how I know because I know I can’t skip all the way from one hundred to a thousand. I ain’t got that many fingers.

James: Um, I thought that it’s, it’s actually both of them because, because ten equals (pause) . . . (Looking at “1000” and “1,000” on the board) . . . all of the things that had changed for both of them was that comma because they’ve got the – they’ve got the same number of zeroes and one. The only thing that would really actually change was if he putted that comma right there after the one then it would have been the same.
CASE STUDY
Part 2:
Referee Feedback
TCM CASE STUDY
Part 2: Referee Feedback

(Referee/Reviewer #3)

<table>
<thead>
<tr>
<th>Overall Recommendation</th>
<th>Accept</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom Teacher:</td>
<td>K-6</td>
</tr>
<tr>
<td>University</td>
<td>Preservice Teacher</td>
</tr>
<tr>
<td>Other</td>
<td>Teacher Leader</td>
</tr>
<tr>
<td>Importance of topic</td>
<td>Outstanding/Good</td>
</tr>
<tr>
<td>Quality of ideas</td>
<td>Outstanding</td>
</tr>
<tr>
<td>Quality of writing</td>
<td>Outstanding</td>
</tr>
</tbody>
</table>

Would you be willing to work with the author(s) to get the manuscript into publishable form?

Yes

Are there any mathematical errors or concerns?

No

<table>
<thead>
<tr>
<th>Note</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical errors comments</td>
<td></td>
</tr>
</tbody>
</table>

Summarize the article in a couple of sentences

This is a cogent, well-written article about using controversy as a vehicle for mathematical communication and reasoning.

What are the strengths of the article?

The writing is excellent. It is easy to follow and has sample student responses to illustrate their technique. The controversy technique is the mathematical equivalent of presenting discrepant events to students in science education. It is an easy way to promote discourse with your students. It's a great idea because it not only encourages discourse, mathematical communication, and reasoning, but is a good way to determine what individual students understand about the topic at hand.

What are the weaknesses?

I didn't find any.

Summarize your specific suggestions for the author

Line 59- Replace "one" with "you" to reach the readers.
Line 89- Insert comma between "students" and "they."
Line 113- Replace 2nd "that" with "which" to eliminate using "that" twice.

Confidential comments for the Editorial Panel or NCTM staff

This is the first article I've reviewed that was ready to be published with a just couple of grammar changes.

Other

(Referee/Reviewer #4)

<table>
<thead>
<tr>
<th>Overall Recommendation</th>
<th>Revise and Resubmit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classroom Teacher:</td>
<td>3-6</td>
</tr>
<tr>
<td>University</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>

Importance of topic	Good/Fair
Quality of ideas	Fair
Quality of writing	Good

Would you be willing to work with the author(s) to get the manuscript into publishable form?

| Are there any mathematical errors or concerns? | Yes |

<table>
<thead>
<tr>
<th>Note</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematical errors comments</td>
<td>4x8 = 8x4 They are not different and should not be considered different. Commutative property is the emphasis.</td>
</tr>
<tr>
<td>Summarize the article in a couple of sentences</td>
<td>It is an interesting approach to viewing commutative property and/or understanding different approaches to weighing in similarities and differences in problems but it should not be considered as a controversial issue rather a connection to the properties.</td>
</tr>
<tr>
<td>What are the strengths of the article?</td>
<td>It is a good idea to generate an interest to various approaches of doing math and seeing different approaches to the end product as long as all students are as equally involved as possible to meet their learning requirements.</td>
</tr>
<tr>
<td>What are the weaknesses?</td>
<td>It is in actual fact difficult to implement or generate discussion with all younger audiences without considering the diverse learners. They may be left behind if participation is problematic to them and also consideration needs to be given to different learning styles.</td>
</tr>
<tr>
<td>Summarize your specific suggestions for the author</td>
<td>The author needs to consider all learning styles and state how or where inclusion occurs. Consideration for the ethnically minority students is necessary.</td>
</tr>
<tr>
<td>Confidential comments for the Editorial Panel or NCTM staff</td>
<td>This is an interesting approach but above mentioned factors need to be considered as part of revision. According to the current submission it is unlikely all children are considered in the discussion.</td>
</tr>
<tr>
<td>Other</td>
<td></td>
</tr>
</tbody>
</table>
CASE STUDY
Part 3:
Editorial Panel Feedback
The Panel member's comments that were forwarded to the author:

The authors provide a practical approach to creating opportunities for mathematical argumentation in an elementary classroom. The three examples used demonstrate the difficulties and misconceptions children have about seemingly straightforward topics. Giving children the opportunity to discuss the differences in perspective reveals valuable information about children's understanding. With revision the article may have the potential to make an important contribution to TCM. Please consider the following questions and suggestions for revision:

* Line 2: I had to read the first sentence several times and I'm still not sure what was meant. Did you mean 5 inches 'or' 7 inches?

* I'd like to see the introduction reworked. I liked how the manuscript starts with three questions, but since I didn't understand the first question and the third question is not easily answered when given in context (rather than abstractly), I didn't see them as trivial questions. Consider focusing the introduction on children's attempts to understand mathematical concepts and how controversies/different opinions surface in the course of a class. Stress that rather than halting those discussions (to provide the 'real' answer) use it as an opportunity to understand children's difficulties and expand their thinking.

* Where does the word "controversies" come from? I don't think the controversies are necessarily instances of "disequilibrium". Disequilibrium (according to my interpretation of Piaget) is when a child's experience through interaction with the world or others leads to something unexpected and conflicts with previous understanding. Having an argument with someone doesn't create disequilibrium (if the person doesn't experience any conflict or confusion in the two sides of the argument). The authors' description of the phenomena sounds more like mathematical argumentation. Please consider the work of M. Lampert, E. Yackel, G. Krummheuer. For example, you may want to start with:

By drawing on the argumentation literature you may be able to make stronger connections to how these controversies are important for learning.

* Section starting on line 26: Since an example has not been presented at this point, it is difficult to make sense of the three characteristics. Perhaps you can point to the features after an example. For example, take the 4x8 issue. The authors indicate that it is recognizable, accessible and debatable ... correct? Can you connect these features to this particular issue? Also, how are recognizable and debatable different? Was the issue recognized by the students or given to the students as a debatable issue.

* The various strategies for encouraging controversies are valuable. I would like to see more examples within each of the categories. The additional examples provided do not need student responses, but even a list of questions might be useful. For example, the authors indicate that teachers could design prompts that force students to choose a side. Could they give a list of other possible prompts?

Asking open-ended questions sounds a bit vague. I can think of open-ended questions that don't
prompt controversy. What qualities of an open-ended question are necessary? Could they provide other examples?

* All three classroom examples provided are quite interesting. I would like to see more of a connection to why having students engage in controversy is important within those contexts. All examples seem to end after both sides of the argument are clear, but I don't see how that helped students overcome the issue and learn from it. For example, what happened after the students' journal writing of the 4x8 issue? It seems as though there was an opportunity to discuss it in the class, but the authors don't appear to write about it. Also, what is the teachers' role during these debates? What if neither side is able to see the other side of the argument?

Is the third example an open-ended question? The question, "What do we have when we put 10 flats together?" is not open-ended. The children could have simply answered 1000 and moved on.

* I'd like to see a stronger conclusion. My experience with arguments in class is not that it is "fun for everyone" and can, in fact, be quite painful if students feel their ideas are being attacked. The authors may either have to provide more information on the emotional aspect of argumentation or reword the conclusion to emphasize the importance of developing a classroom environment that values risk-taking, open discussion, debating ideas, etc.

I am hopeful that the authors will consider the questions and suggestions provided above as they revise the manuscript.

[NOTE: Subsequent manuscript revisions and comments are not included for the purpose of this case study.]
CASE STUDY
Part 4: Published Article