Isn’t MATH

 CIRCLES AND ELLIPSES ${ }_{\text {are everwhere }}$
 even on the logo of Grand Central Terminal in New York City. In Vanderbilt Hall, formerly the Waiting Room and now used for cultural and commercial events, five majestic gold chandeliers of seemingly concentric circles hang from the ceiling. A photograph taken directly beneath one of these chandeliers makes the circles appear concentric, but the circles actually lie in parallel planes, with the largest circle closest to the ceiling and the smallest closest to the floor (see inset below). The three innermost circles have light bulbs that are equally spaced. The number of bulbs in each of these rings follows an arithmetic sequence: 8,24 , and 40 . However, the fourth ring has 48 bulbs instead of 56 , resulting in bulbs that are slightly more widely spaced.

Assume that the circles are coplanar. Let the circumference of each of the three innermost circles be measured in "light bulb units," or Ibu. Thus, the smallest circle has a circumference of 8 lbu .
(a) In terms of Ibu, FIND the radii of the three innermost circles.
(b) Assume that the distance between all the circles is the same but that the number of bulbs in the outermost ring is 48 instead of 56 . WHAT is the distance, in terms of lbu, along the arc between two consecutive bulbs on this circle?

2

As shown in the photograph above of the Vanderbilt Hall chandelier, the concentric circles are not coplanar but lie in parallel planes. Let the distance between the
parallel planes be 4 lbu .
(a) SHOW that if the chandelier were a solid, it would be a frustum of a cone. (b) In terms of Ibu, what is the volume of the frustum?

3
Let the circumference of the smallest horizontal ring of lights be 16 lbu and that of the largest horizontal ring of lights be 44 lbu. Let the distance between each horizontal ring of lights be 3 lbu . What would be the circumferences of the other rings if the vertical curves were elliptical?

The lighting design on the food court ceiling (see photograph, right) has circles within circles. Within two of these large concentric circles, smaller circles
alternate with rectangles. Within two other concentric circles, some circles are nearly tangent to one another.

If we are given two concentric circles, CAN the ring bounded by the circles always be filled with a chain of tangent smaller circles? FIND an expression for the ratio of the radii of the two concentric circles so that the tangent small circles fit. See figure 1 to help find the conditions under which the chain is possible.

On either side of the entrance to the Oyster Bar and
Restaurant, on a lower level of the terminal, are windows that, taken as a whole, seem to be in the form of an ellipse (see photograph, left:
 determine the ratio of the Lower Level Windows, Grand Central). By superimposing an appropriate grid and making measurements along the vertical bars of the windows, WRITE an equation for the ellipse or show that the curve is not an ellipse.

Outside the entrance to the Oyster Bar and Restaurant is the Whispering Gallery (photograph, above left), which has low ceramic arches. Positioned at diagonally opposite corners
 of this gallery, two peoplefacing the wall-can hear each other as they whisper. Both the curvature of the ceiling and the nature of the acoustic tiles account for this phenomenon.

Assume that the curvature of the gallery is elliptical. WHERE do the two people need to stand to hear each other whispering?

