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Chapter 1
Geometric Measurement

Big Idea 1
Behind every measurement formula lies a geometric result.

Essential Understanding 1a
Decomposing and rearranging provide a geometric way of both seeing that a
measurement formula is the right one and seeing why it is the right one.

Big Idea 4
Classifying, naming, defining, posing, conjecturing, and justifying are codependent
activities in geometric investigation.

The big ideas that teachers need to understand for teaching geometry in the middle
grades are explored in Developing Essential Understanding of Geometry for Teach-
ing Mathematics in Grades 6-8 (Sinclair, Pimm, and Skelin 2012). With each big
idea, the authors delineate two or three associated, subordinate ideas—the essential
understandings that support the broader concept. Altogether, Sinclair, Pimm, and
Skelin identify four big ideas and ten essential understandings that flesh them

out (Appendix 1 provides a complete list). Clearly, middle-grades teachers need to
have more than a superficial grasp of these big ideas and their related essential
understandings before approaching the teaching of geometry in the classroom. A
thorough, robust understanding of each one is necessary to prepare teachers to offer
rich, effective instruction to students in grades 6-8.
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Putting Essential Understanding of Geometry into Practice in Grades 6-8

Because teachers’ own understanding must extend beyond the concepts and skills
that teachers expect their students to learn, key questions arise for classroom
instruction:

e  Which of the big ideas and essential understandings outlined by Sinclair,
Pimm, and Skelin for teachers are critical for middle-grades students to
develop while they explore geometry in a more focused and sophisticated
way than they did in the elementary grades?

e At what level should students understand these ideas in the middle grades
to be ready for the more advanced work with geometry that they will
undertake in high school and beyond?

e How can teachers nurture these ideas and understandings most appropri-
ately and effectively in the middle-grades classroom?

These are the questions that this book sets out to answer.

Research and experience provide invaluable assistance in this endeavor, pointing
to a number of pedagogical practices that are particularly effective for developing
students’ mathematical understanding. Useful practices include the following:

e (Challenging misconceptions that students commonly form
e Having students analyze one another’s work

e Inviting students to describe and critique the thinking of other, sometimes
fictitious, students

e  Thoughtfully creating cognitive dissonance in students’ thinking
e Purposefully selecting counterexamples for students to consider

These are among the practices that this book emphasizes in sample tasks that illus-
trate ways in which you can develop your middle-grades students’ understanding
of the core ideas of geometry.

Although this book is not intended to be a comprehensive treatment of middle-
grades geometry, it presents tasks that illustrate how you can help your students
develop their own conceptual understanding. Each task is designed to provide a
rich learning opportunity for students while offering you a window on their think-
ing. The insights into their misconceptions that these tasks will give you are in-
tended to show you the ideas—large and small—that they do understand, as well as
those that they do not understand, thereby supplying you with the information that
you need to shape subsequent instruction and tailor it to your students’ needs.

While your students complete and discuss these tasks, you will be able to ensure
that they receive the kind of feedback that Hattie (2009) claims is one of the most
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important for the development of student learning. He is not describing teacher
feedback regarding student performance but rather students’ own feedback to one
another on what they know and can apply. This feedback not only provides obser-
vant teachers with valuable information about students’ understanding of concepts
and skills but also prompts students to think about what they have done, thus help-
ing them to self-assess their work.

Not surprisingly, designing such tasks and preparing to present them involves one
of the key pedagogical practices for supporting the productive use of students’
thinking. This is the instructional practice of anticipating students’ solutions—
successful and unsuccessful—to set up opportunities to assess and advance that
thinking (Stein et al. 2008; Smith and Stein 2011).

Chapter 1 explores topics in geometric measurement. It highlights ways to capture
student thinking by using critical pedagogical components. These components in-
clude, but are not limited to, the following:

e Determining instructional pathways through the selection and sequencing
of activities

e (Connecting work in ways that illuminate big ideas of geometry

e Generating a series of questions that have the potential to prompt and probe
students’ thinking

The first topics that we examine are the concepts of area and perimeter, and the
core ideas that come into play in this work are Big Idea 1, Essential Understanding
la, and Big Idea 4.

Working toward Big Idea 1, Essential Understanding 1a,
and Big ldea 4

Geometric measurement typically lies at the heart of middle-grades investiga-
tions of geometry as students expand their understanding of geometric shapes and
their attributes and measurement. When students arrive in grades 6-8, they have
reached a point in their mathematical development where they can use their grow-
ing understanding, together with their emerging skill with algebra, to make gen-
eralizations that lead to measurement formulas. Big Idea 1, the notion that behind
every measurement formula lies a geometric result, is the central idea that supports
and guides this work.

In grades 6-8, students no longer routinely make measurements by counting or
working directly with numbers as they did in the elementary grades. To understand
geometric measurement more abstractly—to make the connection between a
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measurement formula and a geometric result—middle-grades students need a pow-
erful tool of geometric comparison: decomposition and composition. As Sinclair,
Pimm, and Skelin (2012) express it, “One very powerful means through which such
a comparison [without numbers] might occur involves decomposition and re-
arrangement” (p. 9). Thus, Essential Understanding 1a is a critical component of Big
Idea 1 that middle-grades students must grasp to investigate geometric measure-
ment: “Decomposing and rearranging provide a geometric way of both seeing that
a measurement formula is the right one and seeing why it is the right one” (p. 9).

Furthermore, Big Idea 4 naturally underpins students’ work with geometric mea-
surement in the middle grades. Big Idea 4 is the notion that classifying, naming,
defining, conjecturing, and justifying all play roles in any geometric investigation
and are inextricably interrelated. As Sinclair, Pimm, and Skelin (2012) explain,
“Geometry arises as the endpoint of geometric investigation” (p. 55), and the ac-
tions in Big Idea 4 are “central along the way” because “geometric investigation has
a continuity that invokes each of these ... intellectual actions at some point” (p. 55).
Chapter 1 focuses particularly on the importance of justifying conjectures to sup-
port middle-grades investigations of geometric measurement.

Geometric measurement is a significant area of study for the middle grades, a fact
that is underscored by its place in the geometry domain for grades 6-8 in the Com-
mon Core State Standards for Mathematics (CCSSM; National Governors Association
Center for Best Practices and Council of Chief State School Officers [NGA Center
and CCSSO] 2010). Throughout grades 6-8, students are expected to solve real-
world and mathematical problems involving the measurement of core attributes of
shapes and solids:

Grade 6 (Geometry, 6.G)
Solve real-world and mathematical problems involving area, surface area, and
volume.

1. Find the area of right triangles, other triangles, special quadrilaterals, and
polygons by composing into rectangles or decomposing into triangles and
other shapes; apply these techniques in the context of solving real-world
and mathematical problems. (p. 44)

Grade 7 (Geometry, 7.G)
Solve real-life and mathematical problems involving angle measure, area, surface
area, and volume.

6. Solve real-world and mathematical problems involving area, volume, and
surface area of two- and three-dimensional objects composed of triangles,
quadrilaterals, polygons, cubes, and right prisms. (p. 49)
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Grade 8 (Geometry, 8.G)
Solve real-world and mathematical problems involving volume of cylinders, cones,
and spheres.

9. Know the formulas for the volumes of cones, cylinders, and spheres and
use them to solve real-world and mathematical problems. (p. 56)

The work of quantifying the attributes of objects in everyday life to make sense of
the physical world offers many opportunities for students to meet the expectations
of these standards in the CCSSM geometry domain while recognizing their rel-
evance to career options. However, this rich opportunity for application is often ig-
nored. Instead, the typical instructional approach has often been formula-centered,
with emphasis on definitions, rules, variables, and dimensions, without adequate
attention to students’ understanding of these ideas. As Young (1911, pp. 4-5) ob-
served a little more than a century ago,

The mere memorizing of a demonstration in geometry has about the same educa-

tion value as the memorizing of a page from the city directory. And yet it must be
admitted that a very large number of our pupils do study mathematics in just this
way.

Sadly, not much has changed in slightly more than a hundred years, as measured
by student performance on major assessments such as the Trends in International
Mathematics and Science Study (TIMSS) and National Assessment for Educational
Progress (NAEP). Geometric measurement is regularly found to be an area of weak-
ness (Sowder et al. 2004).

Steele (2006) reports that students’ misconceptions often lie at the intersection

of geometry and measurement. A geometric measurement topic that is especially
problematic at the middle-grades level involves the relationships among the mea-
surable quantities of geometric figures, such as area and perimeter.

Interpreting units of length and units of area

The unit of measure is a core concept that underlies both perimeter and area. This is
so, in part, because either of these measurements can be found by iterating a unit.
For example, the perimeter of a triangle can be determined by identifying a length
unit and iterating it around the boundary of the shape. Similarly, the area of a tri-
angle can be found by defining a square unit and iterating it in the interior of the
shape. Although the iteration process may not be exact, it can provide at least a good
estimate of the measurement in either case. In a broader sense, all measurement
requires the integration of spatial and numerical concepts into the unifying idea of
an iterated unit, thereby making an emphasis on unitizing critical (Hiebert 1981).
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What is more significant for the teaching of area, which usually comes after the
teaching of perimeter, is that students tend to confound units of measure for area
with units of measure for perimeter. Perimeter, as the measure of the boundary of a
shape, is a length, with only one dimension. Unlike perimeter, area, as the measure
of the region inside the shape, has two dimensions. Measuring area involves coordi-
nating the measures of the two dimensions of the shape (Outhred and Mitchelmore
2000). In finding the area of a parallelogram, for example, students must coordinate
and differentiate two different types of units—linear units when they are finding the
length of either of the parallelogram’s dimensions or its perimeter, and square units
when they are reporting the area enclosed by the parallelogram. In light of students’
frequent confusion of linear and square units in the measurement, a critical ques-
tion for instruction emerges: What would happen if the nature of the unit itself be-
came the focus of consideration in instruction and teachers highlighted the contrast
between linear measure and area measure? Linear measurement is an iteration of a
linear unit, and area measure is an iteration of an area unit. Reflect 1.1 invites your
thinking about this approach in relation to multiplication.

Reflect 1.1 B\

Consider the area of the shape below:

How would thinking of this area of 15 squares as an iteration of a square
unit 5 times to make one row unit and then an iteration of the row unit
3 times to make three row units be different from thinking of the same
area as length times base?

Are both approaches multiplicative in nature? Why or why not? )

An iteration of units suggests an additive approach to measurement because the
joining together of the units is indicative of addition. Placing length units on the
boundary of a shape fits naturally with perimeter and is closely tied to the additive
nature of perimeter formulas. However, covering a shape with square units and
counting the number of units to find area does not intuitively align with the multi-
plicative structure of area formulas.

Multiple researchers—for instance, Battista (2006); Kamii (2006); and Mulligan,
Mitchelmore, and Prescott (2005)—have studied students’ understanding of unit in
relation to perimeter and area. Noticeably fewer researchers have explored the co-
ordination of units across multiple measurement types, such as perimeter and area.
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Barrett and colleagues (2011) found that shifting from an additive perspective on
units to a multiplicative one requires a purposeful sequencing of tasks that move
from qualitative comparisons to quantitative ones, coupled with specific questions
focused on the multiplicative relationships.

Outhred and Mitchelmore (2000) proposed a trajectory that moves students from
additive thinking to multiplicative structures to develop a relational, rather than an
instrumental, understanding of the area formula (Skemp 1978). These researchers
found that, for students to progress along this trajectory, they should be able to do
the following in sequence (adapted from Outhred and Mitchelmore [2000, p. 161]):

e Completely cover a rectangle by fixed units, without gaps or overlaps

e Spatially structure the units in the array with the same number of units in
each row

e Relate both the number of units in each row and the number of rows to the
lengths of the sides of the rectangle

e Identify the multiplicative structure of the units in a rectangular array as
associated with the number of units in each row and in each column

The last point in Outhred and Mitchelmore’s sequence raises an issue: How can
students see that this is a multiplicative situation, beyond recognizing that you
multiply the dimensions (height x base) in the formula? One way to consider the
area of a 3-unit-by-5-unit rectangle is to start with a 1-unit-by-1-unit square, then
iterate the square unit 5 times to make one row unit, and then iterate 3 row units
to create an area of 15 square units. The area of the 3-unit-by-5-unit rectangle is
15 times larger than the area of the 1-unit-by-1-unit square. The structure of this
thinking moves beyond merely substituting the linear dimensions in a formula and
instead focuses on the relationships of the unit of measure and the quantity being
measured.

Finding perimeter and area, given dimensions

One of the most important responsibilities that teachers have is to create or locate
appropriate tasks to advance their students’ understanding. Rich tasks can tap into
students’ thinking and assist them in addressing—and teachers in identifying—their
challenges with concepts and procedures that students sometimes understand

only in a very fragile way. Such tasks can show both teachers and students what
students understand or do not yet understand about the fundamental geometric
concepts of perimeter and area. For example, giving students a figure and labeling
it in a purposeful way can induce students to demonstrate any weaknesses in their
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conceptual understanding. Consider the tasks in figure 1.1 as directed by the
questions in Reflect 1.2.

Reflect 1.2 ~

Figure 1.1 shows problems 1 and 2, which seek the area and the
perimeter, respectively, of a 5-unit by 12-unit rectangle. The rectangle's
dimensions are intentionally labeled differently in each case.

How do you suppose the labeling of the rectangle in these problems might
affect a student’s approach to the problems?

What misconceptions might the student’s solutions indicate?

Problem 1: Find the area Problem 2: Find the perimeter
12 12
5 5 5
12

Fig. 1.1. Sample problems with possible labeling of the same rectangle

Samples of student work indicate that the labeling does indeed affect students’
solutions. Figure 1.2 shows the work of Anthony, a sixth grader, who attempted
to find the area in problem 1 by multiplying all the numbers given by the labels.
When asked to explain his work, he said, “I know that when you find area, you
have to multiply length and width, so I just multiplied.” Clearly, Anthony had
difficulty discerning the measures of length and width that he needed. In further
discussion, he said that because all the sides were labeled, “That must mean that
you have to use all of the measurements.”
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Fig. 1.2. Anthony's (grade 6) solution to problem 1 about the area of the rectangle

Zoie’s (a sixth grader) work on problem 2, which seeks the perimeter of the rect-
angle, is shown in figure 1.3. Using a process similar to that demonstrated by
Anthony with respect to the area of the rectangle, Zoie tried to find the rectangle’s
perimeter by multiplying the two dimensions given by the labels, as shown in the
sample of her work in the figure. In oral discussions, she too described the need to
use the measurements that were given rather than interpret the meaning of the in-
formation in the figure. Neither Zoie nor Anthony considered the reasonableness of
their answers. Instead, they focused on selecting and using a formula that seemed
to fit the labeling of the shapes.

(Feme 13
| WA

Fig. 1.3. Zoie's (grade 6) solution to problem 2 about the perimeter of the rectangle

The solutions that Zoie and Anthony produced are representative of the various
ways in which many students interpret the labeling of figures with respect to a
formula. If students are asked to calculate the area of a rectangle that is shown
with all four sides labeled, they may opt to use the perimeter formula and find the
rectangle’s perimeter instead of its area. Or they may seek to apply the area formula
but unreflectively. Knowing that this formula involves multiplying a rectangle’s di-
mensions, they may simply multiply all four numbers given. In contrast, if students
are asked to find the perimeter of a rectangle that is shown with two adjoining
sides labeled, they may resort to using the area formula and find the area instead of
the perimeter.

19



Putting Essential Understanding of Geometry into Practice in Grades 6-8

Providing tasks that motivate students to interpret the given information in the
context of the problem is important. One of the best ways to do this is to make
students stop and think by varying the information given, ranging from giving
students the length of one side of a square to giving them rectangles with all four
sides labeled in both area and perimeter problems.

When students do not apply a formula or algorithm thoughtfully, deliberately, or
prudently, their approach to the formula and their understanding of the relation-
ships expressed in it are more procedural (or instrumental) than relational (Skemp
1978). Stein and colleagues (2008), much like Thompson and colleagues (1994) be-
fore them, noted that when the focus of instruction is on the computational aspects
of geometric shapes, significant connections between the formulas and the attri-
butes of the actual shapes are missing from students’ understanding. By contrast,
instruction that varies the information given and focuses the discussion on the
relationships between the information given and the formula components can
help students develop a stronger conceptual understanding that extends beyond
calculations.

Determining the relationship between perimeter and area

While students explore the concepts of perimeter and area, they begin to general-
ize the relationships between the two. To assist them in this work, they may make
comparisons of the perimeters of two shapes if they are given only the areas of the
shapes, or vice versa. Consider how students might respond to the task presented in
Reflect 1.3.

Reflect 1.3 p

How do you think your students would respond to the following task:

Carmen said, “As the perimeter of a rectangle increases, the area also
increases."

Do you agree with Carmen? Explain your reasoning. (Adapted from
Dougherty [2006, p. 56])

J

It is not uncommon for students to think that a direct relationship exists between
perimeter and area. That is, they often generalize that if the perimeter of a given
shape increases, the area will also increase. This misconception can be addressed
by having students engage in tasks that explicitly direct their attention to the
relationship. Consider the two tasks, A and B, shown in figure 1.4, guided by the
questions in Reflect 1.4.
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Reflect 1.4 ~

Figure 1.4 presents tasks A and B, which are designed to elicit and
address students' common misconception that the perimeter and the area
of a shape are directly related to each other.

What concepts or big ideas might emerge from discussions about the
solutions that students found?

How could those concepts or big ideas be used to address students’
misconceptions about the relationship between area and perimeter?

J

Task A
Use square tiles to create as many different rectangles
as possible, each with an area of 36 square units.

Draw your rectangles on grid paper.

Task B
Use square tiles to create as many different rectangles
as possible, each with a perimeter of 24 units. Draw

your rectangles on grid paper.

Fig. 1.4. Two tasks that focus on the relationship between perimeter and area

One way of using tasks A and B in the classroom is to ask half your students to work
on task A and the other half to work on task B. When students complete the tasks,
ask those who worked on task A to find the perimeter of each of the rectangles that
they created with an area of 36 square units. At the same time, ask those students
who worked on task B to find the area of each of the rectangles that they created
with a perimeter of 24 units. When you monitor their work, you can ask students to
describe their process of determining the perimeters of their shapes in task A. Their
responses indicate the level of their thinking in addition to offering you opportuni-
ties to link the physical, material representation with a corresponding symbolic
representation and develop the relationship in further class discussion. After your
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students have found all the possible rectangles for their task and have determined
the perimeter (task A) or the area (task B), you can ask the groups to describe what
they notice. Figures 1.5-1.9 show sample sixth-grade students’ observations, paired

with the students’ drawings of their rectangles.

Karla: Skinny rectangles have bigger perimeters.
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Fig. 1.5. Karla's (grade 6) work and observation on task A
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Mackenzie: Fat rectangles have less perimeter but more area.

S i o e

Fig. 1.6. Mackenzie's (grade 6) work and observation on task A

Kris: Squares have smaller perimeters but more area than

regular rectangles.
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Fig. 1.7. Kris's (grade 6) work and observation on task A
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Tyrone: Some rectangles have the same perimeter but
different areas.

(5

DIAFEAE y 7~ 9,2

Fig. 1.8. Tyrone's (grade 6) work and observation on task B

Ji: But some rectangles have the same area but a different
perimeter.

Fig. 1.9. Ji's (grade 6) work and observation on task B

Conjecturing and justifying conjectures are two key activities that Big Idea 4 iden-
tifies in geometric investigation, and the class discussion that ensues as students
share their observations should include their justifications for the statements that
they make. The rationale or support that the students offer for their observations
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may provide a new perspective that will help other students who have not noticed a
particular relationship to see it for the first time or gain further insight into it. The
class discussion should also incorporate opportunities for students to ask clarifying
questions or furnish further support for the pattern that a student is sharing.

Additionally, the discussion should give students an opportunity to share and
examine the processes by which they determined the perimeter and area of the
rectangles. To consider the potential variety in these processes, examine the two
rectangles in figure 1.10, using the questions in Reflect 1.5 to help you think about
the multiple ways in which students could have found the perimeter and area of
these rectangles.

Reflect 1.5 ~

Figure 1.10 shows two rectangles on a grid of unit squares. Assuming that
students are given rectangles that are presented in this manner—

(a) determine at least three ways in which students might find perimeter;
(b) determine three ways in which students might find area.

How do these methods relate to formulas that can be used to find
perimeter or area of rectangles?

Fig. 1.10. Two rectangles on a grid of unit squares
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Students might proceed in multiple ways to find the perimeter of a rectangle like
either of those in figure 1.10, composed of unit squares on a square grid. For any of
these methods, they would first need to understand that perimeter is a length—the
total length of the boundary around a closed figure—and in the case at hand, it is the
length of the boundary around the rectangle. These methods include the following:

1.

Counting the sides of the unit squares in the grid that adjoin one another to
form the boundary of the rectangle.

Counting the sides of the unit squares in the grid that adjoin one another to
form two adjacent sides of the rectangle and then doubling the count.

Counting the sides of the unit squares in the grid that adjoin one another to
make up the height of the rectangle, then counting the sides that adjoin one
another to make up its base, then adding the two counts, and finally multi-
plying this sum by 2.

Counting the sides of the unit squares in the grid that adjoin one another to
form each of the four sides of the rectangle and then adding these four side
lengths.

Counting the sides of the unit squares in the grid that adjoin one another to
make up the height of the rectangle and multiplying this count by 2, then
counting the sides that adjoin one another to make up the base of the rect-
angle and multiplying that count by 2, and finally adding the two products.

Each of these methods can be linked to a symbolic representation, as shown in
figure 1.11.
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Method Symbolic representation

Counting the sides of the unit squares in the grid
that adjoin one another to form the boundary of the
rectangle.

P=1+1+---+1, where n is the number of sides of
" the squares around the boundary
of the rectangle.

Counting the sides of the unit squares in the grid
that adjoin one another to form two adjacent sides
of the rectangle and then doubling the count.

P=(h+ b) + (h+ b), where his the number of sides
of squares on one side of the rectangle (its height),
and b is the number of sides of squares on the
adjacent side of the rectangle (its base).

Counting the sides of the unit squares in the grid
that adjoin one another to make up the height of the
rectangle, then counting the sides that adjoin one
another to make up its base, then adding the two
counts, and finally multiplying this sum by 2.

P=2(h + b), where h is the height and b is the base
of the rectangle.

Counting the sides of the unit squares in the grid
that adjoin one another to form each of the four
sides of the rectangle and then adding these four
side lengths.

P=s, +s,+s, +s, where s is the length of each
side of the rectangle.

Counting the sides of the unit squares in the grid
that adjoin one another to make up the height of
the rectangle and multiplying this count by 2, then
counting the sides that adjoin one another to make
up the base of the rectangle and multiplying that
count by 2, and finally adding the two products.

P=2h + 2b, where his the height, and b is the base.

Fig. 1.11. Counting methods and associated symbolic representations for determining the
perimeter of a rectangle drawn on a square grid of unit squares

Linking the symbolic representation in this way with the physical act of counting
to determine perimeter can help students understand why a specific formula or
generalization “works.” It can give them a deeper understanding of the relationships
expressed in a formula, positioning them to apply the formula more appropriately.

It helps students interpret their results and determine the reasonableness of their
solutions. Additionally, explicitly discussing the multiple techniques for finding
perimeter and linking them to the associated symbolic representation gives students
multiple strategies to use, helping ensure that if they forget one strategy, they have

another one available.
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Attending to justification (Big Idea 4)

As emphasized in Big Idea 4, conjecturing and justifying conjectures are inextrica-
bly bound up with classifying, naming, defining, and posing—all the activities that
intertwine in geometric investigation (Sinclair, Pimm, and Skelin 2012). Reasoning
and proof serve several critical purposes in the geometry classroom. At the middle
school level, instruction that nurtures students’ ability to make conjectures, justify,
verify, and explain is essential. You should encourage your students to discuss
conjectures—their own and those made by others—and offer justifications for them.
Ensuring that they have opportunities to critique the reasoning behind conjectures
is part of building a classroom climate that establishes both respect and rigor.
Actively and regularly inviting students to make conjectures and justify them are
pedagogical practices that are tightly aligned with NCTM’s Geometry Standard,
which expects instruction in the middle grades to enable students to “create and
critique inductive and deductive arguments” (NCTM 2000, p. 232), while it engages
them in “making and validating conjectures, and classifying and defining geo-
metric objects” (NCTM 2000, p. 233).

To help students to provide clear justifications for their mathematical conjectures
and to support their efforts to shape those justifications into mathematical argu-
ments (including foundational components of theory and proof that they will use
in subsequent grades), instruction must move the students away from seeing math-
ematics as a set of irrefutable rules. Instead, students need to evaluate conjectures
and statements and apply the generalizations that they make to other contexts so
that they can probe them more deeply.

This pedagogical goal can be accomplished in multiple ways, but a method that you
can use to engage your students actively and effectively in the work of examin-
ing, explaining, and justifying—or refuting—conjectures is to introduce the work of
fictitious, “other” students for their consideration. To do this, you should generate
statements to present to your students as the work of “a student in another class”

or “other groups of students,” and have your students evaluate their accuracy. The
statements could include a variety of assertions; below are just two examples:

e “As the perimeter of a rectangle increases, the area also increases.”

e “The units used to measure area must be identical in shape to the shape
measured—squares must be used for squares, circles for circles, and so on.”

Then you should pose such questions as the following;:

e “Why did the group make that statement?”
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e “How would you respond to their solution?”
e “Can you explain what they are thinking?”

Consistent use of the practice of having students explain the ideas of others can
reinforce their awareness of the need for self-examination of their own reasoning
and logic.

Use of this teaching practice gives students an opportunity to apply their own con-
jectures in the process of critiquing the reasoning of other students. It can extend
and challenge students’ thinking about the relationship between perimeter and area
in a different context while giving you meaningful opportunities to assess their
understanding.

Extending and assessing students' understanding of perimeter and
area relationships

The students whose work on tasks A and B was discussed previously made substan-
tive observations and conjectures regarding the relationships between perimeter
and area (see figs. 1.4-1.9). Nevertheless, to internalize these ideas and make them
part of an enduring, growing mathematical understanding, students must encoun-
ter them and apply them in more than one task. The major points about perimeter
and area relationships seem relatively straightforward in tasks A and B. However,
calling these points to mind and putting them to work in a new setting are chal-
lenging, especially when students are asked to measure shapes that do not offer the
uniformity of rectangles or other regular figures. Figure 1.12 shows the Leaf task
(Ronau and Gilbert [1988]; adapted by Wilson and Chavarria [1993]), designed to
extend and challenge students’ thinking about perimeter and area. Examine this
task, guided by the questions in Reflect 1.6.

Reflect 1.6 N

Figure 1.12 presents the Leaf task (adapted by Wilson and Chavarria
[1993] from Ronau and Gilbert [1988]).

How does the structure of this task compare with that of the paired
tasks, A and B, in figure 1.4?

Suppose that you gave this task to your students. What misconceptions
do you think their work on the task might elicit, bringing those
misunderstandings to the surface for the students’ own examination as
well as your assessment?
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Russell’'s group and Jordan’s group were asked to find the area of the leaf
shown below. Decide whether each group used accurate methods, and
explain your thinking.

< A

* Russell's group found the area of the leaf by counting all the squares inside
the leaf's boundary. His group paired half squares to create full square
units and totaled all the square units.

¢ Jordan’s group took a string and placed it closely around the perimeter
of the leaf. Then they created a rectangle with the measured string and
counted the length and width of the shape in sides of squares and
multiplied them to find the area.

Fig. 1.12. The Leaf task, a perimeter and area problem using a nonuniform shape. Adapted by
Wilson and Chavarria (1993) from Ronau and Gilbert (1988).

The Leaf task presents an irregular shape drawn on a grid, along with solutions
purportedly from two groups of students—Russell’s group and Jordan’s group.
Students completing the task are asked first to decide whether they would expect
the methods that the groups used to produce an accurate result and then justify
their determination. The methods that Russell’s and Jordan’s groups used are likely
to be similar to those used by students to solve tasks A and B, but the groups are
now applying them to a shape that does not have an associated formula. In evaluat-
ing the solution strategies offered by Russell’s and Jordan’s groups, students must
draw on their own understanding of the concepts of perimeter and area and the
relationships between them.

We gave the Leaf task to the same group of sixth-grade students that we had previ-
ously asked to examine tasks A and B (see fig. 1.4)—the group that produced the
five samples of student work shown in figures 1.5-1.9. Figures 1.13-1.15 show
responses to the Leaf task from three of the five sixth graders whose successful
work on the more straightforward task is included in the previous group of figures.
Ji’'s work on the Leaf task appears in figure 1.13 (fig 1.9 shows Ji’s earlier work),
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Karla’s work appears in figure 1.14 (fig. 1.5 shows her earlier work), and Kris’s work
appears in figure 1.15 (fig. 1.7 shows Kris’s earlier work). Their conclusions about
the accuracy of Russell’s and Jordan’s groups’ solution methods and their justifica-
tions of their determinations indicate their varying levels of understanding of the

relationships between perimeter and area.

Fig. 1.13. Ji's (grade 6) response to the Leaf task

Al ){ar(q@

- would Hake b long ””_cb
Rusee.(1} methed. THhink T
would use Jordan's way
becaqse o+ would be -}-—J'l‘;b
same and take lcf:ore Fun

And i+ weuld B
Ao use +he stving:

Fig. 1.14. Karla's (grade 6) response to the Leaf task
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Fig. 1.15. Kris's (grade 6) response to the Leaf task

Note the high value that Karla placed on efficiency relative to accuracy in her as-
sessment of the groups’ methods. Her response seems to suggest that she believed
that both methods could yield an accurate result, but “it would take to [sic] long
to do Russell’s method.” Students may suggest that the string approach used by
Jordan’s group is superior to the counting method used by Russell’s group for a
variety of reasons that either ignore accuracy or assume it for both methods. Their
reasons in favor of Jordan’s group’s method may include more efficient use of time
or greater ease of computing or counting. According to Kris, by applying Jordan’s
“better” method, “You just have to make the rectang] [sic] be about the same size
[as the leaf].” Ji was the only student of the three who correctly stated that the
counting method used by Russell’s group was “right.” Nevertheless, Ji pointed to
the inefficiency and potential for error in the method:

But they have to be careful because some squares are not half. They might have to
count like fourths or thirds and that would be hard. It might make them wrong,.

Students’ assessment of this drawback in Russell’s group’s method may go beyond
Ji’s. Instead of simply urging care with Russell’s counting method, they may
conclude that making complete squares as the method calls for from such “messy”
pieces along the edge of the leaf is so difficult as to make the method impractical to
use or even unlikely to yield, or incapable of yielding, an accurate result. By con-
trast, because the string method used by Jordan’s group beguilingly offers a way to
create a “nice” rectangle and facilitates performing a deceptively easy calculation
of the area through multiplication, students may identify it as the “better” method.

32



Geometric Measurement

Clearly, in spite of their observations about perimeter and area relationships in
tasks A and B, students tend to be drawn to a method that contradicts the very
observations that they made earlier. If, after responding to tasks A and B, your
students evaluated Russell’s and Jordan’s groups’ methods and decided that Jordan’s
group’s method was “better,” how could you challenge this conclusion and motivate
them to reflect on and reassess their thinking? One possibility would be to project
the leaf on the whiteboard and use string to measure around its edge. You could
then cut the string to give a length equal to the perimeter and tape the ends togeth-
er to form a loop, which you could show to your students and ask, “If this string is
the same length as the perimeter of the leaf, then should it enclose the same area

as the leaf?” From those who believe that it should, you could select a student to
create a rectangle whose area he or she thought was similar to that of the leaf. Then
you could take the loop of string and, by pulling it into a narrow rectangle with
very little area, show a counterexample. Some students would almost certainly be
surprised, at which point you could ask them to reflect on the observations that
they previously made about tasks A and B. This process may motivate them to
question why they did not use their thinking from those tasks—specifically, their
conclusion that the area cannot be known from the perimeter—to make their
decision in the Leaf task.

The fact is that the Leaf task is very challenging—particularly because it offers a
measuring approach that students find very inviting, lending itself as it does to
efficient use of a familiar procedure and formula. Even though students may have
had previous experiences in which they produced multiple figures with fixed
perimeters and areas and developed generalizations about the relationship between
perimeter and area, they are often unable to transfer that knowledge to an unusual
application such as the Leaf task, which calls on them to move beyond a procedural
approach. However, confronting students with a task such as this one after they
have investigated the previous, more straightforward tasks A and B gives them

an important opportunity in a different, more complex context to reinforce their
previous observations and reflect that procedural knowledge regarding the use of
formulas may not be enough and that building on and applying earlier discoveries
and understandings is critical.

Extending understanding to three-dimensional measures

CCSSM first addresses three-dimensional geometric measurement in grade 5, where
students are expected to explore “and understand concepts of volume and relate
volume to multiplication and addition” (NGA Center and CCSSO 2010, p. 37 [5.MD]).
CCSSM expects fifth graders to use unit cubes to pack a rectangular prism with-
out gaps or overlaps to obtain a volume measurement, then progress to the use of
standard and improvised cubic units to measure volume, and ultimately develop
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the formulas V=1 x w x h and V = b x h for the volume of a rectangular prism
(5MD.3-5).

This initial development of students’ understanding of volume at the end of the
upper-elementary grades provides the foundation for the gradual expansion of
concepts and formulas for other, more complex three-dimensional shapes, such as
cones and spheres, in grades 6-8. This middle-grades expansion is elaborated in
NCTM'’s Geometry Standard and CCSSM, both of which expect students to move
away from hands-on experiences in packing rectangular prisms with cubes and
counting them to more abstract visualizations of three-dimensional shapes in two-
dimensional space, with increasing attention to relationships between and general-
izations about surface area and volume. As NCTM’s Geometry Standard expresses
it, students in grades 6-8 should be able to “use two-dimensional representations
of three-dimensional objects to visualize and solve problems such as those involv-
ing surface area and volume” and should “use visual tools such as networks to
represent and solve problems” (NCTM 2000, p. 232). CCSSM traces the arc of this
work from grade 6 to grade 8. In grade 6, CCSSM expects students to build on their
initial work in grade 5 by using unit cubes of the appropriate unit fraction edge
lengths to pack a right rectangular prism with fractional edge lengths (6.G.2). Then
they should show that the volume that they measure in this manner is the same as
that obtained by multiplying the prism’s edge lengths (6.G.2). This work leads, in
grade 7, to solving problems “involving area, volume, and surface area of two-and
three-dimensional objects” (7.G.6), and ultimately, in grade 8, to students’ develop-
ment of the formulas for the volumes of cones, cylinders, and spheres and the use
of these formulas to solve real-world and mathematical problems (8.G.9).

Surface-area concepts and skills follow directly from students’ understanding of
the area of two-dimensional shapes as well as from their understanding of nets.
Nets—two-dimensional representations of three-dimensional shapes—provide
opportunities for substantive spatial explorations as well as opportunities to link a
physical model to surface-area formulas. Consider, for example, the task in figure
1.16 while responding to the questions in Reflect 1.7.

Reflect 1.7 N

Figure 1.16 shows a task that asks students to find all the unique nets of
a cube. Suppose that you gave your students this task.

What ideas about a cube do you think their exploration of all the
different nets might support?

What ideas about three-dimensional shapes in general might their work
help to reinforce? D
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Below is a net for a cube:

How many distinct nets can be made for a cube?

Fig. 1.16. A task asking students to find all the nets for a cube

Eleven nets can be made for a cube, as shown in figure 1.17. In each of these eleven
nets, students can easily see that a cube’s faces are six squares. Students’ work in
finding the nets and examining them can help them see that the surface area of
the cube is the sum of the areas of the squares, or six times the area of one of the
squares. Similar explorations with nets of other three-dimensional shapes can
result in the development of a better understanding of surface area.

Figure 1.17. The eleven unique nets of a cube
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Grasping the concept of the surface area of a three-dimensional shape requires the
application of ideas about the area of a two-dimensional shape and recognizing the
direct link between the two. A net physically models area, showing all the faces of
a three-dimensional shape and making the calculation of the shape’s surface area
straightforward and obvious.

However, finding volume is not quite as obvious. Just as computing area requires
students to coordinate two dimensions—and two length measures—to produce a
two-dimensional measurement, applying the volume formula requires students to
coordinate three length measures to produce a three-dimensional measurement. For
some students, this process is not intuitive, and their difficulty in conceptualizing
it often results in their applying formulas for volume in a procedural fashion rather
than with understanding.

Battista (2003) describes four processes that students must use to become competent
in working with volume, as detailed in figure 1.18. These include (1) forming and
using mental models, (2) attending to spatial structuring, (3) engaging in what
Battista calls “units locating,” and (4) organizing by composites. Students’ inter-
nalization and mastery of these four processes rely on their having the many and
varied experiences with physical models that they need to develop them fully.

Process | Example
Forming and using mental models Visualizing and reasoning about situations
Spatial structuring Abstractly identifying, interrelating, and organizing

objects' components

Units locating Mentally locating a cube, for example, within a
three-dimensional object

Organizing by composites Creating composite units from a cube to form a
new unit

Figure 1.18. Battista's four mental processes for competence in working with volume (2003)

Battista’s four processes are a foundation for subsequent, more sophisticated think-
ing and visualizing related to volume. Having multiple experiences in measuring
volume enables students to develop and use these processes fluently, and this
competency supports them in achieving the larger, more general, more abstract
insights that Sinclair, Pimm, and Skelin (2012, p. 8) identify as Big Ideas 2 and 3,
which address work with imagery and mental objects:
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Big Idea 2
Geometric thinking involves developing, attending to, and learning how to work

with imagery.

Big Idea 3
A geometric object is a mental object that, when constructed, carries with it traces
of the tool or tools by which was constructed.

Essential Understanding 2c, one of the three subordinate ideas that Sinclair, Pimm,
and Skelin (2012) associate with Big Idea 2, resonates particularly with the four
processes that Battista asserts that students must use with competence with volume:
“Geometric awareness develops through practice in visualizing, diagramming,

and constructing” (p. 8).

Many tasks paralleling the perimeter and area tasks presented in this chapter offer
opportunities to expand students’ thinking and understanding of measures related
to 3-dimensional shapes (surface area and volume). Higher-order questions can
push students’ thinking, motivating them to create conjectures, test them, and use
them to justify other conjectures or observations. Some tasks to consider might
include the following:

1. Ben said, “As the volume of a prism increases, the surface area of the prism
also increases.” Do you agree with Ben? Why or why not? Support your
answer.

2. The edge of a cube measures 5 cm. Another cube has an edge length of
10 cm. Without performing any calculations, make a conjecture about the
relationship between the volumes of the two cubes. Also make a conjecture
about the relationship between the surface areas of the two cubes. Justify
your answers.

3. Below are two-dimensional representations of an open-top box:

a. How many ways can you add a square to create a net for a cube?

b. Find three other two-dimensional representations that will fold into an
open-top box.
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c¢. How many ways can you add a square to your other representations to
create a net for a cube?

d. What observations can you make?

Additional tasks are identified in Appendix 2; see especially the descriptions

of articles by Garimella and Robinson (2015); Haberern (2016); Jeon (2009); and
Prummer, Amador, and Wallin (2016). Implementing tasks beyond traditional
computation problems, which require only an application of a formula, provides
opportunities to extend students’ thinking. As students apply conjectures and
generalizations that originated in their own experiences, they gain a deeper
understanding of relationships within these measurement contexts.

Summarizing Pedagogical Content Knowledge to Support
Big Idea 1, Essential Understanding 1a, and Big Idea 4

Teaching the mathematical ideas in this chapter requires specialized knowledge
related to the four components presented in the Introduction: learners, curriculum,
instructional strategies, and assessment. The four sections that follow summarize
some examples of these specialized knowledge bases in relation to the geometric
measurement in connection with Big Idea 1, Essential Understanding 1a, and Big
Idea 4.

Knowledge of learners

Studies have shown that students’ geometric understanding correlates with their spa-
tial visualization and achievement in other areas of mathematics that may not appear
to be geometric (de Hevia, Vallar, and Girelli 2008; Stavridou and Kakana 2008). In
fact, strong spatial visualization skills have been shown to predict student success

in the areas of science, technology, engineering, and mathematics (for example, see
Shea, Lubinski, and Benbow [2001] and Wai, Lubinski, and Benbow [2009]).

However, students’ experiences from previous grades in geometry may have been
less than optimal in developing their understanding, for a variety of reasons. For
example, geometric concepts and skills are often taught at the end of the academic
year to allow more time to teach number topics. CCSSM includes fewer standards
for geometry than for number in the elementary grades, and consequently teach-
ers may perceive geometry as an area that merits less emphasis than the number
domains.

Therefore, students entering middle school may be functioning at lower levels of
thinking on the van Hiele continuum (Battista 2002; Senk 1989). The van Hiele
model includes five levels of thinking, usually numbered 0-4:
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e Level 0, Visualization

e Level 1, Analysis

e Level 2, Informal deduction
e Level 3, Formal deduction
e Level 4, Rigor

Thinking at each level is progressively more sophisticated than at the previous lev-
el, culminating in thinking at level 4, rigor, at which point students are capable of
operating within an axiomatic system and making relatively abstract deductions.
The goal in grades 6-8 is to move students at least to level 2, informal deduction, at
which point they can identify and work with relationships among shapes and their
properties.

However, students arriving at the middle grades may be functioning only at level 0,
visualization, where they are limited to naming shapes. They may be able to name
some properties of the shapes but lack confidence about the characteristics that are
necessary or sufficient for those shapes. If they have not developed beyond visual-
ization, the way in which they approach a task is likely to be to focus on its visual
aspects. This can result in immature or overgeneralized observations or rules. For
example, they may leap to the generalization that as the perimeter of a rectangle
increases, the area of the rectangle also increases.

It is thus important to recognize that students may bring to the classroom a diverse
set of experiences. More instructional time may be needed so that students have
significant experiences that can move their thinking from a rudimentary level to a
more sophisticated level that will allow them to consider relationships among geo-
metric shapes and their properties thoughtfully and analytically.

Knowledge of curriculum

Knowing that students come into middle grades with varied experiences in geom-
etry can affect and potentially strengthen your selection of tasks for use in your
instructional sequence. Tasks of types that you might otherwise have chosen may
seem less appropriate than others in light of this realization. The tasks presented

in this chapter offer students opportunities not only to explore perimeter and area
but also to confront misconceptions that they may have formed about these foun-
dational concepts. These new encounters enable students to revisit notions that
they have imagined to be true in the context of tasks that challenge their thinking.
The resulting cognitive dissonance motivates them to resolve the contradictions
between previously held ideas and the mathematics that they are seeing, using, and
thinking about in the task that they are currently doing.
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Tasks that ask students to create multiple solutions function as generalization
tasks. As students share their solutions, they have opportunities to observe com-
mon characteristics that then lead them to generalizations. For example, task A
(fig. 1.4), which asks students to use square units to create as many rectangles as
possible with an area of 36 square units, provides them with an opportunity to
observe that a rectangle with a fixed area can have different dimensions and thus
does not, unless otherwise specified, have a fixed perimeter. In fact, when students
use unit squares to create rectangles with an area of 36 square units, they discover
that they can create five distinct rectangles with very different dimensions and
perimeters: 74 units (1 unit by 36 units), 40 units (2 units by 18 units), 30 units

(3 units by 12 units), 26 units (4 units by 9 units), and 24 units (6 units by 6 units).
Likewise, task B (fig. 1.4), which asks students to use square units to create as many
rectangles as possible with a perimeter of 24 units gives them a chance to observe
that a rectangle with a fixed perimeter can also have different dimensions and thus
does not have a fixed area. The students’ work on the task allows them to discover
that, by using square tiles, they can create six distinct rectangles with perimeters
of 24 units but with very different areas: 11 square units (I unit by 11 units),

20 square units (2 units by 10 units), 27 square units (3 units by 9 units), 32 square
units (4 units by 8 units), 35 square units (5 units by 7 units), and 36 square units
(6 units by 6 units).

Both the richness of the tasks and the sequencing of them in the classroom are
critical to the success of these kinds of learning opportunities for students. One
fairly typical characteristic of a rich task is a call for students to create multiple
cases, as in “create as many different rectangles as possible, each with an area of
36 square units” (task A) or “create as many different rectangles as possible, each
with a perimeter of 24 units” (task B). Creating these multiple cases allows students
to take note of and internalize relationships between perimeter and area. Specifi-
cally, they should note that knowing the perimeter of a rectangle does not mean
knowing its area, and, conversely, knowing the area of a rectangle does not mean
knowing its perimeter. These insights then lead to a realization that an increase in
the area of a rectangle does not necessitate an increase in its perimeter. Notice that
these tasks are neither complex nor difficult; they are accessible to all students, but
the solutions to the tasks provide opportunities to move the simple task to a much
deeper level.

The sequencing of the tasks also is linked to their richness. In using rich tasks,
teachers do not begin with skill development. Initial tasks do not focus on the
formulas for geometric measures. Instead, early tasks begin with the conceptual
aspects related to perimeter and area, allowing students to explore geometric mea-
surement in accessible tasks. Later lessons, beyond the scope of this chapter, can
focus on the skill of using a formula for finding area and perimeter.
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Knowledge of instructional strategies

As Young (1911) remarked more than a century ago, geometry instruction has of-
ten included tasks that focus on memorization of definitions and procedures. This
chapter, however, has presented tasks that emphasize student exploration and shar-
ing of both solutions and solution strategies. Tasks such as the Leaf task encourage
students to share their thinking in a very natural way and critique the thinking

or reasoning of others. Incorporating tasks such as these requires that you use in-
structional strategies effectively to optimize the learning outcomes.

Lamberg (2012) provides strategies that can be used to facilitate class discussions
effectively. She notes that small-group and whole-class discussions can lead to (1) a
common or shared understanding of a problem and its solution, (2) the development
of students’ metacognition through teacher questioning, and (3) opportunities for
students to evaluate and analyze their own and their peers’ reasoning. According
to Lamberg, the facilitation of the discussions should then be thought of as having
three phases:

Phase 1: Making thinking explicit
Phase 2: Analyzing solutions
Phase 3: Developing new mathematical insights

In each phase, teacher questioning provides the impetus for the discussion. How-
ever, as students become accustomed to a discourse-based classroom, their ques-
tions also move the discussion forward because they begin to emulate the teacher’s
questioning. Those questions will then lead to their own questions.

Smith and Stein (2011) identify five practices that teachers can use to promote pro-
ductive discussions. These practices are as follows:

e Anticipating: Solve the problem yourself beforehand, thinking about how
your students are likely to solve it and determining the mathematics that is
embedded in it.

e Monitoring: Listen and observe students while they solve the problem,
identifying strategies that they are using and refocusing them through
questions if they are not on track.

e Selecting: Decide what solution approaches or solutions you want to high-
light, identifying ones that will further the mathematical thinking.

e Sequencing: Identify the order in which you want students to share their
thinking or solutions, determining the method by which students will share.
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e Connecting: Ask questions that connect the solutions and the mathematical
ideas to highlight, comparing multiple students’ solutions and methods.

While students are sharing, they will be thinking critically about the solutions and
the solution methods. You will also be analyzing the students’ work, using their
solutions as a way to assess the level of their thinking and the depth of their un-
derstanding.

Knowledge of assessment

The tasks presented in Chapter 1 provide opportunities for you to assess student
learning through their sharing of solutions and discussions. According to Wiliam
(2007), tasks that provide such opportunities can function as types of formative as-
sessments, enabling teachers to make instructional decisions that are based on the
understandings and misunderstandings that come to the surface in the students’
work and their discussions of it. You can gather information about their thinking,
both while you circulate as they work on the task and while you attend to their
approaches and solutions in whole-class discussions after they have completed
the task. The use of reversibility, flexibility, and generalization tasks, as described
by Dougherty (2001) and illustrated in the Introduction, enhance the information
gained from student solutions.

By presenting tasks that prompt students to solve in multiple ways or find multiple
solutions, you can determine the depth of their understanding with greater preci-
sion. The questions that you can then create to extend the problem or explore or
probe student thinking can provide you with further evidence of the way in which
students have constructed their knowledge about geometric measurement. These
windows on their understanding can also show you limitations of their thinking
that may hinder their ability to use particular approaches to solving the tasks.

It is worth emphasizing that you need to determine what your students don’t know,
as well as what they do know. In addition to giving you insight into the depth of
their understanding, tasks of the kind presented in Chapter 1 allow you to discern
pervasive student misconceptions that need further explorations. Explicitly
addressing misconceptions by providing tasks that create cognitive dissonance or
that make a misconception evident is critically important for advancing students’
understanding.
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Conclusion

Chapter 1 has demonstrated possibilities for designing instruction that can provide
optimal opportunities for students to develop an understanding of geometric mea-
surement that goes beyond rote memorization. Effective instruction requires that
you understand your students as learners, identify and implement rich tasks, and
use student responses to the tasks to make instructional decisions. The tasks pre-
sented in this chapter have provided some examples of tasks that can support your
teaching of geometric measurement.

Chapter 2 continues to highlight big ideas and essential understandings from
Developing Essential Understanding of Geometry for Teaching Mathematics in
Grades 6-8 (Sinclair, Pimm, and Skelin 2012). Another major strand of middle-
grades geometry becomes the focus in that chapter: transformational geometry.
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