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THE IMPORTANCE OF MEASUREMENT

Quantitative reasoning and measurement competencies support the develop-
ment of mathematical and scientific thinking from prekindergarten (pre-K) 
through Grade 8 (Clements, 2003; Davydov, 1991; So, 2013; Steffe, 1991; van den 
Heuvel-Panhuizen & Buys, 2008) and are fundamental to science, technology, 
engineering, and mathematics (STEM) education. Children’s knowledge of quan-
tity and strategies for quantifying, as well as their reasoning about quantity, are 
necessary elements of a working theoretical foundation for measurement (Case 
& Okamoto, 1996; Piaget, Inhelder, & Szeminska, 1960; J. P. Smith & Thompson, 
2007; Steffe & Cobb, 1988; Steffe & Olive, 2010; Tal, 2013). In particular, geo-
metric measurement (e.g., length, area, and volume) bridges the mathematical 
domains of number and geometry (Sarama & Clements, 2009b). Children forge 
this critical connection while they establish and reason about quantity through-
out the mathematics curriculum. 

Measuring is a nontrivial aspect of children’s developing mathematical and sci-
entific thinking. Its basis is in the exercise of comparative judgment; children com-
pare magnitudes immediately or observe patterns of change over time by quanti-
fying their experiences and observations. Measurement knowledge and strategies 
play broadly and deeply into children’s understanding of both science and mathe-
matics, making measurement a vital component of pre-K through Grade 8 curric-
ula (So, 2013). For example, measurement experience provides images of variables 
as quantities in algebra, an important focus of the upper elementary and middle 
school curriculum, which does not often emphasize a conceptual approach to 
thinking quantitatively (A. G. Thompson & Thompson, 1996; P. W. Thompson & 
Thompson, 1994).

The National Science Education Standards (National Research Council, 1996) 
indicated that mathematical measurement plays an essential role in all aspects of 
scientific inquiry. C. L. Smith, Wiser, Anderson, and Krajcik (2006) pointed out 



the integrative role of measurement for learning science conceptually: “Given the 
centrality of measurement in science and the ways measurement can contribute 
to conceptual understandings, it is important to start early in developing a rich 
understanding of the measurement of important physical quantities” (p. 33). 
Measurement is a central aspect of spatial thinking; a quantitative understanding 
of space is often essential for posing questions, developing explanations, and com-
municating results (National Research Council, 2006; Presmeg & Barrett, 2003). 
Within technological design for spatial problems, children need to choose suitable 
tools and techniques and work with appropriate measurement methods to ensure 
precision and accuracy. The authors of the Atlas of Science Literacy (American 
Association for the Advancement of Science, 2001) described measurement con-
cepts as a critical foundation for establishing evidence as well as a basis for mod-
eling processes and systems (cf. Lehrer & Schauble, 2002, 2004; Petrosino, Lehrer, 
& Schauble, 2003).

In 2006, the National Council of Teachers of Mathematics (NCTM) released 
Curriculum Focal Points for Prekindergarten Through Grade 8 Mathematics: A 
Quest for Coherence (CFP). With this document, NCTM recommended that 
teachers focus primarily on target curriculum topics for each grade level from 
pre-K through Grade 8. The CFP offers guidelines for age-appropriate learning 
activities, clustered about central themes in mathematics. Furthermore, it portrays 
measurement as an essential topic, underscoring the important role that measure-
ment instruction plays, especially before middle school. Although the National 
Governors Association Center for Best Practices (NGA) and the Council of Chief 
State School Officers (CCSSO) completed the Common Core State Standards for 
Mathematics (CCSSM; NGA & CCSSO, 2010) after we conducted the research 
reported in this monograph, the CCSSM also includes geometric measurement 
as an essential topic. In response to the fundamental need for developmental 
accounts based in research, we set out to furnish longitudinal accounts that would 
establish sequenced assessment goals across grades, guide curricular development 
programs, and strengthen teacher education. 

THEORETICAL PERSPECTIVE

We approached this project through a theoretical lens called hierarchic interaction-
alism (Sarama & Clements, 2009b), a synthesis of previous theoretical frameworks 
that owes much to theorists and researchers too numerous to list here (see Sarama 
& Clements, 2009b) but that relies heavily on several (e.g., Carpenter, Franke, 
Jacobs, Fennema, & Empson, 1998; Confrey & Kazak, 2006; Karmiloff-Smith, 
1992; Minsky, 1986; Piaget, 1941/1952; Siegler & Booth, 2004; Steffe & Cobb, 
1988; Van de Rijt & Van Luit, 1999; Vygotsky, 1934/1986). This research corpus is 
the basis for the 12 tenets of hierarchic interactionalism (adapted from Sarama & 
Clements, 2009b):
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 1. Developmental progression. Children acquire content knowledge along 
developmental progressions of levels of thinking that are topic-specific (see 
Tenet 2). These progressions are consistent with children’s intuitive back-
ground knowledge and patterns of thinking and learning, which may be 
culturally specific, albeit still influenced by “initial bootstraps” (see Tenet 6). 
Specific concepts and processes characterize each level of thinking.

 2. Domain-specific progression. Developmental progressions are characterized 
within a specific mathematical domain or topic, such as measurement, and 
even measurement of a particular attribute.

 3. Hierarchic development. Levels of thinking are internally coherent, but the 
learning process is often incremental and gradually integrative, rather than 
“stagelike.”

 4. Cyclic concretization. Developmental progressions proceed from sensory- 
concrete levels, in which perceptual concrete supports are necessary and 
reasoning is usually restricted to a few cases, to more explicit verbally based 
generalizations, resulting in integrated-concrete understandings relying on 
mental representations that serve as models for operations and abstractions 
(see Sarama & Clements, 2009a).

 5. Mutual development of concepts and skills. Concepts and skills develop 
together, each supporting the further development of the other. 

 6. Initial bootstraps. Children are endowed with premathematical compe-
tencies and predispositions either at birth or soon thereafter; these com-
petencies and predispositions support and constrain future learning.

 7. Different developmental courses. Different developmental courses are possi-
ble; individual, environmental, and social confluences influence them.

 8. Progressive hierarchization. Children integrate concepts and skills, building 
understandings that are hierarchical and that include both generalizations 
and differentiations.

 9. Environment and culture. Environment and culture affect the pace and 
direction of development.

10. Consistency of progressions and instruction. Basing instruction on learning 
research adds value.

11. Learning trajectories. Curricula and instruction developed on the basis of 
full hypothetical learning trajectories are more effective than those that lack 
such a basis.

12. Hypothetical learning trajectories. Teachers interpret hypothetical learn-
ing trajectories and realize them through social interaction with children 
around instructional tasks. 
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Learning Trajectories

We based our longitudinal study of children’s thinking and learning on the con-
struct of a learning trajectory (LT). In his seminal work, Simon (1995) stated that 
a hypothetical learning trajectory (HLT) included “the learning goal, the learning 
activities, and the thinking and learning in which students might engage” (p. 133). 
We use the term learning trajectory rather than hypothetical learning trajectory 
for the sake of simplicity in our reference to LTs. Nevertheless, we note that the 
LTs are theoretical objects of research; as such, they are consistent with HLTs. We 
view LTs as

descriptions of children’s thinking and learning in a specific mathematical 
domain and a related, conjectured route through a set of instructional tasks 
designed to engender those mental processes or actions hypothesized to move 
children through a developmental progression of levels of thinking, created with 
the intent of supporting children’s achievement of specific goals in that mathe-
matical domain. (Clements & Sarama, 2004, p. 83)

Developmental progressions are the core component of LTs (and the main focus 
of this monograph), but they have two additional parts: goals and instructional 
activities. The synthesis of these three parts can be expressed as follows: to reach 
a certain mathematical competence in a given topic (the goal), children progress 
through sequential levels of thinking (the developmental progression), supported 
and assisted by tasks (the instructional activities; see Clements & Sarama, 2004). 

Mathematical goal. We determined our goals through a synthesis of three 
sources. First were the big ideas and core competencies of the domain—clusters of 
concepts and skills that are mathematically central and coherent, consistent with 
children’s thinking, and generative of future learning. These big ideas and compe-
tencies come from several large projects, including those from the NCTM’s (2006) 
CFP, the National Mathematics Advisory Panel’s (2008) final report, the CCSSM 
(NGA & CCSSO, 2010), and related projects (Clements, Sarama, & DiBiase, 2004). 
For example, at least eight concepts form the foundation of children’s understand-
ing of length measurement: understanding of the attribute, conservation (a good 
example of a concept often assumed by content descriptions, but important psy-
chologically), transitivity, equal partitioning, iteration of a standard unit, accu-
mulation of distance, origin, and relation to number (Clements & Stephan, 2004; 
Sarama & Clements, 2009b). Our goal for children certainly includes that they 
learn to “measure and estimate lengths in standard units” (NGA & CCSSO, 2010, 
p. 20), including selecting appropriate tools, relating measurements by using dif-
ferent units, estimating, and comparing measurements. In addition, we include 
children’s explicit understanding of how such competencies relate to the concepts 
of equal partitioning, iteration, and origin, as well as others. As an example in 
measurement of two or three dimensions, the cognitive competence of spatial 
structuring is fundamental but ignored in most content-only descriptions of 
mathematical goals.
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Developmental progression. A main assumption is that children acquire 
most content knowledge, such as knowledge of geometric measurement, along 
developmental progressions of levels of thinking that are particularly consistent 
with children’s intuitive knowledge and patterns of thinking and learning (at least 
in a particular culture, but guided in all cultures by innate competencies). That 
is, children progress through domain-specific levels of understanding in ways 
we can characterize by the concepts and processes (mental objects and actions 
on them) that build hierarchically on previous levels. These actions on objects 
are children’s main way of operating on, knowing, and learning about the world, 
including the world of mathematics. As a brief example, our previous work on 
length LTs revealed that children reliably developed through the levels of thinking, 
passing through a level in which they measured length by placing multiple units, 
sometimes leaving gaps between units, before they could iterate a unit and then 
measure length competently with multiple strategies and tools (Barrett et al., 2011; 
Sarama, Clements, Barrett, Van Dine, & McDonel, 2011). 

Developmental progressions follow a pattern. Initially, at the sensory-concrete 
level, children need perceptual concrete supports. Next, children create verbally 
encoded generalizations that have distance from those supports. Finally, children 
construct integrated-concrete understandings on the basis of mental representa-
tions that serve as models for mathematical concepts and operations (Clements & 
Sarama, 2009; Sarama & Clements, 2009a).

Levels of thinking are coherent, with increased sophistication, complex-
ity, abstraction, and generality often characterizing higher levels (Clements & 
Sarama, 2014b; Confrey, Rupp, Maloney, & Nguyen, 2012; Maloney & Confrey, 
2010; Sztajn, Confrey, Wilson, & Edgington, 2012). Conceptualizing levels at 
different grain sizes is possible. As an example, the “growth points” of the Early 
Numeracy Research Project in Australia are developmentally widely spaced (e.g., 
children might achieve successive points in different grades; Clarke et al., 2002). 
Our approach (Sarama & Clements, 2009b) is to find levels of finer grain size so 
that, for example, teachers can see and observe development through several levels 
within their grade but still retain the defining characteristics of levels, such as con-
stancy (some properties, states, or activities remain consistent at the level), order 
invariance, and hierarchic incorporation and integration (Sarama & Clements, 
2009b; Steffe & Cobb, 1988). 

Instructional tasks. Although the emphasis of this research project was the 
developmental progressions, instructional tasks, the third component of LTs, also 
played a role. In hierarchic interactionalism, educators often design tasks to pres-
ent a problem that is just beyond the children’s present level of operating. In some 
cases, sequences of tasks may furnish sufficient goal-directed activity, changing 
the focus of attention (e.g., from a physically concrete model to a mental image or 
symbolic representation), reflection (identification and connection of commonali-
ties), and anticipation (prediction of the result of an activity before carrying it out) 
to engender children’s generalization to form abstractions, such as creating a new 
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object (e.g., a unit of units) that is more general or abstract mathematically (Simon, 
2013). In other cases, children may need to actively engage in  reformulating the 
problem or their solution strategies, often with peer interaction and teacher guid-
ance. In reflecting on their activity, children learn whether they have solved the 
original problem or whether they need to engage in more thinking. This cycle may 
continue until they build a new level of thinking. A critical mass of such construc-
tion in individuals and small groups often allows productive class discussions that 
can justify, formalize, and symbolize the mathematics (Simon, 2013) and eventu-
ally integrate it into a mathematical system (van Hiele, 1986; van Hiele-Geldof, 
1984) in a manner appropriate for the children.

Our theory of hierarchic interactionalism does not attempt to include or cate-
gorize a full range of teaching and learning processes (e.g., see Clements, Agodini, 
& Harris, 2013; Clements & Sarama, 2009; Tharp & Gallimore, 1988; van Hiele-
Geldof, 1984) but posits that instructional tasks are a main component of effec-
tive instruction and that any pedagogical practice is effective to the extent that it 
activates children’s mental actions on objects that support the subsequent level of 
thinking in the development progression. 

Misconceptions Regarding Learning Trajectories

Because of the complexity of LTs, it is no surprise that educators often misun-
derstand them. One claim is that they are nothing new (e.g., are just “scope and 
sequences”). The LTs of hierarchic interactionalism share characteristics with pre-
vious research programs but differ in significant ways (for a complete analy sis, see 
Clements & Sarama, 2014b). LTs build on previous work, which has developed 
from simple accumulations of connections (Thorndike, 1922) to more complex 
views of thinking and learning (Gagné, 1965/1970; Piaget et al., 1960; Resnick & 
Ford, 1981). All theories attempt to explain psychological sequences, with previ-
ous accounts relying on the acquisition of facts and skills over time. LTs include 
such sequences but are not limited to sequences of “pieces” of knowledge only. 
They contain descriptions of children’s levels of thinking; and it is therefore impos-
sible to summarize them by stating a mathematical definition, concept, or rule 
(cf. Gagné, 1965/1970). Levels of thinking convey how children think about a 
topic and why. Finally, earlier theories often based instruction on a transmission 
approach. LTs have an interactionalist view of teaching—children interacting with 
a teacher and other children around instructional tasks, with the teacher using all 
three components of LTs to guide those interactions.

A second misconception is that LT levels rigidly categorize children (i.e., “put 
children in boxes”). In contrast, the theory posits that children can operate at 
multiple levels, with most children working mostly at one level or in transition 
between two levels. We identify children as being at a certain level when most of 
their behaviors reflect the patterns of thinking at that level. Often, they show a 
few behaviors from the next (and previous) levels while they learn. The continued 
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existence of earlier levels, as well as the role of intentionality and social influences 
in their instantiation, explains why in some contexts even adults fall back to earlier 
levels (e.g., failing to conserve in certain situations).

Related to the second misconception is a third: the belief that LTs are insensi-
tive to individual and cultural differences. Hierarchic interactionalism posits that 
different developmental courses are possible within constraints, depending on 
individual, environmental, and social–cultural confluences (Clements & Battista, 
2001; Confrey & Kazak, 2006; Sarama & Clements, 2009b). Within any develop-
mental course, children at each level of development have a variety of cognitive 
tools—concepts, strategies, skills, utilization, and situation knowledge—that coex-
ist. The differences within and across individuals create variation that is the well-
spring of invention and development. At a group level, however, these variations 
are not wide enough to vitiate the theoretical or practical usefulness of the tenet 
of developmental progressions; for example, in a class of 30, one might find only a 
handful of different solution strategies (cf. Murata & Fuson, 2006), most of which 
represent adjacent levels along the developmental progression. Further, environ-
ment and culture affect the pace and direction of the developmental courses. For 
example, the degree of experience that children have to observe and use number 
and other mathematical notions and to compare these uses affects the rate and 
depth of their learning along the developmental progressions. The degree to which 
children learn mathematical words, exposure to which varies greatly across cul-
tural groups (Buss & Spencer, 2014), affects developmental courses. Words alert 
children to the class of related words that they must learn and to specific mathe-
matical properties, laying the foundation for learning mathematical concepts and 
language (cf. Sandhofer & Smith, 1999) by providing a nexus on which to build 
their nascent constructs (Vygotsky, 1934/1986). 

On one hand, no single absolute developmental progression, and thus LT, exists 
for a mathematical domain because other factors—such as environment, culture, 
and educational experiences—may affect a child’s actual pathway for learning and 
development. On the other hand, a large number of pathways do not exist, because 
universal developmental factors interact with culture and mathematical content. 
Educational innovations and culturally specific educational environments may 
establish new and potentially more advantageous sequences, so work with LTs 
should recognize the culturally situated nature of children’s learning and the need 
for a “critical view” (Wager & Carpenter, 2012). We concur that educators should 
examine generalized claims about children by including adequate samples of a 
broadly inclusive collection of children across cultural and economic constructs. 
Yet, this respect for varying populations of children need not imply that we as an 
educational community must expect that substantially different LTs exist for some 
groups of children. First, people often translate this expectation into “my children 
learn more slowly,” an avoidable trap of low expectations disguised as sensitivity 
to cultural and individual differences. Second, we believe that the cognitive core 
of the LTs is valid within different cultural contexts and should be instantiated in 
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different ways in different sociocultural settings to promote learning and equity. 
Of course, researchers should test this belief in future research that uses such a 
cognitive core account in a range of settings.

In summary, we used LTs in our research because they address the  components 
of mathematical goals, developmental progressions, and instructional tasks; and 
they are increasingly important in guiding the writing of standards (Maloney, 
Confrey, & Nguyen, 2014; NGA & CCSSO, 2010) and curricula (Clements, 2007; 
Maloney et al., 2014). Further, teachers who understand LTs understand the math-
ematics associated with the various levels of reasoning, the way that children think 
and learn about mathematics, and how to help children learn it better. LTs connect 
research and practice. They help teachers understand the level of knowledge and 
thinking of their classes and the individuals in their classes as important in serving 
the needs of all children. In this way, LTs serve as a basis for formative assess-
ment, an essential component of high-quality teaching (see National Mathematics 
Advisory Panel, 2008). More refined and better validated LTs can contribute to 
improved standards, curricula, and teaching practices.

THE NATIONAL SCIENCE FOUNDATION’S  
CHILDREN’S MEASUREMENT PROJECT

The Children’s Measurement research team built, refined, and tested a set of LTs 
for geometric measurement (Barrett et al., 2011; Barrett et al., 2012; Sarama, 
Clements, Barrett, et al., 2011; Sarama, Clements, Van Dine, et al., 2011) to rep-
resent children’s developing measurement knowledge and their ways of learning 
measurement. To complement our emphasis on children’s learning, we looked for 
ways of improving instruction, assessment, and curriculum development related 
to measurement concepts. A main goal of our team has been to address the educa-
tional need for measurement in the pre-K to Grade 5 mathematics curriculum by 
clarifying, extending, and improving LTs. We see LTs as tools with wide-ranging 
application in education. Because of our interest in addressing a range of educa-
tional issues, we work to improve these tools through design cycles of research. 
For example, after establishing a mathematical goal (e.g., NCTM, 2006; NGA 
& CCSSO, 2010), we began by reviewing the research and attempting to piece 
together a coherent longitudinal story, even from separate disparate studies 
(Sarama & Clements, 2009b). We assessed children at the beginning and end of 
the study by using clinical interviews with younger children and a written format 
with older children to clarify the cognitive attributes of the nascent levels. We con-
ducted teaching experiments with individual children, as well as classroom-based 
teaching experiments with intensive qualitative analyses to revise and expatiate 
those levels and their interconnections and sequences. 

The research in this monograph began with the LTs that we had created by 
using these procedures (Clements & Sarama, 2014a; Sarama & Clements, 2009b), 
recognizing that we needed to refine and extend them. We believe that the result-
ing LTs can strengthen the educational and curricular infrastructure needed for 
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implementation of the measurement standards within the CCSSM (NCTM, 2006; 
NGA & CCSSO, 2010) from kindergarten through Grade 8. 

Our Research Goals

One of our central goals has been to delineate the development of children’s 
knowledge and potential strategic competence on increasingly demanding sets of 
length, area, and volume measurement tasks through successive grade levels from 
pre-K to Grade 5. Another central goal has been to establish prototypical lon-
gitudinal stories of children’s ways of reasoning through measurement activities. 
Such stories, which we based on increasingly complex tasks, influenced the design 
and implementation of instructional sequences, guiding teachers toward essential 
concepts relevant to children in their particular grade levels, in keeping with the 
CFP (NCTM, 2006). We therefore conducted longitudinal studies by following the 
developmental reasoning of selected children at two research sites over a 4-year 
span, from pre-K to Grade 2 at one research site and from Grade 2 to Grade 5 at 
the other (see Participants section for more detail).

We expect these LTs for measurement to help improve formative classroom 
assessment by teachers because they can more easily recognize opportunities to 
engage children proactively in conceptual change (Sztajn et al., 2012; Wickstrom, 
Baek, Barrett, Cullen, & Tobias, 2012; Wilson, 2009). We also expect the LTs to 
support formal assessment efforts and research on curriculum development 
(Clements, 2007). 

Research Question

Our research focuses on supporting developmental coherence within the curric-
ulum for elementary mathematics and within the instructional approaches that 
educators recommend for teaching. We are therefore interested in describing the 
growth of children as persons who reason about their world by using measurement 
tools to solve problems and organize quantitative thinking (K. F. Miller, 1989; P. W. 
Thompson, 1992). In particular, we examine central concepts in measurement 
learning, including the following: (a) identifying attributes of continuous dimen-
sions to quantify and compare, (b) building appropriate units with conservation, 
(c) partitioning objects to generate quantity, (d) composing and coordinating units 
and groups of units in structures cumulatively, (e) iterating units in correspon-
dence with number schemes including an assignment for zero, and (f) marshaling 
logical support and justification of measurement claims to guide scientific rea-
soning (cf. Clements & Stephan, 2004; Lehrer, 2003; Stephan & Clements, 2003). 
The main research question that motivated the Children’s Measurement Project 
addresses these concepts across three spatial measurement domains (length, area, 
and volume): How do children’s thinking and learning about each of the three 
domains of spatial measurement develop over time from pre-K through Grade 5?
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Participants

We drew the children in our study from an urban parochial school in the Northeast 
(78% White, 9% Black, 9% Hispanic, 1% Asian, 3% two or more races) and from 
a suburban public school in the Midwest (68% White, 9% Black, 9% Hispanic, 
9% Asian, 6% two or more races). Approximately 20 children were in each class 
at these schools, and all the children in pre-K through Grade 5 at both schools 
participated in a quantitative assessment conducted during Year 1 of the study. 
By using this assessment and collaborating with teachers, we selected a cohort 
of eight pre-K children at the Northeast site and eight Grade 2 children at the 
Midwest site. They became the focus children for our 4-year longitudinal study. 
Children at the Northeast site participated in the study during their 4 years of 
schooling from pre-K through Grade 2. Children at the Midwest site participated 
in the study during their 4 years of schooling from Grade 2 through Grade 5.

On the basis of our initial quantitative assessment and teacher input, we 
selected two low-performing children, four middle-performing children, and 
two high-performing children as a representative subset at both school sites. In 
addition, we strove for variation in socioeconomic status (SES) and cultural back-
ground that reflected the demographics of the schools. The selected sample also 
included equal numbers of male and female children. Finally, we used the same 
methods to select another eight children at each site to serve as “background” chil-
dren. We used these background children to pilot tasks, gather additional infor-
mation, and act as replacements for children who left the focus group. Attrition 
at the Northeast site resulted in three children leaving the study after the first 
year, one child after the second year, and two children after the third year. At the 
Midwest site, one child left the study after the first year, one child after the third 
year, and two children during the fourth year. Each time a child left the study, a 
child from the background group who had comparable characteristics replaced 
the child who left so that we could maintain a balanced focus group (in gender, 
cultural background, mathematics performance, and SES) at that site. 

Project Design

The next two sections describe our qualitative and quantitative methods for data 
collection and analysis. Although our primary goal was to provide longitudinal 
accounts of children’s developing understanding of measurement, we comple-
mented these accounts by designing and checking assessment items at each level 
of the length, area, and volume LTs. We administered these assessment items to 
all the children at the Midwest site and selected classrooms of children at the 
Northeast site.

To produce longitudinal accounts of children’s developing knowledge, we used 
teaching experiments to create descriptions of plausible sequences of growth along 
the LTs for length, area, and volume. These teaching experiments functioned in a 
supportive role alongside regular classroom instruction based on existing 
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 curriculum materials in the schools. We recognize that a number of instructional 
factors may have led to the documented growth through extended sequences of 
teaching episodes throughout the study. Our primary goal, however, was to vali-
date and refine the developmental progressions within the LTs instead of focusing 
on the instructional tasks.

Qualitative Methods

At the Northeast site, three children remained in the study for the 4-year duration, 
and they were the main focus of our qualitative analysis: 

• Edith was a high-performing female with a desire to provide the cor-
rect answer always. She sought approval and positive feedback from the 
researchers, so that the researchers had to exercise vigilance to avoid guid-
ing her through their vocalizations and behavior. Edith often commented 
that her mother regularly did mathematics problems with her at home. 

• Ryan was a middle-performing male who was often quick to answer and 
usually took the lead in any group setting. He had a strong number sense 
and a willingness to take risks, which often resulted in repeated attempts to 
work through problems until they were complete.

• Lia was a low-performing female with a strong sense of spatial structuring: 
She was the first to correctly construct a three-dimensional cube object 
from a two-dimensional representation. However, she struggled to estimate 
and often lost track during long multistep problems. Lia remained in kin-
dergarten for 2 years because of weak recognition of letters. 

To furnish additional details, we turned to two children for whom we had 
between 2 and 3 years of longitudinal data: Zola, a middle-performing female and 
Marina, a low-performing female. Although the school retained Lia in kindergar-
ten, the other four children progressed yearly through the grades.

At the Midwest site, five children remained in the study for the 4-year duration, 
and we focused on them for our qualitative analysis. We selected the children from 
two classes of children at one school. 

• Arielle was a high-performing female with a tendency to use arithmetic 
operations to operate on problems posed in geometric space rather than 
operating with spatial operations and images directly to solve problems. She 
also had a tendency to work quietly until reporting her response to tasks. 

• Abby was a middle-performing female with a tendency to explore task situ-
ations with a variety of strategies, and she often appealed to spatial actions 
or objects to support her reasoning about tasks. She was easy to engage and 
was willing to explain her thinking while she was working. 
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• Owen was a middle- to high-performing male who often worked quietly 
but with keen energy to examine problems in measurement. He balanced 
his reasoning between spatial and arithmetic operations. 

• Drew was a middle-performing male with an articulate sense of mathemat-
ics, a capacity to imagine space and operations in space, and a willingness 
to use novel approaches to problems of measurement. However, sometimes 
his novel approaches took him off task and he required extra work to regain 
the task topic and goal.

• Anselm was a middle-performing male oriented primarily toward reason-
ing about spatial objects, with a secondary emphasis on arithmetic opera-
tions with measured values. We noticed that Anselm often focused on the 
instructions and questions of his peers or teacher to such an extent that he 
would prefer to follow another person’s line of questions or thinking and 
develop alternative approaches to problems rather than proceed with his 
own initial approach. 

To provide additional analysis at various stages of our study at the Midwest 
site, we included further data from two children for whom we had between 2 and 
3 years of longitudinal data: Danny, a low-performing male, and Randy, a middle- 
performing male. Finally, we include occasional analysis from sessions with one 
female child, Sara, for whom we had little more than 1.5 years of data. Sara was 
a low-performing female who was unable to complete the second year of this 
research program when her family moved away from the school. 

Our qualitative data sources included assessments, as well as individual 
and classroom-based teaching experiments. We administered assessments to 
children during 2008 and 2011. These two sets of assessments complemented 
the teaching experiments. The assessments included modifications of initial 
tasks and novel tasks designed to elicit specific thinking and behaviors indica-
tive of particular levels of the developmental progression of the LTs (see www 
.childrensmeasurement.org).

To further evaluate each LT beyond the assessments, we conducted two types 
of teaching experiments (Cobb & Gravemeijer, 2008; Steffe & Thompson, 2000). 
First, we conducted individual teaching experiments, which included teaching epi-
sodes that occurred approximately every 4 weeks with individual focus children. 
Second, classroom-based teaching experiments occurred approximately once a 
year; during these experiments, we took the lead in the measurement instruction 
when it occurred in the classroom curriculum (see Figure 1.1). Previous obser-
vations and interpretations influenced each subsequent teaching episode. We 
designed the classroom-based teaching experiments with the classroom teachers. 
We also observed the classroom teachers’ lessons on measurement. Data sources 
included video records and field notes. This combination of individual and class-
room settings addressed our desire to study children’s behaviors in naturalistic 
contexts. We analyzed these behaviors and compared them with the LTs to identify 
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the level at which a child was demonstrating knowledge or to highlight gaps or 
inconsistencies in the LT description, and we tentatively revised LTs when a pre-
ponderance of evidence favored revision. The most demanding checks were across 
investigators within and especially between sites. We had to confirm any consis-
tent behavior or revision across sites and incorporate or explain any disconfirming 
evidence before we could consider that the theoretical assertion was warranted.

Northeast Site Midwest Site
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length and 1 also involving area 

• Initial assessment
• 4 teaching episodes: 3 involving 
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• 9 teaching episodes: 4 involving 
length, 2 involving area, and 
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area, and 6 involving volume

• 5 CTEs focusing on area
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8 involving length, 7 involving 
area, and 6 involving volume

• Grade 4 assessment
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• 9 teaching episodes: 2 involving 
length, 6 involving area, and 
4 involving volume

• 8 Measurement Club meetings: 
5 involving length, 5 involving 
area, and 6 involving volume

• Final assessment

• 2 CTEs involving length, area, 
and volume

• 9 teaching episodes: 8 involving 
length, 6 involving area, and 
3 involving volume

• Final assessment

Figure 1.1. Data collection cycles and data sources across the 4-year 
longitudinal study. (A CTE is a classroom-based teaching experiment.)

Quantitative Methods

To provide triangulation on the qualitative findings and to ascertain whether we 
could generalize those findings to other children, we created an assessment instru-
ment and administered it to children (n 5 258) in pre-K through Grade 5 at the 
two participating schools during spring 2011. These children were a representative 
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sample of students at their respective schools. The total sample included 25 pre-K, 
32 kindergarten, 29 Grade 1, 42 Grade 2, 41 Grade 3, 44 Grade 4, and 45 Grade 
5 children. This sample included the cohorts of children that we followed in our 
teaching experiments. 

We developed the instrument analyzed here to align with the levels of our mea-
surement LTs, specifically those for length, area, and volume. Tasks included the 
measurement items from a previously developed and validated assessment, as well 
as tasks from previous empirical studies (Clements & Sarama, 2007). We used 
two items to assess each level within each of these LTs (for a total of 52 items; 
see Figures 1.2, 1.3, and 1.4 for sample length, area, and volume items, respec-
tively), with the understanding that a correct response on an item demonstrated 
that a child was at least at that level. In addition, for the lower levels of each LT, we 
designed items for presentation through interview to limit the confounding effect 
of reading ability for younger children. We assessed children in pre-K, kindergar-
ten, and Grade 1 entirely through interview; we assessed children in Grades 2 and 
3 through a combination of interview and written items; and we assessed children 
in Grades 4 and 5 entirely through written items. We videotaped all interviews and 
conducted them one-on-one with an assessor and child. We presented all written 
items to children in their classrooms and collected all work and written responses.

Length Direct Comparer

          
longer   shorter

Place the two strips of paper (one longer and one 
shorter) on the desk in front of the child. Place them 
about 10 to 12 inches apart in the orientation shown in 
the illustration. Allow the child to move them.

Ask: Which strip of paper is longer (or taller)? How do 
you know?

End-to-End Length Measurer

Put out a 12-inch strip and a pad of 1.5-by-2-inch sticky 
notes. Place the pad of sticky notes on the tabletop at 
an angle of about 45 degrees with respect to the table 
edges. 

Ask: How many sticky notes will fit along this strip? 

Figure 1.2 continues on next page

Text continues on page 20
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Length Unit Relater and Repeater

Say: I measured this long strip (hold up 12-inch green 
strip) with this (hold up 1-inch yellow strip) and found 
that it was 12 yellow strips long. If I measure the long 
strip with this blue strip (hold up 2-inch blue strip), how 
many of these blue strips will I need?

Consistent Length Measurer

inches
3 4 5 6 7

Say: This is a picture of a rod just below a broken section of a ruler. Use this picture to 
measure the length of the rod. How long is the rod?

Figure 1.2. Sample length items from the assessments. 

Area Simple Comparer

Scatter the rectangle cutouts in front of the child. (Make 
sure that they do not line up.) Allow the child to move 
the rectangles.

Ask: Which piece of paper will let you paint the biggest 
picture? (If the child wants to fold or cut, ask, Can you 
do it without folding or cutting?)

Side-to-Side Area Measurer

Say: I wanted to cover this rectangle (trace around the 
boundary of the larger rectangle) with these squares 
(point to one of the square-inch units). I started drawing 
them in. Please finish the drawing by completely covering 
the rectangle.

Figure 1.3 continues on next page

Clements, Barrett, and Sarama 17



Area Unit Relater and Repeater

Ask: How many tiles like this one  
would cover the larger rectangle? Please include the two 
tiles already drawn.

Partial Row Structurer

Ask: How many squares would completely cover this 
rectangle? Please include the five squares already drawn.

Area Row and Column Structurer)

9 cm

9 cm

8 cm 8 cm

3 cm 3 cm

2 cm

2 cm

Ask: How many of the small rectangles would cover the 
large rectangle?

Figure 1.3. Sample area items from the assessments.
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Capacity Direct Comparer

Show the child the two  
containers as shown below:

Say: Pay attention because I am going to ask you a 
question about these two containers in a minute.

(Point to the two containers. 
Completely fill one of the 
containers with water. Pour the 
water from container into the 
other.)

Ask: Which of these two  
containers can hold more water?

(Point to the two containers 
again.)

Primitive 3-D Array Counter

Place a 2 3 3 3 2 solid (“glued together”) on the table. 
Show a separate inch cube.

Say: This is a cube (show child individual inch cube). 

Ask: How many cubes like this do you think that you 
would need to make this? (gesture to solid)

Partial 3-D Structurer

Ask: How many cubes altogether will it take to fill 
the box? 

Figure 1.4 continues on next page

Clements, Barrett, and Sarama 19



3-D Row and Column Structurer

Tell students: This net (on the left) folds up to make 
the box (in the middle). 

Ask: How many cubes (on the right) would you need 
to fill the box? 

Figure 1.4. Sample volume items from the assessments.

We pooled these data across both the Northeast and Midwest sites and coded 
each item for correctness according to the following rubric: 0 5 incorrect, 1 5 
correct with prompt (all prompts given according to the assessment protocol), 
2 5 fully correct. We considered any item coded with 1 as partially correct in 
the Rasch modeling. During the coding process, we included an additional code 
of 999 to identify any item for which we could not attribute a child’s response 
directly to the child’s understanding (e.g., assessor error affected the response 
of the child, child’s response was unintelligible or unreadable, or child did not 
provide a response for the item). We treated any item coded as 999 as missing 
data in the analysis.

In our analysis of these data, we used item response theory (IRT), which 
allows researchers to create an interval scale of scores for both the difficulty of 
items and the ability of the persons assessed. The Rasch model is the simplest 
and most efficient IRT model. Use of the Rasch model furnishes evidence of 
both the validity and the reliability of an assessment. In addition, it allows 
mathematical estimation of both the probability that a person will answer an 
item correctly (person ability), as well as the probability that an item will be 
answered correctly by a person (item difficulty). Rasch modeling yields an 
ability score on an interval scale with a consistent, justifiable metric, thereby 
allowing accurate comparisons, even across ages, as well as meaningful com-
parison of change scores (Wright & Stone, 1979). Rasch modeling reports 
all ability scores in units called logits. Just as two inches is twice as long as 
one inch, two logits represent twice as much ability as one logit. This scoring 
differs from other scores such as percentile ranks, for example, because we 
cannot say that a person at the 50th percentile has twice as much ability as a 
person at the 25th percentile.
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One underlying assumption of Rasch modeling is that we are measuring a 
unidimensional construct or latent trait. For our analysis, we defined measure-
ment competence as that latent trait (Bond & Fox, 2007; Linacre, 2014; Watson, 
Callingham, & Kelly, 2007). To measure measurement competence, we sequenced 
the items, strictly maintaining the order within each measurement domain 
(length, area, volume) but intermingling items across domains according to the 
available developmental evidence, including age specifications from the literature 
and difficulty indices from our pilot testing. We therefore posited that items were 
organized according to increasing order of difficulty across domains, but our the-
oretical claims that this sequencing represented increasingly sophisticated levels of 
mathematical thinking were only for items within a given domain. We submitted 
the results of administering this revised instrument to the Rasch model.

Rasch analyses estimate the distance between items and between persons on a 
single scale. That is, item difficulty and each person’s underlying competence are 
on the same equal-interval scale, indicating the theoretical latent trait. We used 
Winsteps (Linacre, 2014) to estimate fit statistics, reliabilities, separation indices, 
and item difficulties. Fit statistics (infit and outfit) are estimates of the degree to 
which responses show adherence to the expectations of the Rasch model. They 
indicate how well the model empirically supports the assumption of unidimen-
sionality; that is, whether it is measuring a single attribute (a critical characteristic 
of fundamental measurement). In addition, the mean square (MNSQ) statistic is 
a transformation of the difference between the predicted and the observed scores 
(residuals) that indicates the degree of fit of an item or a person. Its expected value 
is 1, with values between 0.5 and 1.50 regarded as productive for measurement 
(Wright & Linacre, 1994). The Z-statistic (ZSTD) is a standardized fit statistic with 
a mean of 0 and variance of 1. For ZSTD, the range of acceptable values for a 95% 
confidence interval is between 22 and 2 (Bond & Fox, 2007; Linacre, 1994). 

Item reliability is an estimate of the replicability of item placement within the 
hierarchy of items along the measured trait and is similar to Cronbach’s alpha 
(Bond & Fox, 2007; Linacre, 1994). Item separation indices are assessments of 
the ability of the measure to differentiate items along the scale. Because we had 
employed qualitative analyses to refine the instrument in several previous cycles 
of formative testing and revision, we performed qualitative examination of video 
only on items with poor item characteristics for this study. 

Chapters 2, 3, and 7 of this monograph give a description of specific Rasch 
analyses of the separate dimensions for length, area, and volume, respectively. 
These specific analyses provide further quantitative support in the validation and 
refinement of the developmental progressions in each measurement domain. 
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