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Throughout history, scientists and mathematicians have derived for-
mulas and procedures that have built on simpler, easier measures to
achieve measures that are more difficult or complex. Historians still
wonder how the ancient Egyptians developed a formula for the volume
of the frustum of a pyramid—a formula whose rigorous proof requires
limit arguments akin to those at the heart of calculus. Whether the sto-
ries about Thales (ca. 640–540 B.C.) are myth or fact, they celebrate
many brilliant measurement feats, including the use of shadows to mea-
sure the heights of pyramids and the application of proportional reason-
ing associated with similar triangles to measure the distance from shore
to ships at sea. 

The list of inspired uses of relatively simple mathematics to make
other, more complicated measurements—sometimes with a surprising
degree of accuracy—is impressive. This chapter selects examples from
the list for you to share with your students, in keeping with the recom-
mendation of Principles and Standards for School Mathematics (NCTM
2000) that teachers help their students experience the power of mathe-
matics through indirect measurement.

The activities in this chapter explore intriguing settings from the his-
tory of mathematics and show how these contexts can engage high
school students in the process of measuring and the analysis of measure-
ment error. Three activities highlight some ancient methods and mathe-
matical models for measuring sizes and distances pertaining to the earth,
moon, and sun. These methods and models are early, truly remarkable
examples of the use of simple observations and basic mathematics to
make challenging measurements. 

The lower part of a cone or
pyramid cut by a plane

parallel to the base is the
frustum.

“In addition to
reading

measurements
directly from instruments,

students should have
calculated distances

indirectly and used derived
measures.” 

(NCTM 2000, p. 321) 

Frustum
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The first activity, If the Earth Is Round, How Big Is It? takes stu-
dents through the steps of measuring the circumference and diameter
of the earth by a method that Eratosthenes invented in the third cen-
tury B.C. Many high school geometry textbooks illustrate Eratosthenes’
method in notes or exercises. Students who have studied basic right tri-
angle trigonometry can use their knowledge to facilitate their work, but
the exploration does not depend on trigonometry. 

The second activity, Moon Ratios, follows up this investigation of
ancient measurements of the earth with an exploration of methods that
early astronomers developed for finding the visual angle of the moon
and the distance from the earth to the moon. Students explore methods
that enabled early astronomers to measure important ratios—the ratio
of the earth-moon distance to the moon’s diameter and the ratio of the
diameter of the moon to the diameter of the earth. An acquaintance
with right triangle trigonometry can expedite students’ work in the
activity but is not essential to it. 

The third activity, How Far Is the Sun? lets students put elements of
the strategies from the first two activities together to make estimates of
the distance of the sun from the earth. This activity depends on a basic
trigonometric fact about right triangles—that the ratio of either acute
angle’s adjacent side to the triangle’s hypotenuse is equal to the cosine
of the angle. Thus, students who are acquainted with basic right trian-
gle trigonometry will understand the mathematics that is involved.
However, if teachers supply relevant information, students can com-
plete the activity without a grounding in trigonometry.

Standard textbook problems
pertaining to measurement
can often lead to productive

hands-on investigations,
which in turn can deepen

students’ understanding of
the mathematics in the

problems.
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The template
“Measuring Tape”
on the CD-ROM
enables you to
print and cut out

short paper tape measures,
calibrated to millimeters, for your
students’ use.

You can print grid
paper for this
activity from the
template
“Centimeter Grid

Paper” on the CD-ROM. 

If the Earth Is Round, 
How Big Is It?
Goals

• Simulate a classical measurement process
• Analyze measurement error resulting from the measurement

instrument

Materials and Equipment
For each student—
• A copy of the activity sheet “If the Earth Is Round, How Big Is It?” 

For each group of three or four students—
• One or more Styrofoam balls (4–6 inches in diameter) 
• Two straight pins (1.25–2 inches in length)
• A flashlight or pen light. (The class can share a movable bright

light, if necessary.)
• A short tape measure (calibrated to millimeters; template provided) 
• A 4-by-6-inch index card, scissors, and clear tape

For students who have not studied trigonometry—
• Centimeter grid paper (template provided)
• A protractor

For the class—
• A road atlas of the United States that students can use to find the

distance (as the crow flies) from Bozeman, Montana, to Tucson,
Arizona

Discussion
In the third century B.C., the Greek mathematician Eratosthenes

devised a method for measuring the circumference of the earth. He
measured the angle of the shadow cast by a vertical stick in Alexandria
at noon on the summer solstice. The measure that he found for this
angle (shown as ∠TBA in fig. 4.1) was approximately 7.2 degrees. (The
system of degrees that we use today to measure angles came into being
after the time of Eratosthenes, but we can use degrees in carrying out
his reasoning and method.)

Eratosthenes happened to know that on the same day, at the same
time, due south in the town of Syene (S in fig. 4.1), the sun was directly
overhead, and a vertical stick would cast no shadow. He also knew that
the distance from Alexandria to Syene was approximately 5000 stades,
or about 500 miles. Eratosthenes assumed that the sun’s rays were par-
allel; hence, TB||OS in figure 4.1. Thus, m∠ABT = m∠BOS ≈ 7.2�
Since 7.2� is equal to 1/50 of a circle,Eratosthenes concluded that the
earth’s circumference was 50 × 5000 stades, or 250,000 stades.

The size of a stade has been a subject of debate. One possible value,
559 feet to a stade (Eves 1990), would make Eratosthenes’ estimate of
the earth’s circumference 139,750,000 feet, or 26,468 miles—a value

pp. 129–30
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that is within a few percentage points of 25,000 miles, often given today
as the earth’s circumference. Using 559 feet per stade would make
Eratosthenes’ estimate of the earth’s diameter 8,425 miles as compared
with the contemporary measurement of the earth’s polar diameter as
7,912 miles. The accuracy of Eratosthenes’ estimates is rather amazing,
considering the simplicity of his method and the absence of accurate
instrumentation and sophisticated measurement systems in the third
century B.C.

Like many geometry textbooks, the activity sheet presents a histori-
cal note explaining how Erastothenes (ca. 250 B.C.) measured the cir-
cumference and diameter of the earth. Using Erastothenes’ ideas and
data as starting points, students replicate his method and obtain his
measurements in step 1 of the activity. 

In step 2, students transfer Eratosthenes’ method to the task of mea-
suring the circumference and diameter of a ball. Equipped with a
Styrofoam ball, a short paper tape measure, two straight pins, a
bright light, an index card, scissors, and tape (and perhaps some grid
paper and a protractor), students design a simulation of Eratos-
thenes’ method. Their simulation should lead them to an accurate
estimate of the diameter of the ball. 

By asking students to design their own simulations, the exploration
forces the students to think more deeply about the questions that the
measurements raise than they would be likely to if they had a step-by-
step procedure to follow. Students can be inventive in fashioning the
materials to suit their simulations. For example, they might cut a strip
from the index card and attach their paper measuring tape to it, stiffen-
ing and straightening the tape, as in figure 4.2. 

What do the students gain by this? In the simulation pictured in fig-
ure 4.2, the measuring tape’s straight segment allows the students to
obtain a direct measurement of the shadow. By positioning their light
source (not shown) so that its rays strike the top of the left-hand pin
directly, the students allow the shadow from the right-hand pin to fall
onto the straight segment of the ruler. The students can then inspect
the right triangle whose legs are formed by the right-hand pin and its
shadow. If the students happen to know right triangle trigonometry,

Shadow
Alexandria

Syene

Sun's Rays

T B

S
O

A

Fig. 4.1. 

The geometry of Eratosthenes’ measure-
ment of the earth’s circumference

(not to scale)
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“High school
students should be
able to make

reasonable estimates and
sensible judgments about the
precision and accuracy of the
values they report.”
(NCTM 2000, p. 322)

they can compute the angle at the top of the triangle as the arctangent
of the ratio of the shadow’s length to the pin’s height. 

Students who have not studied trigonometry might also profitably
set up their simulation as pictured in figure 4.2. They could use grid
paper (or software for geometric drawing) to create a right triangle con-
gruent to the one whose legs are the pin and its shadow, and then they
could measure the angle directly with a protractor. 

The activity challenges students to identify sources of error as well as
to discuss alternative approaches. For example, if the light source is too
close to the ball—say, within five feet—it will not be at all reasonable to
assume that its rays are parallel, and any direct measurements that the
students make can greatly distort their final, indirect measurement. 

As students work with their simulations and make their measure-
ments, they must also focus on the error that arises in working with an
instrument (the paper measuring tape) with a particular degree of 
precision. The ruler provided for the activity allows students to make
measurements that are precise to the nearest millimeter—that is, with a
round-off error of less than 0.5 mm. This potential error has implica-
tions for all the measurements that the students derive from those that
they make with the ruler. The solutions in the appendix include a sam-
ple showing how students might work out these implications.

Step 3 of the activity extends the students’ investigation of Eratos-
thenes’ method by asking them to consider a real-world case in which
vertical sticks in two locations both cast shadows. Using a road atlas
together with the information that Bozeman, Montana, is due north of
Tucson, Arizona, students figure out how they could use simultaneous
measurements of shadows in the two cities to estimate the circumfer-
ence of the earth. The situation is sketched in figure 4.3.

Students must find a relationship between the central angle, labeled
as ∠Z in figure 4.3, and the angles of the shadows, shown as ∠A and
∠D. Using the Exterior Angle Theorem, students can deduce that
m∠Z = m∠A – m∠D.  

As an alternative approach to the two-shadow situation in step 3, you
might prefer to have your students collaborate with those in another
mathematics class in a city located on the same longitude line as your
city but hundreds of miles away. The students in the two classes could
then do the experiment “live” with telephone connections. 

1 2 3 4 5 6 7 8 9

Fig. 4.2. 

A measuring tape extending on a tangent
from a pin on a Styrofoam ball in a student
simulation



Eratosthenes’ effort to
measure the circumference

of the earth counters the
myth that everyone thought
the earth was flat until the

age of Christopher
Columbus.
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Because m∠A = m∠B, 
m∠Z = m∠A – m∠D.

Assessment
During the activity, be sure to assess your students’ abilities to use

the properties of circles and parallel lines to derive angles and arc
lengths. You should also check their computation of the uncertainty
intervals for their estimates of the circumference of the ball. 

Students should gain two important insights from their work: 

(1) Indirect measurements of a phenomenon typically depend on the
development of a mathematical model, such as those shown in
figures 4.1 and 4.3.

(2) These mathematical models usually depend on assumptions
about the phenomenon, such as that the earth is a sphere and
that the sun’s rays are parallel. 

To assess your students’ understanding of these essential ideas, you
might ask them to write journal entries evaluating the importance of
the assumptions that they made in the simulation with the Styrofoam
ball in step 2. 

Encourage your students to reflect on what would happen to the
shadows if various features of the situation were different. For example,
how would a light that was very close to a ball affect the shadows of
pins in the ball? 

Where to Go Next in Instruction
In the history of mathematics, the measurement of the ratio of two

quantities was sometimes just as important as, and often a prelude to,
the measurement of a specific quantity. One very important ratio that
students encounter is π. To the ancients, π was not a number but a ratio
of two lengths related to a circle: π = Circumference : Diameter. The next
activity examines some historically interesting ratios whose measure-
ment involved keen observations and basic mathematics. 

Fig. 4.3. 

A variation on Eratosthenes’ method of
measuring the earth’s circumference, with

vertical metersticks in two locations casting
shadows. Shadow

Bozeman
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