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Measurement and Fair-Sharing 
Models for Dividing Fractions

Jeff Gregg and Diana Underwood Gregg

Van de Walle (2007) describes dividing one fraction by another in this way: “Invert the divisor and multi-
ply is probably one of the most mysterious rules in elementary mathematics” (p. 326). Tirosh (2000) 

concurs and cites research suggesting that “division of fractions is often considered the most mechanical and 
least understood topic in elementary school” (p. 6) and that students’ performance on tasks involving divi-
sion of fractions is typically very poor. These claims are reflected in the difficulties that college students ex-
perience in courses for mathematics for elementary teachers when they try to explain why the invert-and-
multiply algorithm works. See the following problem. 

A new machine can polish 1/2 of the floors in 3/4 of an hour. What fraction of the floors can be polished per hour? 

When solving such a problem, we often find that a student will write 
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When asked why this procedure works, he or she usually explains, “Well, it’s really 1/2 ÷ 3/4, but I flipped 
the second fraction and then multiplied.” When pressed to explain why it is possible to “flip the second frac-
tion and multiply” to obtain the answer to 1/2 ÷ 3/4, the student usually responds, “Because it’s a division 
problem.”

One goal in our mathematics courses for elementary teachers is for students to develop a conceptual 
understanding of the standard algorithms for adding, subtracting, multiplying, and dividing whole numbers, 
fractions, and decimals. These courses are taught using an “inquiry approach.” Class sessions are devoted to 
small-group work on challenging tasks intended to promote mathematical discussion among peers, followed 
by whole-class discussions of students’ thinking about the tasks. Our role as instructors is to guide these 
discussions by introducing conventional terminology, symbols, and notation by posing “What if?” questions 
and counterexamples; by asking students to think about what they have done, about how others have done it, 
and about how they could have done it differently; and by asking them to consider why what they have done 
has or has not worked. With regard to helping students understand division of fractions, the challenge has 
been to develop sequences of activities that will help students (a) appropriately interpret situations that could 
involve division of fractions, and (b) make sense of algorithmic procedures for dividing fractions.

Using discussions and sample problems in van de Walle (2007) and Fosnot and Dolk (2002) as our 
starting point, we developed a sequence of activities for what van de Walle calls the “common-denominator 
algorithm” and a sequence of activities for the “invert-and-multiply algorithm.” As van de Walle points out, 
these two algorithms are related to the two different interpretations of division—measurement and fair shar-
ing. We highlight these interpretations with students when discussing whole-number division. Recall that in 
the measurement model of division, we know the size of each group and must find the number of groups of 
that size that can be made from the dividend. A problem that fits this model is the following: 

Ms. Wright has 28 students in her class. She wants to divide them into groups, with 4 students in each group. How 
many groups will she have? 

In other words, “How many 4s are in 28?” In contrast, in the fair-sharing (or partitive) model of division, we 
know the number of groups to be formed and must determine the size of each group. A problem that fits 
this model would be this: 

Ms. Wright has 28 students in her class. She wants to divide them into 4 groups. How many students will be in 
each group?

In the remainder of this article, we will describe the two fraction division sequences we have developed, 
relate them to the two interpretations of division, and explain the rationale behind them.
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The Common-Denominator Algorithm Sequence
We begin this sequence by introducing the idea of serving sizes using the nutrition facts label from the sides 
of various containers, noting that the serving size is not always a whole number (e.g., the serving size may be 
1 1/2 cookies). The first set of problems that we present in the serving-size context is shown in figure 1. We 
explain in problem 2, for instance, that students should express any leftover cookies in terms of the fraction 
of a serving that they comprise. Students usually do not find this task to be too difficult for problems such 
as 2, but it becomes decidedly more challenging in problems such as 6 and 7. A typical solution for problem 
6 is shown in figure 2. Students take one 3/4 serving from each cookie and then three more 1/4 pieces to 
make a sixth serving. They are left with two 1/4-cookie pieces. The dilemma is how to express the leftover 
amount. Many students initially say the answer is 6 1/2, which almost always leads to a rich discussion about 
the units to which the 6 and the 1/2 refer (cf. Perlwitz 2005). It is incorrect to say 6 1/2 servings, but many 
students struggle initially with viewing the two leftover pieces as 2/3 of a serving.

Note that these problems fit with the measurement interpretation of division because they are asking, 
“How many 1/2s are in 5?” and “How many 3/4s are in 5?” and so on. We continue working with problems 
in which both the serving size and the amount given are fractions (see fig. 3). We then move to a page of 
similar problems that contain no illustrations. Students are permitted to use drawings to help them solve the 
problems, but to move toward a computational algorithm for solving these problems, we encourage them to 
try to solve the problems without using drawings. The first three problems on this page are the following:

1. A serving is 3 cookies. How many servings can I make from 7 cookies?

2. A serving is 3/8 cookie. How many servings can I make from 7/8 cookie?

3. A serving is 3/11 cookie. How many servings can I make from 7/11 cookie?

 A serving is 5 cookies. How many servings can I make from 10 cookies? 

2.

1.

 A serving is 3 cookies. How many servings can I make from 5 cookies? 

3. A serving is 1 cookie. How many servings can I make from 5 cookies? 

4. A serving is 1/2 cookie. How many servings can I make from 5 cookies? 

5. A serving is 1/4 cookie. How many servings can I make from 5 cookies? 

6. A serving is 3/4 cookie. How many servings can I make from 5 cookies? 

7. A serving is 2/3 cookie. How many servings can I make from 5 cookies? 

5

3

1

1/2

1/4

3/4

2/3

Fig. 1. A collection of problems in the serving-size context
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This sequence is intended to help students realize that as long as the serving size and the given amount are 
expressed in the same-sized pieces (e.g., whole cookies, eighth of a cookie, eleventh of a cookie), then the 
size of the pieces (as expressed by the denominator) is irrelevant. In each case, a serving consists of 3 things 
of a certain size, and we have 7 things of that same certain size, so how many servings can we make?

At this point, we have not discussed with students that these items may be viewed as division problems, 
so we present one more page of problems without illustrations. The first five problems on this page are the 
following:

1. A serving size is 6 cookies. How many servings can I make from 30 cookies?

2. A serving size is 7 cookies. How many servings can I make from 30 cookies?

3. A serving size is 1/2 cookie. How many servings can I make from 30 cookies?

Fig. 3. Problems in which the serving size and the amount given are fractions

6
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 A serving is 1/2 cookie. How many servings can I make from 2 cookies? 

2. 

1. 

 A serving is 1/2 cookie. How many servings can I make from 1 cookie? 

3.  A serving is 1/2 cookie. How many servings can I make from 3/4 cookie? 

4. A serving is 1/2 cookie. How many servings can I make from 3/8 cookie?

5. A serving is 1/2 cookie. How many servings can I make from 5/8 cookie? 

6. A serving is 3/4 cookie. How many servings can I make from 1/2 cookie? 

7. A serving is 5/8 cookie. How many servings can I make from 1/2 cookie? 

3/4

5/8

1/2

1/2

1/2

1/2

1/2

Fig. 2. A typical solution to problem 6 from figure 1
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4. A serving size is 1/4 cookie. How many servings can I make from 30 cookies?

5. A serving size is 1/2 cookie. How many servings can I make from 3/4 cookie?

After discussing students’ solutions to these problems, we ask, “How can we view these problems as division 
problems? Can you write a division number sentence for each of these problems?” Students have little dif-
ficulty writing the number sentences 30 ÷ 6 and 30 ÷ 7, respectively, for the first two problems. For problem 
3, many students figure out that the answer is 60 and many write the number sentence 30 ÷ 1/2, but some 
students think 30 ÷ 1/2 should be 15. At this point, we discuss the measurement interpretation of division: 
How many 7s are in 30? How many 1/2s are in 30? (as opposed to how many 2s are in 30?) and so on. Stu-
dents are then able to interpret problem 5 as being 3/4 ÷ 1/2, or how many 1/2s are in 3/4? We also discuss 
the idea that the question asked in problem 5 is exactly the same as that asked in problem 1. The only differ-
ence is the size of a serving and the amount of cookies we have from which to make servings.

Next we return to a discussion of the units associated with the answer to a problem such as 3/4 ÷ 1/2. 
Students have little difficulty with the cookie/serving-size context since they have previously used diagrams 
(as shown in fig. 4) to solve such problems. But what about the number sentence 3/4 ÷  1/2 = 1 1/2? To 
what does the 1 1/2 refer? The students’ drawings and the measurement interpretation of division are help-
ful when exploring this issue. If the question is “How many 1/2s are in 3/4?” then the answer, 1 1/2, must 
mean that there are one and a half 1/2s in 3/4. Figure 4 illustrates this solution if we replace “1 serving” by 
“1/2 serving.” We discuss with our preservice teachers the subtle yet significant challenge that students face 
in making sense of 3/4 ÷ 1/2 = 1 1/2 in a measurement context: The dividend and the divisor refer to the 
same-sized unit (e.g., 3/4 of a cookie, 1/2 of a cookie), but the quotient refers to a unit that is the size of the 
divisor (e.g., 1 1/2 half cookies).

We are ready to move toward the common-denominator algorithm for dividing fractions and present 
the problems shown in figure 5. Tim is a pseudonym for an eighth-grade student who constructed this 
method as he participated in a series of lessons taught by one of the authors. We extend Tim’s strategy nota-
tionally by writing the following:
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We relate this to the previously discussed idea that if both the serving size and the given amount are 
expressed in the same-sized pieces, then the denominator is irrelevant. One must focus on the number of 
pieces in the serving size and the given amount (i.e., the numerator). We also relate the process of getting a 
common denominator in this algorithm to the need, when solving the problem pictorially, to cut the repre-
sentations of both the dividend and the divisor into pieces that are the same size (see fig. 4). Note that this 
algorithm is essentially the same as that invented by a seventh grader whom Perlwitz (2004) interviewed. In 
fact, in many of our classes, the “Tim’s Method” page (see fig. 5) is not needed because several students have 
already invented a comparable strategy by the time we reach this point in the sequence.

Fig. 4. There are one and a half 1/2s in 3/4. Fig. 5. Tim’s method


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÷
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Tim devised the following method for figuring out the “How 
many servings?” problems.

Tim said: To figure out a problem like My serving size is 1/3 
cookie. How many servings can I make from 3/4 cookie? you 
can first figure out a common denominator for these numbers. 
By making the 1/3 = 4/12 and the 3/4 = 9/12, the problem is 
much easier to solve. From the 9/12 I can get 2 whole serv-
ings of 4/12 and have 1/12 leftover. The 1/12 that is leftover 
is 1/4 of a serving, so my answer is 2 1/4. This works with all 
division with fraction problems.

Do you think Tim’s method is valid? Test Tim’s method on the 
tasks below. Then explain why you think this method works 
with division of fraction problems or why it does not work.

a. 5/8 ÷ 1/2      b. 2 1/4 ÷ 3/8      c. 3/8 ÷ 1/2      d. 9/8 ÷ 2/3
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The Invert-and-Multiply Algorithm Sequence
After applying the measurement interpretation of division to make sense of division of fractions situations, 
we ask our students if we could apply the fair-sharing interpretation of division to division of fractions. They 
initially respond no. If one starts by considering a division sentence such as 3/4 ÷ 2/3, it is not clear how 
such an interpretation might apply. We want to divide 3/4 of a cake equally among 2/3 of a group. What 
does that mean? We take a similar approach in designing this sequence as in the common-denominator al-
gorithm sequence, that is, we start with situations involving whole numbers and work our way toward those 
involving fractions.

In particular, we start with problems involving whole-number divisors and unit-fraction dividends fol-
lowed by whole-number divisors and non-unit-fraction dividends. The following is a typical initial sequence:

1. �I have 1/3 of a whole cake. I want to divide it equally into 3 containers. How much cake will be in each  
container?

2. �I have 1/3 of a whole cake. I want to divide it equally into 4 containers. How much cake will be in each  
container?

3. �I have 1/3 of a whole cake. I want to divide it equally into 8 containers. How much cake will be in each  
container?

4. �I have 2/3 of a whole cake. I want to divide it equally into 2 containers. How much cake will be in each  
container?

5. �I have 2/3 of a whole cake. I want to divide it equally into 3 containers. How much cake will be in each  
container?

6. �I have 3/4 of a whole cake. I want to divide it equally into 2 containers. How much cake will be in each  
container?

Students often use diagrams to help solve these prob-
lems. A typical solution for problem 5 is shown in figure 
6. Students begin by drawing a cake and shading 2/3. 
Then they cut the 2/3 into three equal parts (represent-
ed by the horizontal dashed lines) and determine what 
fraction of a whole cake each of the three equal parts 
comprises. 

Some students develop nonpictorial strategies for 
problem 6: 

3
4

6
8

3
8

3
8
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This equation shows that each container holds 3/8 of a 
whole cake. As we discuss students’ solutions to these 
problems, we ask, “What division number sentence could 
we write for this problem?” Few students have difficulty interpreting these problems as 2/3 ÷ 3, 3/4 ÷ 2, and 
so on. We discuss that we are now using the fair-sharing interpretation of division, since we are distributing 
(sharing) a certain amount of cake among some number of containers and want to know how much cake 
will be in one container.

Next we move to problems with unit-fraction divisors: 

1. I have 1/3 of a whole cake. It fills up exactly 1/2 of my container. How much cake will fit in 1 whole container?

2. I have 1/3 of a whole cake. It fills up exactly 1/4 of my container. How much cake will fit in 1 whole container?

3. I have 3/4 of a whole cake. It fills up exactly 1/2 of my container. How much cake will fit in 1 whole container?

For these problems, many students apply a repeated-addition or multiplicative strategy: If 3/4 of a cake fills 
up 1/2 of the container, then the whole container must hold 3/4 + 3/4 = 2 × 3/4 = 1 1/2 cakes. Although 
these problems are not difficult for students, the key discussion point is to connect the problems to divi-
sion and to the problems with whole-number divisors discussed previously. What would be an appropriate 

2

1

3

2

1

3

There will be 2/9 of a cake in each container.

Fig. 6. I have 2/3 of a whole cake. I want to 
divide it equally into 3 containers. How much 

cake will be in each container?
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division number sentence for problem 3 above? Much as we did in the common-denominator algorithm 
sequence, we ask students to compare problems with whole-number divisors to problems with fractional 
divisors. For example, consider the following: 

1. �I have 3/4 of a whole cake. I want to divide it equally into 2 containers. How much will be in  
each container?

2. �I have 3/4 of a whole cake. It fills up exactly 1/2 of my container. How much cake will fit in 1  
whole container?

In both cases, there is an amount of cake that fits into a certain space, and the problem is to determine how 
much 1 container will hold. If the first problem is 3/4 ÷ 2, then the second one must be 3/4 ÷ 1/2. Note the 
ratio aspect: 

3 4
2 1

/ cake
containers

how much cake
container

=

and
3 4

1 container
/

1   2 container/
cake how much cake

=

We conclude the sequence by moving to cake problems with non-unit-fraction divisors, first using a 
whole-number, then a unit-fraction, and finally a non-unit-fraction amount of cake: 

1. I have 3 whole cakes. They fill up exactly 2/3 of my container.
a. How much cake will fit in 1/3 of my container?
b. How much cake will fit in 1 whole container?

2. I have 1/2 of a cake. It fills up exactly 3/4 of my container.
a. How much cake will fit in 1/4 of the container?
b. How much cake will fit in 1 whole container? 

3. I have 3/4 of a cake. It fills up exactly 2/3 of my container.
a. How much cake will fit in 1/3 of the container?
b. How much cake will fit in 1 whole container?

A pictorial solution for problem 3 is shown in figure 7. 
Each question is broken into 2 parts in an effort to fos-
ter solution strategies that can be related to the invert-
and-multiply algorithm. For example, to find how 
much cake will fit in 1/3 of a container in problem 3, 
we can divide 3/4 by 2. Knowing how much fits in 1/3 
of a container, we can then multiply by 3 to determine 
how much 1 container holds. We describe this process 
notationally as 
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However, when dividing some amount into 2 equal 
parts (recall that we are using the fair-sharing interpreta-
tion of division), each of those 2 parts is 1/2 of the total 
amount. So dividing by 2 is the same as multiplying by 
1/2 (3/4 is two-thirds; 1/2 of that amount will be one-
third). We write
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The shaded area represents 3/4 of a whole 
cake; 2/3 of a container holds this much cake.

Amount in  
1/3 of a 
container

Amount in  
1/3 of a 
container

Fig. 7. If 1/3 of the container holds 3/8 of a 
cake, 1 container holds  

3/8 + 3/8 + 3/8 = 3 × 3/8 = 9/8 = 1 1/8 cakes.
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Similarly, if 2/5 of a cake fi lls 3/4 of a container, and we wanted to know how much 1 container would hold, 
we could divide 2/5 by 3 to fi nd how much fi ts in 1/4 of a container and then multiply by 4. We would write
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Conclusion
We have used the two sequences of problems described here with preservice teachers in both methods 
and mathematics content courses, and one of the authors has used them in conjunction with the class-
room teacher in both a sixth-grade and an eighth-grade class. For both groups, the common-denominator 
algorithm stemming from the measurement interpretation of division seemed more accessible in terms of 
students being able to construct the algorithm with a conceptual grounding. Flores, Turner, and Bachmann 
(2005) describe two teachers who “made the connection between [their] previous understanding of division 
of fractions in terms of measurement and the standard rule of multiplying by the inverse” (p. 118). However, 
these teachers simply noted that the result obtained by dividing the numerators in the common-denominator 
algorithm was the same as that obtained when multiplying the dividend by the inverse of the divisor in the 
invert-and-multiply algorithm. They did not explain why the invert-and-multiply rule works. Thus, we 
believe that some sort of invert-and-multiply algorithm sequence of problems is needed.

We interspersed the cake problems in our invert-and-multiply sequence with problems like this:

2/5 of a room can be painted in 3/4 of an hour. How much can be painted in 1 hour?

These problems engendered more ratio interpretations on the part of students. In other words, students 
reasoned as follows:
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We had done considerable work with ratio tables in which students generated equivalent ratios. So the stu-
dents could reason that to get from 3/4 hour to 1 hour they would need to multiply by 4/3. (To our delight, 
one student explained that you would need to multiply by 1 1/3 because in 1 hour there is one 3/4 hour and 
1/3 of another 3/4 hour.) To keep the ratio the same, the 2/5 must also be multiplied by 4/3. This gives
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Thus, the painting problems resulted in what Tirosh (2000) calls a formal argument for fraction division, 
one that uses ratios, fraction multiplication, and the principle that the product of reciprocals is 1. We are 
anxious to continue developing our invert-and-multiply algorithm sequence to examine the infl uence of the 
cake problems, the painting problems, and perhaps several other scenarios while helping our students make 
sense of this algorithm.
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