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Elementary and middle school programs must provide students with 
adequate time and experiences to develop a deep conceptual under-
standing of this important area of the curriculum.

John A. Van de Walle, Karen S. Karp, and Jennifer M. Bay-Williams (2010, p. 286)

The ways in which students understand the meaning and concept of frac-

tions have important implications for what they will understand and be 

able to do later on when faced with new ideas that build on this concept—

including quotients, decimals, percents, ratios, rates, proportions, propor-

tionality, and linearity. In high school or college calculus, some students will 

encounter even more advanced mathematical ideas, such as the notion of 

derivative as the ratio of differentials ​ dx _ 
dy

 ​ .

By the meaning of a fraction ​ a _ 
b
 ​ , I mean the many possible concepts the sym-

bol can represent. And by understanding , I mean what results from a student’s 

interpretations of words, symbols, actions, and discussions pertaining to 

fraction contexts and situations. Students assign meaning according to a web 

of connections that they build over time, through interactions with their own 

Convey the Many Meanings of ​ a _ b ​  
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16  //  Unpacking Fractions

interpretations of fractions and through interactions with other students as 

they, too, struggle to construct new understandings.

This makes the teacher’s role in fraction knowledge building all the 

more crucial: teachers must offer students rich and varied experiences 

if they are to develop a dense web of meanings around the concept of 

fraction—meanings they can fall back on when they become confused, 

forget a memorized procedure, or learn a new fraction-related concept 

(such as ratio). Building a robust fraction sense is not simple. It is much 

more than correctly naming a fraction’s components, accurately shading 

a given fraction of a region, or successfully carrying out a computational 

algorithm. It is even more than knowing the procedural rules for trans-

forming, say, a fraction to a decimal or a percent to a fraction. The key to 

a well-grounded fraction sense is time. Mathematical knowledge building 

takes time—and by time, I mean years.

A good place to start is with students’ own mental images and ideas 

about fractions. Teachers of course cannot read the minds of their stu-

dents to see these internal representations. Rather, they must access them 

indirectly by making inferences from students’ discourse about fractions, 

the outer representations they construct, and their ongoing interactions 

with fractions through drawing, gesturing, and writing. Through careful 

observation and conversation, we can detect misconceptions, help stu-

dents make connections between their existing informal knowledge and 

the new mathematical constructs we hope to teach them, and help them 

use their intuition to construct new knowledge.

Roberto’s Story

Roberto taught middle school for several years and then left to take a 

better-paying job in industry. But after a while he found that the good 

money alone was not fulfilling; he missed teaching, and he especially 
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missed the kids, so he decided to return to the classroom. He had hoped 

to go back to his middle school, but there were no openings, so he took a 

position teaching 5th grade instead. What follows are some key moments I 

observed during Roberto’s introductory lesson on fractions during his first 

year of teaching 5th grade.

Roberto wrote “ ​ 3 _ 
4
 ​ ” on the board and asked his students to write down 

or draw whatever came to mind when they saw this fraction. After some 

reflection time, students shared their ideas; Roberto asked two students to 

record all of the answers on the board.

Many students offered part-whole interpretations of the fraction, repre-

sented by the shading of ​ 3 _ 
4
 ​ of a square, rectangle, or circle, accompanied 

by explanations such as Tatiana’s: “I have a cookie and eat a quarter of 

it, so three-fourths is left. I see the picture of the circle with a quarter of it 

missing.”

Another student, Kaleb, used his class instead of a region to explain his 

idea of ​ 3 _ 
4
 ​ :

Kaleb: 21 students in our class!

Roberto: How is 21 students an interpretation of ​ 3 _ 
4
 ​ ?

Kaleb: We’re 28 students in this class. I split the class in four 

groups of seven students. Three groups is 21 people, so that’s 

three-fourths of our class.

Roberto: Ah! Now I see. Can anyone explain in what way 

Tatiana’s ​ 3 _ 
4
 ​ of a cookie and Kaleb’s ​ 3 _ 

4
 ​ of you 5th graders are 

different and in what way they’re the same?

After an insightful discussion about the difference between discrete 

quantities (such as students, tables, and marbles) and continuous quanti-

ties (such as time, money, length, and area), Roberto identified for stu-

dents their most popular interpretation of ​ 3 _ 
4
 ​ as the “part-whole” meaning 
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18  //  Unpacking Fractions

of a fraction: “When we partition the whole or set into four equal parts and 

take three parts, then ​ 3 _ 
4
 ​ is one part, ​ 1 _ 

4
 ​ is the other part, and ​ 4 _ 

4
 ​ is the whole.”

Here are some other meanings students shared about ​ 3 _ 
4
 ​ :

•	 0.75 (3 students)

•	 45 minutes (2 students)

•	 75¢ (1 student)

•	 ​ 3 _ 
4
 ​ of a mile (1 student)

•	 75% (1 student)

Only about a quarter of the class expressed an idea other than the part of 

a region or set.

Roberto posed another question to the class:

Roberto: Suppose I decided to group 75¢, ​ 3 _ 
4
 ​ of a mile, and 45 min-

utes into one category of ideas you all came up with. What might 

be my criterion behind that grouping? Serena?

Serena: They’re all real.

Roberto: They’re all real-world examples—is that what you mean, 

Serena?

Serena: Yes.

Roberto: What do those examples tell us about the real world?

Another enlightening discussion ensued about measuring quantities 

in the real world, such as money (75¢), distance ​( ​ 3 _ 
4
 ​ of a mile)​, and 

time (45 minutes), and how when we measure real-life quantities, we 

often get non-integer measures, which are called fractional measures. 

Roberto’s more subtle goal for this discussion was to make explicit to 

students the implicit nature of the unit they took for granted in all three 

interpretations: $1.00 (or 100 cents), 1 mile, and 1 hour (or 60 minutes), 

respectively.
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Roberto ended this discussion on fractions by drawing four squares on 

the board and shading three.

He said, “First I asked you what images the symbol 3 over 4 conjured up 

in your mind. Now I’m asking what this set of four squares, with three 

of them shaded, illustrates to you.” In quasi-unison, the class answered, 

“Three-fourths.” Roberto waited a moment and then inquired, “Anything 

else?”

Finally, one student in the back row shyly asked, “Could it also be a 

fourth?”

“Explain your thinking,” Roberto prompted.

“One white square out of four.”

“Absolutely!” He paused. “Anything else?” This question was greeted 

with silence.

Roberto concluded with a homework assignment: “For tomorrow, think 

about whether the illustration could represent ​ 1 _ 
3
 ​ or ​ 4 _ 

3
 ​ , in addition to ​ 1 _ 

4
 ​ 

or ​ 3 _ 
4
 ​ .”

This experienced teacher, though new to the elementary school grades, 

benefited from the perspective on rational numbers expounded in the 

middle grades. His ability to align students’ developing ideas with the new 

ideas he wanted to teach—not by merely stating definitions or rules but 

through effective classroom math talk—was evident. He regularly made 

students’ ideas more explicit, for their own benefit as well as others’. He 

drew powerful connections among the different solutions provided as 

ways to guide his students to new mathematical territory: the distinction 

between discrete versus continuous quantities, which he differentiated as 

“quantities we can count” versus “quantities we can measure.” Instead of 
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Given the noise and confusion that can occur in a classroom of 20–30 students, there 

has been a growing interest in the notion of revoicing in classroom discourse. Enyedy and 

colleagues (2008) describe revoicing as a discursive teaching practice that promotes deeper 

conceptual understanding: teachers position students in relation to one another, which 

facilitates classroom debate and fosters mathematical argumentation. While that sounds 

like a sophisticated practice, it’s something that teachers do daily. Nevertheless, we can 

become more effective at revoicing by being more mindful. For example,

•	 We can respond neutrally. When we revoice a correct answer, is our restatement 

accompanied by a smile of approval or an affirming tone of voice? Conversely, is 

our restatement of an incorrect answer tainted by a frown or an interrogative tone 

of voice? Rather than result in further classroom participation, such revoicing 

ironically cuts it short. If we add too much of our own thinking to our students’ 

utterances, we discourage them from reasoning further, both on their own thinking 

and on the contributions of others (O’Connor & Michaels, 1996).

•	 We can improve the effect of rebroadcasting students’ ideas by adding a verification 

right after a neutral reformulation, such as “Is that what I heard?” or “Is that what 

you just said?” If the restatement is for the purpose of clarity, try asking, “Is that 

what you mean?” or “Is that what you’re trying to say?” The ball is then back in the 

student’s court, and the discussion progresses.

•	 We can invite a student to do the revoicing, which ensures neutrality. Asking, “Did 

everyone hear what Sandra said?” in tones of interest or excitement is one way of 

20  //  Unpacking Fractions

Teaching Tip: Revoicing During Whole-Group Discussions

lamenting the high number of part-whole interpretations, he used them 

to review the notion of part-to-whole and the importance of the unit in 

measuring.

UnpackingFraction_Chapter_01.indd   20 1/28/17   4:54 PM



drawing attention to an answer or statement, whether correct or incorrect, that you 

wish to highlight or use as a teaching tool.

CCSS.Math.Practice.MP3 states that students will “construct viable arguments and 

critique the reasoning of others” (Common Core State Standards Initiative, 2010). If this 

is not yet an established mathematical practice in your classroom, then many students 

may answer that they did not hear Sandra’s response—but there’s always at least one 

student who did. Ask that student to revoice for the benefit of the whole class: “Can you 

please restate what you heard Sandra say?’
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Recognizing Misconceptions

Beneath the fraction symbol ​ 3 _ 
4
 ​ in particular, or the fraction symbol ​ a _ 

b
 ​ in 

general, lies a multitude of meanings and interpretations that students 

develop and come to know over time through a variety of out-of-school 

experiences and instructional tasks involving thinking, talking, gesturing, 

doing, operating, and solving. Traditionally, though, elementary school stu-

dents’ experiences with fractions have been restricted to the part-whole 

interpretation. More recently, mathematics educators and researchers 

have realized that this limited view of fractions has left students with an 

impoverished foundation for the complex system of rational numbers and 

operations. Consequently, teachers such as Roberto are making conscious 

attempts to discuss and explore all of the meanings of fraction symbols 

described in this chapter.

Limited Ideas About the Meaning of a Fraction

Rather than having misconceptions about the meaning of frac-

tions, what we observed in Roberto’s classroom is what research 

verifies: students’ ideas associated with fractions are limited. About 
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22  //  Unpacking Fractions

three-fourths of the 5th graders (20 out of 28) in the vignette gravitated 

toward the part-whole interpretation of ​ 3 _ 
4

 ​ and only one student thought 

of a fractional part of a set or collection rather than a fractional part of a 

region. Despite standards and curricula that claim to stress the measure, 

number, quotient, operator, and ratio meanings of fractions alongside 

the part-whole metaphor, the latter is most commonly used to intro-

duce fractions to young students because it builds on their grounded 

understanding of partitioning for equal sharing. However, for students 

acquainted with only the part-whole construct of ​ 3 _ 
4

 ​ (“three parts out of 

four equal parts”), the fraction ​ 5 _ 
4

 ​ will seem senseless: How can we take 

five parts out of only four equal parts? Further down the line, when study-

ing division with fractions, dividing a whole number by a fraction will 

seem meaningless as well: The expression 5 ÷ ​ 2 _ 
3

 ​ , or ​  5 _ 
2/3

 ​ or ​ 5 __ 
​ 2 _ 
3

 ​
 ​ will be inter-

preted as “5 parts out of ​ 2 _ 
3

 ​ parts” or even “5 parts out of (2 parts out of 

3 equal parts),” which is even harder for students to grasp than “5 parts 

out of 4.”

Difficulty Conceptualizing a Fraction as a Single Number

The CCSSM introductory standard in the grade 3 category “Number and 

Operations—Fractions” clearly states, “Develop understanding of fractions 

as numbers” (Common Core State Standards Initiative, 2010). However, the 

composite nature of fractions creates a serious obstacle. How is the mean-

ing of 3 combined with the meaning of 4 supposed to give meaning to the 

numeral ​ 3 _ 
4
 ​  ? Moreover, when students try to represent ​ 3 _ 

4
 ​ as a point on the 

number line, knowing the location of the points representing 3 and 4 on 

the number line doesn’t really serve them. Conceptualizing a fraction as a 

single entity is expressed in the upper elementary school grades by rep-

resenting a fraction as a single point on the number line. The fact that not 

one of Roberto’s students mentioned the idea that ​ 3 _ 
4
 ​ could be a number, 

or drew a point on the number line to show their thinking, confirms the 
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research on children’s primary difficulty when beginning their journey into 

fractions: thinking of a fraction as a single number.

Unpacking the Mathematical Thinking

Deeply understanding fractions involves knowing what the word fraction 

and the symbol ​ a _ 
b
 ​ mean, appreciating the different mathematical concepts 

associated with fractions, and knowing how these fit together in a web of 

related meanings. Two factors infuse a mathematical construct with mean-

ing: the mathematical theory behind the construct and the mathematical 

applications of the construct. Kieren (1976), Vergnaud (1979), and Freuden-

thal (1983) independently suggested that a fully developed rational number 

construct implies a rich set of integrated subconstructs, including part-whole, 

measure, quotient, ratio, and multiplicative operator. Since understanding 

fractions in grades 3–5 is a precursor to understanding rational numbers 

later on, it is essential that we begin in 3rd grade to introduce these related 

meanings of fractions, and their associated processes, by exposing students 

to multiple applications. We begin with the part-whole meaning of fraction.

The Part-Whole Meaning of ​ a _ b ​

While students have limited out-of-school contexts in which they can 

construct meaning for fractions, they do have extensive experience parti-

tioning, mostly with the goal of forming equal shares. Young children have 

a good understanding of constructing fractional parts of a whole, such as 

2 one-halves of a square sandwich, 3 one-thirds of a rectangular chocolate 

bar, or 4 one-fourths of a circular birthday cake. The parts are what result 

when the whole is partitioned into equal-size portions or fair shares.

Students are less comfortable with parts of a set, as we will see in later 

chapters. Roberto’s three shaded squares is an example of a part of a set 

of four squares.
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24  //  Unpacking Fractions

The CCSS Math Content.3.NF.A.1 states that students should interpret a 

fraction ​ a _ 
b
 ​ as the quantity formed by a parts of size ​ 1 _ 

b
 ​ (Common Core State 

Standards Initiative, 2010) and does not use the traditional phrase heard in 

classrooms everywhere: “​ a _ 
b
 ​ is a parts out of b equal parts.” What is behind 

this subtle linguistic distinction? Namely, it guards students against infer-

ring four ideas that don’t serve them as they move through the grades and 

construct more complex ideas associated with the symbol ​ a _ 
b
 ​ :

•	 Inclusion. When ​ a _ 
b
 ​ is stated as “a parts out of b equal parts,” there 

is a sense that the a parts are a subset of the b parts. From this, 

students conclude that the whole and the parts must be of the same 

nature. Consequently, the question “What fraction of the children 

in the school choir are girls?” makes sense to them because girls 

are children—but when later tackling ratios, questions like “What 

fraction of the number of boys in the choir is the number of girls?” 

will confuse them because girls are not boys.

Note: An analogy with a continuous quantity is “What fraction of 

the salad dressing is oil [part to whole → fraction]?” versus “What frac-

tion of the oil volume is the vinegar volume [part to part → ratio]?”

•	 Size. Interpreting ​ a _ 
b
 ​ solely as a parts out of b equal parts infers that 

a must be smaller than b, since we take the a parts out of the b parts. 

Thus, fractions ​ 2 _ 
3
 ​ and ​ 4 _ 

5
 ​ make sense to students, but ​ 7 _ 

5
 ​ and ​ 10 _ 

13
 ​ do not—

how can we take 7 parts out of 5 parts? This language consequently 

favors “proper” fractions (i.e., those that are less than 1).

Note: In my opinion, we should gradually do away with the 

terms proper or improper to characterize fractions. The non-

mathematical meaning of the adjective improper only exacerbates 

students’ discomfort with fractions greater than 1. Once students 

understand the concept of a fraction, and the procedure for 
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constructing it, placing ​ 5 _ 
3
 ​ on a number line is no more difficult for 

them than placing ​ 2 _ 
3
 ​ . Treating all fractions equally, whether they 

are less than or greater than 1, will make for a more seamless 

transition to rational numbers.

•	 Separate numbers. The restricted “a parts out of b equal parts” 

interpretation has a delaying effect on the progression toward 

viewing a fraction as a single number. If, when seeing ​ 3 _ 
5
 ​ , a student 

thinks exclusively of the actions “I cut the whole into 5 parts and 

then take 3 parts,” then the student is mentally manipulating two 

different numbers or quantities: 5 parts on the one hand, and 

3 parts on the other. This delays the more mature understanding 

of ​ 3 _ 
5
 ​ as a single number, with a representation as a unique point on 

the number line.

•	 Additive thinking. Perhaps the greatest limitation of the “a out of 

b” language is the obstacle it presents to multiplicative thinking, an 

important precursor to proportional thinking. Consider Roberto’s 

fraction ​ 3 _ 
4
 ​ . Thinking of it in terms of “the parts I shade or take” 

and “the parts I don’t shade or don’t take” is thinking additively, 

because ​ 3 _ 
4
 ​ + ​ 1 _ 

4
 ​ = ​ 4 _ 

4
 ​ .

1 Set

+ =

[Parts] [Whole]

3
4

1
4

4
4

3
4

1
4
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On the other hand, interpreting ​ 3 _ 
4
 ​ as “3 parts of size  ​ 1 _ 

4
 ​ ” is thinking 

multiplicatively: I first consider the fractional unit ​ 1 _ 
4
 ​ of the set (represented 

by one square), then I count three copies (or iterations) of ​ 1 _ 
4
 ​—or better 

yet, “I multiply 3 times the fractional unit ​ 1 _ 
4
 ​ to get ​ 3 _ 

4
 ​ .”

1 Set

is 3 copies of or3
4

1
4

3 × 1
4

or 3
4

of the set.represents 1
4

represents 3 parts of size .1
4

With this multiplicative mindset, the fraction ​ 5 _ 
4
 ​ is conceptualized no 

differently: “I first identify the fractional unit ​ 1 _ 
4
 ​, then I think of ​ 5 _ 

4
 ​ as ‘5 itera-

tions of ​ 1 _ 
4
 ​ ’ or ‘5 times ​ 1 _ 

4
 ​ .’”

1 Set

is 5 copies of or5
4

1
4

5 × 1
4

or 5
4

of the set.represents 1
4

represents 5 parts of size .1
4
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The Measure Meaning of ​ a _ b ​

The concept of the whole underlies the concept of a fraction.

Merlyn J. Behr & Thomas R. Post (1992, p. 213)

From part of a whole to compared with a whole. Barnett-Clarke, 

Fisher, Marks, and Ross (2010) noted, “The interpretation of rational 

number [fraction] as a measure pushes us beyond our interpretation of a 

fraction as a part of a whole to the broader idea of a fraction as a quantity 

compared with a whole” (p. 23). When a child says, “I ran half a kilometer,” 

the measure ​ 1 _ 
2
 ​ km tells us the distance the child ran compared with the 

whole, 1 km, which in this case is a unit of measure for distance. When a 

child says, “I’m five and a half,” the inferred unit of measure (which the 

child is too young to know!) is one year. The measure ​ 11 _ 
2
 ​ years, or the 

mixed number 5​ 1 _ 
2
 ​ years, therefore, tells us the amount of time the child has 

lived since birth—or the child’s age—compared with the whole, 1 year. A 

good way of making children aware from a young age of the importance of 

associating a number to the unit of measure (which is often not specified 

but merely implied) in any measurement is to probe with questions such 

as, “Do you mean five and a half days old?”

Measuring is a multiplicative process par excellence. The process of 

measuring requires multiplicative thinking in two ways:

•	 In the unit conversion: Students “use their knowledge of 

relationships between units and their understanding of 

multiplicative situations to make conversions, such as expressing 

. . . 3 feet as 36 inches” (NCTM, 2000, p. 172). Indeed, if 1 foot is 12 

inches, then 3 feet is three times more, or 36 inches.
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•	 In the nature of the measuring process itself: Calculating the length 

of a book in non-standard units, such as staples, means figuring out 

how many times the staple (or unit of length) fits in a straight line, 

end to end, from one end of the desk to the other. When sufficient 

copies of the unit of measure are available, lining them up offers a 

nice visual of this multiplicative process.

An important inverse relationship. In measuring, there is an impor-

tant relationship between the size of the unit of measure and the number 

of units it takes to measure a quantity. For example, if the trapezoid in 

Figure 1.1, which is half the area of the hexagon, is selected to be one unit 

of area, then the hexagon has an area of two units. On the other hand, if 

the triangle, which is three times smaller than the trapezoid, is selected 

as the new unit of area, the same hexagon now has an area of six units, or 

three times greater than the first measurement.

FIGURE 1.1
Area: An Example of Two-Dimensional Measure

1
6

1
2

Note: Consider the size of the unit of measure for area: it is inversely proportional to the area 
measure of the hexagon.

An analogous situation in linear measure (length) is illustrated by 

different measures of the same stick, depending on the choice of unit 

(Figure 1.2). If the unit of measure is half of the stick’s length, then the stick 

measures two units. But if the unit of measure changes to one-quarter of 

the stick’s length—half the size of the first unit—then the new measure of 

the stick’s length is four units, or twice the first measurement.
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At around age 7, students begin to observe this inverse relationship 

between the size of the unit of measure and the number of units it takes to 

express the measure of a given quantity. The role of instruction in helping 

students make their observation explicit is crucial. Use these measuring 

experiences to help students see why the ordering of unit fractions is the 

inverse of the ordering of whole numbers. 

>1
1

1
2

> 1
3

> ... yet   1 < 2 < 3 < 4 ...1
4

Fractions and measures: the importance of the unit. Another 

connection between a measure and a fraction, which, when made explicit, 

helps students better understand the meaning of a fraction, is the stated 

or implied unit. We saw that any measure, be it 4, ​ 3 _ 
4

 ​, or 5​​ 1 _ 
2
 ​ , is always stated 

in reference to a whole or a unit of measure, say, 4 quarts, ​ 3 _ 
4

 ​ of a mile, or 

5​ 1 _ 
2
 ​​ years. If the unit is unknown, then the number stated alone gives no 

sense of “How much?” This is also true for a fraction, which has no mean-

ing if the whole or unit is unknown. Chapter 3 develops this important 

concept.

FIGURE 1.2
Length: An Example of One-Dimensional Measure

2 units

A stick

A unit of measure its size
1
2

3 units

A unit of measure its size
1
3

4 units

A unit of measure its size
1
4

Note: Consider the size of the unit of measure for length; it is inversely proportional to the 
length measure of the stick.
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In all actions of measuring, we find structural similarities. Measuring is the process 

of assigning numbers to objects—it is understood that some attribute of the object 

(e.g., length, area, or volume) is being measured. The process consists of three steps:

1.	Assign the number 1 to a selected unit of measure, non-standard or standard.

2.	 Express the measure of the object’s attribute of interest as a certain number of “copies” 

of this unit (which is almost always a fraction, either less than or greater than 0).

3.	Record the measurement as a number followed by the unit of measure.

For students to make sense of the use of fractions in their lives, they should expe-

rience multiple instances of measuring—both the process of measuring (the action) 

and the assignment of number to measurement (the product). They should under-

stand how measurement instruments work so they can learn to use them to describe 

the physical world in meaningful ways. To construct the concepts of perimeter, 

area, and volume, they should actually wrap a diameter string around a circle, tile a 

region with different polygonal two-dimensional (2-D) shapes, or fill a container with 

unit cubes—and find that the result is almost never a whole number. In the process, 

students come to understand that quantities are actually attributes of objects (or phe-

nomena) that are measurable. It is precisely our capacity to measure them that makes 

them quantities!

In 3rd and 4th grade, students assign whole numbers to these real-world objects, 

and then fractions and decimals: a length, a period of time, a price. In 5th and 6th grade, 

they begin to generalize perimeter, area, volume, and other measurement formulas, 

many of which contain fractional expressions, such as ​ 1 _ 
2
 ​ bh or ​ 1 _ 

2
 ​ × base × height, for the 

area of a triangle. In 7th and 8th grade, measurement turns to more complex phenomena, 

such as rates of change (e.g., speed), which are also replete with fractional expressions. 

30  //  Unpacking Fractions

CCSS.Math.Practice.MP2: Reason Abstractly and Quantitatively
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More complex than simple numbers or expressions, the products of the measurement 

process in these grades are mathematical models (symbolic algebraic expressions, 

equations, systems of equations, etc.).

Measurement in grades 3–8 is thus a quintessential area of mathematical learning 

that requires students to juggle quantitative reasoning with abstract reasoning. We must 

offer students more quantitative experiences—and fewer computations with numbers 

disconnected from concrete situations—that help them ground their fractions, frac-

tional expressions, and symbolic and algebraic expressions in the world they live in. If 

instruction fails to help students connect abstract symbolic representations with the 

problems or situations from which they emerged, students will not be able to build rich 

meanings of fractions. The students who do understand the principle of measuring attri-

butes of objects and quantifying phenomena will have acquired insight into the impor-

tant connection between real-world contexts and abstract mathematical models—the 

core of all scientific investigation!
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The Quotient Meaning of ​ a _ b ​

Many students have difficulty conceptualizing division and its relation-

ship to multiplication and fractions. In later chapters, we discuss division 

with fractions in more detail. Here, we focus on the interpretation of a frac-

tion ​ a _ 
b
 ​ as referring to the division operation a ÷ b and its resulting quotient. 

To this end, we review four situations in which students encounter divi-

sion with whole numbers, where the dividend is greater than the divisor 

(as in 20 ÷ 4).

The two big division ideas: partitioning and grouping. Consider the 

mathematical expression 20 ÷ 4. What situations might it model? “We 

want to share 20 apples equally among 4 students. How many apples 

does each person get?” would be a classic example of partitive division, 
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because we partition the 20 apples into 4 equal or fair shares, modeled by 

20 ÷ 4. Partitioning or sharing is the action associated with this mental 

image of division; the result of the division action or the quotient ​ 20 _ 
4
 ​ is 

the equal share of 5. Both children and adults are most comfortable with 

this meaning of division; the number of containers is known (given), but 

the number or amount contained in each is unknown (sought), as shown 

in Figure 1.3.

FIGURE 1.4
Modeling 20 4 4 as Quotative Division

4

. . . ?

4

FIGURE 1.3
Modeling 20 4 4 as Partitive Division

1

? ? ? ?

2 3 4

Now suppose we needed to pack all 20 apples in bags of 4 apples each. 

The new question would be “How many baskets do I need?” In this case, 

the number or amount contained is known (given), but the number of 

containers, modeled by 20 ÷ 4, is unknown (sought), as shown in Figure 1.4. 

The action associated with this idea of division is grouping, segmenting, or 

portioning: making equal groups of 4 apples until all 20 apples are used up. 
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The result of the division action or the quotient of ​ 20 _ 
4
 ​ is the number of bas-

kets required, which is 5. This less understood mental image of division is 

known as quotative or subtractive measurement.

Two other division ideas: deriving factors and reducing quantities. 

Even though students can easily parrot the sentence “Division is the 

inverse of multiplication,” using this relationship to solve problems 

doesn’t come naturally. In 3rd grade, students learn through exploration 

that the total number of square units in the area of a rectangle is the 

product of its two dimensions, later symbolized algebraically by the area 

formula A = l × w. They are expected to know how to derive one dimen-

sion of a rectangle if they know the area and the other dimension.1 Say, for 

example, that the area of a rectangle is 20 square feet and only one dimen-

sion, 4 feet, is known. The quotient of 20 ÷ 4 will express the length, in feet, 

of the rectangle’s second dimension. Here, the division action is deriving 

one factor of a multiplicative formula, knowing the other factor and their 

product. The quotient, ​ 20 _ 
4
 ​ or 5, is the numerical value of the target factor.

A similar derivation process is required in Cartesian product 

situations—yet another conceptualization of multiplication. For example: 

“Jordan can make 20 different outfits by combining his shirts and his 

4 pairs of pants. If an outfit consists of 1 shirt and 1 pair of pants, how 

many shirts does Jordan have?” Structurally, this problem is identical 

to the preceding one: O (# of outfits) = s (# of shirts) × p (# of pants). 

In this case, 20 = s × 4. The number of shirts is derived by the division 

action 20 ÷ 4, and the quotient, ​ 20 _ 
4
 ​ or 5, is the number of Jordan’s shirts. 

1 CCSS.Math.Content.3.MD.D.8: Grade 3, Measurement and Data: Solve real world and 
mathematical problems involving perimeters of polygons, including finding the perimeter given 
the side lengths, finding an unknown side length, and exhibiting rectangles with the same 
perimeter and different areas or with the same area and different perimeters (Common Core 
State Standards Initiative, 2010).
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The difference, however, between the products of l × w and s × p lies in 

the nature of the units: l × w generates square units, mathematical units for 

measuring area (dependent on the generating linear units), whereas s × p 

creates completely new non-mathematical units called outfits.

Let’s consider one more problem. Suppose you insert a 20 cm × 13 cm 

picture into a document on your computer; however, you need to reduce 

the picture’s dimensions to a quarter of their original lengths so that 

its area is ​ 1 _ 
16

 ​ of its original area. Here, 20 ÷ 4 expresses the length of the 

reduced picture (Figure 1.5).

FIGURE 1.5
Modeling 20 4 4 as Length Reduction

20 cm

13
 c

m

= 5 cm20
4

= 3.25 cm13
4

In this case, the division action is reducing; the dividend is the quantity 

being reduced, the divisor is the “shrinking factor” by which it is being 

reduced, and the quotient, ​ 20 _ 
4
 ​ or 5, represents the value of the quantity 

after the reduction. This interpretation of division involves one quantity 

rather than two, and there’s no action of splitting the original quantity into 

parts: a single quantity (in this case, length) undergoes a transformation.

This “shrinking” effect of division is developed in the middle grades 

through the study of similar figures. Multiplication by a scale factor is used 
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2 For an in-depth analysis of multiplication metaphors for grades 3–5, see Planting the Seeds 
of Algebra, 3–5: Explorations for the Upper Elementary Grades (Neagoy, 2014, pp. 111–148).

to denote the shrinking or stretching effect. In this example, from large to 

small, the scale factor for the shrinking or reduction of the picture’s length 

is ​ 1 _ 
4
 ​ , because 20 × ​ 1 _ 

4
 ​ = 5. If we moved in the opposite direction, from small 

to large, the stretching or expansion scale factor is 4, because 5 × 4 = 20.

Connecting division and quotients to fractions. Operations are the 

means by which we express, describe, and solve problems in the social 

and physical world. Division metaphors give meaning to fractions them-

selves and are the foundation for division with fractions, which we will 

explore in later chapters.2 The situations modeled by the same equation, 

20 ÷ 4 = 5, illustrate four distinct interpretations of the division action 

20 ÷ 4 and of its corresponding quotient ​ 20 _ 
4
 ​ , which is a fraction greater 

than 1. In each case, the significance assigned to dividend, divisor, and 

quotient are different.

The challenge now is to revisit these metaphors for fractions less than 

1 and explore if the meanings of process and product still hold. For example, 

consider 3 ÷ 4 and ​ 3 _ 
4
 ​ :

•	 Can we partition three things equally among four people? How do 

we express the equal shares?

•	 Can a rectangle whose area is 3 square feet have a side length of 

4 feet? What would be the other side length?

•	 Can we imagine reducing a rectangle with a side length of 3 cm to ​ 1 _ 
4
 ​ 

of its length? How would we express this reduced side length?

•	 Do all interpretations work for 3 ÷ 4 and ​ 3 _ 
4
 ​ as they do for 20 ÷ 4  

and ​ 20 _ 
4
 ​ ?

Investigate these questions with your students!
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Through the repeated actions of partitioning a whole into b equal parts, stu-

dents realize on their own that the larger the b value, the smaller the equal parts 

named ​ 1 _ 
b
 ​ . They say things like “The more people who share a pizza, the less we each 

get to eat!” What they are learning from an algebraic perspective is that when a whole 

is divided by b, the answer is ​ 1 _ 
b
 ​ . In a few years, they will express this symbolically 

as “1 ÷ b = ​ 1 _ 
b
 ​ .” When they are able to abstract this big idea to any number n, it will 

become 1 ÷ n = ​ 1 _ n ​ .

But there is a “companion” big idea that we could help instill simply by routinely 

posing the right questions as friendly reminders. For instance, when working with thirds, 

pose this question: “So, how many thirds do you need to make the whole?” When work-

ing with eighths, ask, “Remind me, how many eighths would I need to make a whole?” 

This will help automatize the reaction that it takes b b-ths to make a whole, or ​ 1 _ 
b
 ​ × b = 1. 

Generalizing as we did for any number n other than 0, we obtain ​ 1 _ n ​ × n = 1.

Taken together, these two algebraic equations summarize the process of dividing a 

whole by any number n, then multiplying the parts by n to get back the whole:

1 ÷ n = ​ 1 _ n ​ (we partition, decompose, or divide)

​ 1 _ n ​ × n = 1 (we iterate, recompose, or multiply)

Though this may seem obvious, I can assure you that many middle school students 

do not have the helpful reflex of thinking, “The number 1 can be written as the quotient 

of any number n over itself, or any algebraic expression E over itself”:

1 = ​ n _ n ​ = ​ E _ 
E

 ​, a conclusion drawn from ​ 1 _ n ​ × n = 1

Routinely asking, “How many thirds do you need to make 1?” will go a long way!

36  //  Unpacking Fractions

A Bridge to Algebra:  
“How many thirds do you need to make a whole?”
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The Ratio Meaning of ​ a _ b ​

Another possible interpretation of the symbol ​ a _ 
b
 ​ is a ratio. Although they 

have been relegated to the middle grades in the past, more and more math 

programs are including the concept of ratios prior to 6th grade, thanks to 

the Common Core State Standards. The word ratio is scary to some of us, 

as it conjures up negative emotions associated with complex ratio, rate, or 

proportion problems from our own middle school years. But it needn’t be. 

Fifth grade students and even some 4th graders can develop an intuitive 

and informal notion of the ratio concept.

A ratio expresses a relationship, a multiplicative comparison, 

between two or more quantities. It compares their relative counts or 

measures. For example, suppose that a total of 12 people attended a 

picnic—3 chaperoning adults and 9 children. At least four ratios can be 

created from this information, two part-to-whole ratios, similar to fractions, 

and two part-to-part ratios, which are different from fractions.

•	 The ratio of children to the total number of people is an example of 

a part-whole ratio and can be denoted in a variety of ways, including 

9 children to 12 people, 9 to 12, 9:12, and ​ 9 _ 
12

 ​ . This ratio tells us that 

three out of every four people were children.

•	 The children-to-adults ratio, on the other hand, is a part-part ratio. 

This ratio, which can be expressed as 9 children to 3 adults, 9 to 3, 

9:3, or ​ 9 _ 
3
 ​ , tells us that there were three times as many children as 

adults at the picnic.

3 adults 9 children
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Using A, C, and P for the number of adults, children, and people at the 

picnic, respectively, Figure 1.6 lists all four ratios.

FIGURE 1.6
Four Ratios Derived from the Picnic Problem

= 3
12

A
P

= 1
4

= 9
12

C
P

= 3
4

=A
C

3
9

= 1
3

=C
A

9
3

= 3
1

Part-to-whole ratios Part-to-part ratios

A ratio need not be expressed in fraction notation, but it can be. 

When ratios are first introduced, many U.S. math programs use the 

colon notation to distinguish a ratio from the fraction notation—but 

then the fraction notation is quickly introduced. We will discuss the dif-

ferences between ratios and fractions in more depth, but for now here 

are two distinctions:

•	 Fractions are always part-whole comparisons, but ratios can be 

either part-whole or part-part comparisons.

•	 Fractions that express part-whole relationships, quotients, 

measures, and multiplicative operators are always rational 

numbers, but fractions expressing ratios need not be. The four 

ratios in the picnic problem were all rational numbers. But a 

famous ratio, familiar to readers, that is not a rational number 

is π, the Greek equivalent for the letter p. Pi represents the ratio 

of the circumference to the diameter of all circles. The fact that 

circumference to diameter, C : D or ​ C _ 
D

 ​, is 3.14159. . . simply means 

that the length of the circumference of any circle is about 3.14 times 
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the length of its diameter. To express this in a more visual and 

child-friendly way: it takes three diameters plus a bit more to wrap 

around any circle.

The Multiplicative Operator Meaning of ​ a _ b ​

The final interpretation of a fraction in the intermediary grades is a 

multiplicative operator. In this sense, ​ a _ 
b
 ​ “changes or transforms another 

number or quantity by magnifying, shrinking, enlarging, reducing, expand-

ing, or contracting it” (Barnett-Clarke et al., 2010, p. 27), depending on 

the nature of the quantity it’s acting on. The action of change here is 

multiplication. Consider first a measurable quantity, such as a strip of 

tape of length l, and the fraction ​ 2 _ 
3
 ​ . What does ​ 2 _ 

3
 ​ l mean from the operator 

perspective?

We can think of ​ 2 _ 
3
 ​ as having a stretching-shrinking effect on length l. 

First, we stretch l by a factor of 2 (the numerator as stretcher), and then 

we shrink the resulting length, 2l, by a factor of 3 (the denominator as 

shrinker). The result is one-third of 2l, or ​ 2 _ 
3
 ​ l (Figure 1.7).

FIGURE 1.7

The Stretching-Shrinking Effect of ​ 2 _ 3 ​ on l

ST
E

P
 1

ST
E

P
 2

Starting length l 

l 

Stretch length l by a factor of 2.

2l

(2l )3
3

(2l ) = l1
3

2
3

Partition 2l into 3 thirds.

Shrink 2l by a factor of 3.
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As students’ understanding of fractions matures and they are able 

to see fractions as numbers and to quickly assess their magnitude with 

respect to the whole-number or fraction benchmarks they know well, 

instead of decomposing the operator effect of ​ 2 _ 
3
 ​ on l into two steps 

(× 2 followed by ÷ 3), they simply shrink l in one step to the resulting ​ 2 _ 
3
 ​ l. 

Similarly, they would stretch or shrink l in one step to get ​ 7 _ 
3
 ​ l, ​ 3 _ 

2
 ​ l, or ​ 3 _ 

4
 ​ l 

(Figure 1.8). Just as they would stretch or shrink l to get 2l, 3l, or ​ 1 _ 
2
 ​ l 

(Figure 1.8).

FIGURE 1.8
Whole and Fractional Multiplicative Operators 
Acting on Length l

l

3 × l

2 × l

× l7
3

× l3
2

× l3
4

× l1
2

× l1
6

This stretching-shrinking metaphor of multiplication is more power-

ful than repeated addition and serves students better as they move 

from whole-number multiplication to fraction multiplication. Indeed, 

interpreting 3 × n as n + n + n breaks down when we move to ​ 3 _ 
4
 ​ × n, whereas 

stretching (e.g., 3 × n) or shrinking ​(e.g., ​ 3 _ 
4
 ​ × n)​ works for any multiplier.

Next, consider a countable quantity, such as a set S containing six ele-

ments. Interpreting ​ 2 _ 
3
 ​ as an operator in the expression ​ 2 _ 

3
 ​S means that ​ 2 _ 

3
 ​ has 

a multiplier-divider effect on the number of elements comprising S, which 

is six. First, we multiply 6 by 2 (the numerator or multiplier), and then 
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we divide the resulting number, 12, by 3 (the denominator or divisor) to 

obtain 4, the number of elements in the set ​ 2 _ 
3
 ​S (Figure 1.9).

FIGURE 1.9

Multiplicative Operator ​ 2 _ 3 ​ Acting on Set S  

Multiply by 2

The starting
set S with
6 elements

The number of
elements (6) is
augmented: 6 ×    = 12

The number of
elements (12) is
reduced: 12 ÷    = 4

Divide by 3

STEP 1 STEP 2

Again, as students move through the grades, their increasing familiarity 

with fraction values allows them to quickly see ​ 2 _ 
3
 ​ of 6 and therefore proceed 

from 6 to 4 in one step. That said, it is nevertheless important to under-

stand the decomposition of multiplying a number or quantity by ​ a _ 
b
 ​ into two 

steps (multiply by a, then divide by b), as this process is not only appli-

cable to all fractions but also especially useful with less familiar fractions.

Finally, since multiplication and division have equal status in order of 

operations, students will discover (with your prodding and questioning) 

that multiplying first and then dividing is equivalent to dividing first and 

then multiplying. Similarly, stretching first and then shrinking is equivalent 

to shrinking first and then stretching. As students become more com-

fortable with symbolism, they can translate these equivalent processes 

as follows:

•	 n → 2 × n → ​ 2 × n _ 
3
 ​  → ​ 2 _ 

3
 ​  n, which can also be thought of as  

n → 2 × n → ​ 1 _ 
3
 ​ × (2 × n) → ​ 2 _ 

3
 ​  n

•	 n → ​ n _ 
3
 ​ → 2 × (​ n _ 

3
 ​ )​ → ​ 2 _ 

3
 ​  n, which can also be thought of as  

n → (​ 1 _ 
3
 ​ × n )​ → 2 × (​ 1 _ 

3
 ​ × n )​ → ​ 2 _ 

3
 ​  n
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The mental processes employed by students engaged in fraction tasks are often 

quite different from the instructional procedures they are taught. Through quality 

mathematical discourse—lately referred to as math talk—we can access what students 

are really thinking and how they are producing their answers and then consider how 

those findings might modify our instruction. Regarding the interpretation of a fraction 

as a multiplicative operator (say, ​ 2 _ 
3
 ​ ) operating on any number n, different views usually 

emerge within the same class, depending on students’ prior experiences, knowledge, 

and instruction:

Alex: I first multiplied the number by 2, and then I divided by 3.

Talia: I put a 1 under the number (​ n _ 
1
 ​), and then I multiplied the numerator 

by 2 and multiplied the denominator by 3.

Alex’s approach, the one explored in this chapter, uses whole-number multiplication 

and division. Note that if 2n is not divisible by 3, the answer remains in the fraction 

form ​ 2n _ 
3
 ​ . This approach is taught and learned well before the standard algorithm for 

fraction multiplication.

By contrast, Talia has clearly been taught the standard algorithm for multiplying 

a fraction by a number n and has applied it correctly—though it is unclear whether 

she fully understands it. The important pedagogical point here is to reconcile both 

approaches so all students see they are equivalent, even though they may hear Alex say-

ing “divided by 3” and Talia saying “multiplied by 3.” 

A teacher’s intervention at this point is crucial.

42  //  Unpacking Fractions

Teaching Tip: Math Talk
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The Rational Number Meaning of ​ a _ b ​  
Embodied by the Number Line

The rational-number concept is the outgrowth of extensive work on 

fractions over many years—the beautiful confluence of the part-whole, 

measure, division/quotient, multiplicative operator, and even ratio 

concepts. When conceptualizing a number in grades 3–8, be it whole, 

integer, or rational, students visualize its physical embodiment as a single 

point on a number line—a line with a selected point called the origin, O, 

composed of units of 1. (“Number” as an abstract concept occurs much 

later.) In locating or placing a fraction (say, ​ 4 _ 
5
 ​ ) on the number line, we find 

aspects of all of the connected concepts we’ve discussed.

4
5

3 4210

•	 Part-whole. The whole (the unit from 0 to 1) is sliced into five parts 

called fifths. We count four copies (iterations) of ​ 1 _ 
5
 ​ , starting from the 

origin, and mark the point ​ 4 _ 
5
 ​ .

•	 Measure. If we consider the unit of measure to be the line segment 

from 0 to 1, then the length of the line segment from 0 to ​ 4 _ 
5
 ​ 

represents the measure ​ 4 _ 
5
 ​ of the unit.

•	 Division/quotient. Partitioning the line segment from 0 to 4 into five 

equal “shares” yields five smaller line segments of length ​ 4 _ 
5
 ​. Try it!

•	 Multiplicative operator. There are two ways to consider this: 

1.	� Stretch the unit by a factor of 4 (i.e., land on 4) and then shrink 

the four-unit segment by a factor of 5 to land on ​ 4 _ 
5
 ​ . 
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2.	� Shrink the unit by a factor of 5 (i.e., land on ​ 1 _ 
5
 ​ ) and then stretch 

the ​ 1 _ 
5
 ​ segment by a factor of four to land on ​ 4 _ 

5
 ​ .

•	 Ratio. This is more complex. We can form many ratios of lengths, 

such as 1:​ 4 _ 
5
 ​ and 4:​ 4 _ 

5
 ​ . The ratio of 1 to ​ 4 _ 

5
 ​ is ​ 5 _ 

4
 ​ because 1 is ​ 5 _ 

4
 ​ (or 1 1 _ 

4
 ​ ) 

times longer than ​ 4 _ 
5
 ​ . The ratio 4 to ​ 4 _ 

5
 ​ is 5 because 4 is 5 times longer 

than ​ 4 _ 
5
 ​ . Take a moment to verify this!

Targeting Misconceptions with 
Challenging Problems

Even though there are ample fraction questions and problems available 

online and in books, many of them are rote problems that students carry 

out mechanically without deepening their understanding of fractions. We 

must formulate more thought-provoking problems that force students to 

change gears from number numbness to productive struggle. Seven such 

problems are suggested in the following list.

	 Problem 1: Multiple meanings. Pick a fraction ​ a _ 
b
 ​ of your choice. For 

each of the following cases, describe a real-world situation, and then 

formulate a question to which your fraction is the answer:

•	 ​ a _ 
b
 ​ is a part of a whole.

•	 ​ a _ 
b
 ​ is a measure.

•	 ​ a _ 
b
 ​ is a quotient (the result of a division).

•	 ​ a _ 
b
 ​ is a multiplicative operator.

•	 ​ a _ 
b
 ​ is a ratio.
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	 Problem 2: Part-whole meaning. We know that a fraction can repre-

sent a part of a region or a collection.

•	 Draw, shade, or otherwise represent the fractional part of 

each figure.

of(a) 1
3

of(b) 3
4

of(c) 2
5

of(d) 7
6

•	 Draw, shade, or otherwise represent the fractional part of each 

given set.

of(a) 1
2

of(b) 2
3

of(c) 5
3

of(d) 7
4

	 Problem 3: Number and linear measure meanings. We know that a 

fraction can represent a number or a measure.

•	 Place a point on the number line that represents the number ​ 4 _ 
5
 ​ .

4 62 5310
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•	 This piece of packing tape is 5 units long (using the unit of measure 

in the previous number line). Draw a piece of tape below this one 

that is ​ 4 _ 
5
 ​ as long.

•	 In what ways are your number line and tape models similar? 

Explain.

•	 In what ways are your number line and tape models different? 

Explain.

	 Problem 4: Multiplicative operator meaning. Remember that a frac-

tion can represent a multiplicative operator. Imagine that the figures 

below are flexible bands of fabric and that each piece can be stretched 

or shrunk to a desired length. Draw the result of the stretching or 

shrinking effect of each fraction on the given length of fabric.

of2
3

of7
4

of5
2

of2
5

	 Problem 5: Connecting part-whole, quotient, and ratio meanings. 

Use everything you have learned so far about fractions to complete 

the following activities.

•	 Draw a rectangular chocolate bar, and shade ​ 5 _ 
6
 ​ of the bar, representing 

the part of the whole that you ate (i.e., the part-whole meaning of the 

fraction ​ 5 _ 
6
 ​ ).

•	 Draw five bars of chocolate that are the same size. Then model 

with a drawing or diagram how you might share the five bars 
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equally among six people (i.e., the quotient meaning of the 

fraction ​ 5 _ 
6
 ​ )​.

•	 In what ways are the fractional meanings in the first two 

activities related? Are there other ways that they could be 

related? Explain.

•	 Drawing a rectangle for a chocolate bar once again, explain what a ​ 5 _ 
6
 ​ 

part-to-whole ratio might represent. Do the same for a ​ 5 _ 
6
 ​ part-to-part 

ratio.

	 Problem 6: Rational number meaning. You have learned that a frac-

tion can represent a rational number, which is shown by a point on the 

number line.

21

A B

0

•	 Looking at this number line, cross out the fractions that clearly 

could not be represented by point A:

​ 1 _ 
2
 ​ ​  3 _ 

5
 ​ ​  7 _ 

6
 ​ ​  7 _ 

10
 ​ ​  3 _ 

2
 ​ ​  4 _ 

5
 ​ ​  5 _ 

4
 ​ ​  5 _ 

7
 ​ ​  3 _ 

4
 ​ ​  4 _ 

3
 ​

•	 Circle the fractions that could be represented by point B:

​ 8 _ 
5
 ​ ​  2 _ 

3
 ​ ​  5 _ 

4
 ​ ​  7 _ 

10
 ​ ​  10 _ 

7
 ​ ​  3 _ 

2
 ​ ​  4 _ 

3
 ​ ​  9 _ 

7
 ​ ​  3 _ 

4
 ​ ​  5 _ 

3
 ​

•	 Place point C on the number line to represent the number ​ 7 _ 
4
 ​.  

Explain how you used the values of the numerator and denominator 

of the fraction to find its place on the line.
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48  //  Unpacking Fractions

	 Problem 7: Whole numbers and rational numbers on the number 

line. Use everything you have learned so far about fractions to solve 

the following problems.

N1

321

•	 The whole numbers 0, 2, and 3 segment number line N1 into four 

intervals. Place a fraction, as accurately as you can, in each of the 

four intervals.

1
2

5
4

11
3

N2

•	 The fractions ​ 1 _ 
2
 ​ , ​ 5 _ 

4
 ​ , and ​ 11 _ 

3
 ​ segment number line N2 into four 

intervals. Place a whole number, as accurately as you can, in each of 

the four intervals.

What’s the App for That?

By playing Fraction Action, students come to appreciate various aspects of fraction 

representation, including visual, geometric, numeric, and artistic. 
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