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Algebra and Technology: Using Technology 
to Make Sense of Symbols and Graphs and 

to Reason about General Cases

Rose Mary Zbiek and M. Kathleen Heid

In algebra, technology affords unique opportunities for analyzing problems, implementing strate-
gies, seeking and using connections, and reflecting on solutions. Technology can be used to rapidly 
produce accurate examples and linked representations, creating venues in which students can better 
understand by-hand work and learn new methods to solve fundamental problems. In this chapter, we 
chose examples using graphs and symbols to highlight two big ideas:

1. Different methods for solving equations take advantage of different representations and 
generalize to different classes of equations with varying degrees of accuracy.

2. Function families can be characterized by their symbolic forms, with different forms giving 
different information, some of which generalizes across families.

Coordinating and Generalizing Methods for Solving Equations

The generalized by-hand procedure for solving linear equations in one unknown is a staple of sec-
ondary school mathematics. Solving these equations—though often limited to work with equations 
of the form ax + b = cx + d—is standard achievement-test fare. Graphing tools and symbolic manip-
ulators help students learn both how to make sense of the by-hand symbolic process through rapidly 
produced linked symbolic and graphical representations and how to use technology-based methods 
to transcend the limitations of the by-hand procedure.

Making sense of the by-hand process requires understanding of properties of real number op-
erations and properties of equality as basic tools. Solving equations by hand requires properties of 
equality (e.g., adding 7 to both sides of the equation produces an equivalent equation) and properties 
of operations and number (e.g., “combining like terms” draws on properties of real number addition 
and multiplication). Example 2.1 illustrates how technology can be used to reconcile symbolic and 
graphical approaches to solving linear equations.

2    Chapter 2 
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Example 2.1. Seeing Equivalent Equations

Task
An equation such as 6x + 3 = 12 + 3x is a statement about equivalence. One way to interpret  
the equation is as a claim about a value of the input value, x, for which f1(x) = 6x + 3 and  
f2(x) = 12 + 3x have the same output value. That value of x is the solution of the equation.

a. Graph f1(x) and f2(x) in the same graphing window. These graphs constitute the first 
graph pair. How do these graphs illustrate the value of x for which 6x + 3 = 12 + 3x?

b. Think about solving 6x + 3 = 12 + 3x by hand. What would be a first step? Perform that 
step with the equation. Then, produce a second graph pair by graphing f3(x) and f4(x), 
the functions that correspond to the new equation.

c. Continue producing and graphing new graph pairs that result from subsequent steps in 
the solution process.

d. Look at the symbolic work, and label each step with either a property of equality (e.g., 
addition property of equality) or a property of number and operation (e.g., distributive 
property of multiplication over addition).

e. Solve the same equation using an alternate approach, such as using a different first step. 
Write the symbolic steps and create the corresponding graph pairs.

f. How do the graph pairs change when a property of equality is applied? How do the 
graph pairs change when a property of number and operation is applied?

In the classroom (first-year algebra)
As students work, groups produce graph pairs as in figure 2.1.
 

First Method Second Method

                                           This is the first graph pair.

                                         This is the first graph pair.

                                           Graph pairs stay the same.                                                        Slopes change.
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First Method Second Method

Slope and y-intercepts change;
x-intercepts stay the same. 

Graph pairs stay the same.

Graph pair shifts down. Slope and y-intercepts change;
x-intercepts stay the same.

Slopes and y-intercepts 
change. 

Graph pair shifts down. 

Fig. 2.1. Graphs for two methods of solving 6x + 3 = 12 + 3x

Students then label their symbolic steps (see fig. 2.2).

Fig. 2.2 Symbolic steps labeled
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Student groups describe the differences in the graph pairs using phrases such as “but they don’t 
change” for the properties of number and operations and “they slide and tilt” for the proper-
ties of equality. The teacher prompts groups to justify their observations with questions such 
as “Why should applying the properties of number and operations not change the graphs?” and 
“Why should applying the properties of equality change the graphs in the way that it does change 
them?”

In the whole-class discussion, students talk about how the properties of number and operations 
“change the way the expression looks but not its value.” They describe the properties of equality 
in terms of “adding so many x’s means the coefficient of x changes, so the slopes change, and we 
have a new graph pair.”

The teacher capitalizes on the opportunity to engage students in a discussion about the differ-
ence between applying properties of number and operation and applying properties of equality. 
Students develop explanations of how each application of properties of number and operation 
provides ways to rewrite an expression to form an equivalent expression—an expression that has 
the same value for any given value of x in this case. They also observe how each application of a 
property of equality produces a graph pair that represents an equivalent equation—an equation 
with the same solution set as the equation to which the property was applied.

In the following dialogue, to emphasize the meaning of solution of an equation, the teacher fo-
cuses students on what does not vary.

Teacher: We have talked about some of the similarities and differences in the graph pairs. What 
is the same about all the graph pairs?

Fredo: Their intersection points line up.

Teacher: What does that mean?

Henry: The same x-value is a solution for all the equations.

Teacher: Suppose you had a graph pair whose intersection points did not line up. What would 
that mean?

Gina: It’s impossible!

Henry: We had a time when they didn’t, but it was wrong.

Teacher: Wrong?

Henry: Yes, we made a mistake when we added negative one to both sides.

Gina: Is that it? If the intersection points don’t line up, does that mean there was a mistake?

The teacher later encourages students to make other observations and conjectures: “You noticed 
that adding a number on both sides shifts the graph pair up or down. How does adding a multiple 
of x affect the graph pair?” Not letting students stop after they merely report what they can see 
in the graph pairs, the teacher asks them to justify why these particular changes in the graph 
pairs reflect what happens with the symbols. Students connect symbolic moves back to what they 
know about slope and intercept, noting, for example, that adding a multiple of x corresponds to 
creating two functions with new slopes but the same y-intercepts. The teacher might follow this 
by asking how multiplying by a constant changes the graph pair and then inviting students to rea-
son symbolically and graphically to justify their observations.
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Table 2.1
Key Elements, Reasoning Habits, and Special Technology Notes and Issues in  
Example 2.1

Key Elements of Mathematics
Meaningful use of symbols
Mindful manipulation
Reasoned solving
Linking expressions and functions
Using multiple representations of functions
Analyzing the effects of parameters

Key Reasoning Habits
Analyzing a problem
   seeking patterns and relationships
Implementing a strategy
   making purposeful use of procedures
Seeking and using connections
   working across different contexts and different representations
Reflecting on a solution
   reconciling different approaches
   generalizing a solution

Special Technology Notes and Issues in This Example

Labeling the graphs is helpful if screen space allows.

Students with experience in using graphs not only to solve linear equations but also to under-
stand the role of equivalent equations, properties of equality, and properties of inequality in solving 
linear equations have a powerful tool to solve a variety of other equations—including equations that 
are difficult or impossible to solve by hand. The procedure might be described simply as “graph two 
functions based on the members of the equation and find where their graphs intersect.” However, 
to solve equations successfully, students must reason about the functions involved. The video clip 
Algebra Solution, available at www.facebook.com/group.php?gid=265232006604&v=wall, il-
lustrates a variation on this example that capitalizes on recently developed split-screen options and 
linked representations.

Example 2.2 illustrates both the power of technology-based methods and the need to reason 
about functions to make sense of technology results and solutions. Students enter this task knowing 
at least four ways to solve equations such as x3 = 7 using a computer algebra system (CAS): graph 
with intersection (see fig. 2.3a), guess-and-test with numerical values (fig. 2.3b), direct solve  
(fig. 2.3c), and zooming with a table (fig. 2.3d). [Similar methods with a non-CAS calculator are 
possible, but the direct-solve method would be replaced with a numerical method, sometimes desig-
nated by “nSolve” and entered in this case as nSolve(x^3=7,x).] These four methods involve four 
different ways to represent the functions: graphical, numeric, symbolic, and tabular. As students gen-
eralize the four technology-based methods to new kinds of equations, they see how reasoning about 
functions helps them overcome the limitations of the by-hand procedure and the limitations of their 
technology.
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Fig. 2.3. Four CAS-based strategies for solving x3 = 7 for x over the real numbers

(a) (b)

(c)

(d)
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Example 2.2. Beyond By-Hand Solutions

Task
Apply each of the four strategies—direct solve, graphical intersection, table zoom, and numerical 
approximation—to solve the following equation for x over the real numbers: ln x = 5 sin x.

In the classroom (second-year algebra, precalculus, trigonometry)
Students begin using the different methods and are drawn to the direct solve command (in ap-
proximation mode) for its efficiency and easy-to-read numerical results. A few students notice 
the message, “More solutions may exist,” but continue to produce graphs and coordinates of in-
tersection points. Their screen images appear in figure 2.4.

Fig. 2.4. Results for direct-solve and graphical methods

Teacher: How sure are you that you have found all the solutions?

Louisa: We have three.

Nate: But graphs continue to the right. Let’s see. [scrolls over] Oh! There are more  
(fig. 2.5).
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Fig. 2.5. More results for graphical method

Teacher: How many more are there?

Louisa: Infinitely many.

Teacher: How do you know?

Louisa: Sine functions and logarithmic functions continue forever.

Nate: But, wait, the logarithmic function increases.

Teacher: Does it eventually become higher than the other graph?

Louisa: I don’t know. Let’s see. [starts scrolling] Yes, it does go on forever (fig. 2.6).

 
Fig. 2.6. Continuing to scroll

Dylan: No, wait, it can’t go on forever. The value of 5 sin x is never greater than 5. The value 
of ln(x) can be more than 5. For example, look at this:
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Jake: That’s a huge number!

Louisa: So, there aren’t infinitely many solutions.

Table 2.2
Key Elements, Reasoning Habits, and Special Technology Notes and Issues in  
Example 2.2

Key Elements of Mathematics
Mindful manipulation
Reasoned solving
Linking expressions and functions
Using multiple representations of functions

Key Reasoning Habits
Analyzing a problem
   seeking patterns and relationships
   looking for hidden structure
Implementing a strategy
   making purposeful use of procedures
   making logical deductions
Seeking and using connections
   working across different contexts and different representations
Reflecting on a solution
   considering the reasonableness of a solution
   revisiting initial assumptions
   generalizing a solution

Special Technology Notes and Issues in This Example
Radian mode should be used.

As suggested in example 2.1, the use of graphical and tabular methods allows students to solve a 
wider repertoire of equations than would be possible with only by-hand symbolic methods. Reasoning 
with technology requires not simply having different methods but orchestrating their use not only to 
produce solutions but also to explore the nature and number of solutions. In the case of the equation ln 
x = 5 sin x, students make strategic use of different methods. They also reason about the properties of 
the functions they graph to conclude that the number of solutions is finite. Tasks like this bring out a 
blend of strategic competence and conceptual reasoning. The teacher could have extended the reason-
ing opportunity by asking students to determine the exact number of solutions to the equation. Further 
challenges might ask students to determine the value(s) of A in ln x = A sin x such that there are ex-
actly ten solutions or whether there can be an odd number of solutions for an equation of the form  
ln x = A sin x.

Generalizing across Families of Functions

Within any one function family, each member is completely identifiable by its unique combination of 
parameters. For example, slope 7 and y-intercept –19.6 are enough to identify a unique linear func-
tion. Different symbolic forms for members within a family convey different information about the 


