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H
ave you ever held a class discussion you 
thought went well until your students made 
a claim that had you question how they were 
interpreting the mathematics at hand? When 
such a situation happened in our classroom, 

we used the interaction to change our teaching and 
research to address preemptively the particular inconsis-
tencies we had noticed. 

The classroom situation occurred during an activity 
based on the Power Tower (fig. 1a), an amusement ride 
at Cedar Point in Sandusky, Ohio, that shoots riders up 
the tower, then lets them fall toward the ground before 
shooting them up again, repeating this process two more 
times. After showing a video of the ride (see http://www 
.youtube.com/watch?v=HrGpGMrkUrM), we asked our 
students to sketch a graph of a rider’s total distance trav-
eled and the vertical distance from the ground, with the 
intention of having them investigate changes in the verti-
cal distance from the ground along with changes in the 
total distance traveled (see Moore et al. [2014] for more 
on this task). The lead instructor presented two student-
generated graphs (re-created in fig. 1b and c), and the 
class discussed how each graph accurately represented 
the quantities changing together. When the instructor 
concluded that the two graphs were “the same,” how-
ever, several students objected, saying that one “graph is 
a function” and the other graph “is not.” Although these 
students understood that the two graphs accurately rep-
resented some aspects of how the quantities covaried, the 
fact that one graph passed the vertical line test and the 
other did not meant to them that the graphs represented 
different relationships. 

This interaction piqued our interest. We conjectured 
that in their previous school experiences, our students 
lacked opportunities to distinguish which features are 
mathematically critical to representing relationships (and 
functions) and which are merely a choice or convention 
(e.g., orientation of axes). Hence, we began to investi-
gate the extent to which our students’ understandings of 
mathematical concepts either were rooted in reasoning 
about relationships between quantities or relied on what 
we perceived to be curricular conventions.

In this article, we present students’ ways of thinking 
about rate of change and functions that are grounded 
in quantitative and covariational reasoning. Many 
researchers (e.g., Carlson et al. 2002; Ellis et al. 2012; 
Johnson 2013; Thompson et al. 1994; Thompson 2011, 
2013) have argued that such reasoning supports stu-
dents’ engagement in several of the Process Standards 
described in Principles and Standards for School Math-
ematics (NCTM 2000) and Standards for Mathematical 
Practice described in the Common Core State Standards 
(CCSSI 2010). We conclude with suggestions that teach-
ers can use to help their students develop productive 
ways of thinking to differentiate aspects that are critical 
to a concept from those only intended to be curricular 
conventions.  

Teo Paoletti, Irma E. Stevens, and Kevin C. Moore
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RATE OF CHANGE
Rate of change is an idea that unifies middle school 
through postsecondary mathematics courses, 
including algebra, calculus, and differential equa-
tions. Understanding that two quantities A and 
B covary at a constant rate of change involves 
understanding that if quantity A’s value changes by 
any but no particular amount a, quantity B’s value 
changes by an amount equal to some constant, m, 
times a (i.e., m • a). Further, if quantity B’s value 
changes by any but no particular amount b, then 
quantity A’s value changes by an amount equal to 
the constant 1/m times b (i.e., (1/m) • b). A student 
with such an understanding can interpret a linear 
relationship displayed in the Cartesian coordinate 
system by imagining variations in the quantity on 
either the horizontal (fig. 2a) or the vertical  
(fig. 2b) axis first and then imagining how the 
other quantity changes in relation to those varia-
tions; the student understands that the constant 
rate of change associated with a linear relationship 
can be thought of as either the measure m or the 
measure 1/m, depending on which quantity he or 

she chooses first. Such an understanding of rate of 
change can be generalized to any representational 
system (e.g., polar graphs as in fig. 2c and d, tables, 
or equations). 

To illustrate the flexibility and productivity 
of this way of thinking, consider the following 
illustration. We asked Student 1 to determine the 
rate of change of the relationship represented in 
the graph shown in figure 3. After she claimed 
that the rate of change of the relationship is 4, we 
posed that a hypothetical student identified a rate 
of change of one-fourth; this allowed us to investi-
gate if Student 1 would consider an unconventional 
interpretation of the rate of change, specifically the 
rate of change of x with respect to y. This query is 
one example of a type of question we often pose: 
the hypothetical student response is mathematically 
viable but breaks from curricular conventions.

 Student 1 understood that the rate of change 
of a relationship could be conveyed in more than 
one way depending on which quantity she chose to 
coordinate first. She could interpret the relation-
ship as having a rate of change of 4 if she  

	 (a)	 (b)	 (c)

Fig. 1  The Power Tower (a) elicits two correct graphs (b and c) for related distances.

	 (a)	 (b)	 (c)	 (d)

Fig. 2  Two quantities covary at a constant rate of change.
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coordinated x first (y varies by an amount 4 times 
as large as the amount x varies) or 1/4 if she coor-
dinated y first (x varies by an amount 1/4 times as 
large as the amount y varies).

As a point of contrast, we present Student 2’s 
response when we provided the labeled graph shown 
in figure 4a. We stated that a hypothetical student, 
Xavier, constructed the graph when asked to graph 
the equation y = 3x, and we asked Student 2 to evalu-
ate Xavier’s graph. We wanted to know if Student 2 
would interpret the graph as accurately representing 
the relationship defined by y = 3x. 

Whereas Student 1 thought about rate of  
change in terms of coordinating quantities’ values, 
Student 2’s understanding of rate of change was 
dominated by perceptual features of the graph 
(see fig. 4). Student 2 rotated the graph to obtain 
x on the horizontal axis (fig. 4b) and associated 
the rotated graph with a “negative slope.” To Stu-
dent 2, slope (or rate of change) was indicated by 
the perceived tilt of a line, rather than a relation-
ship between the values of two quantities on the 
graph. Such tilt-slope associations enable a student 
to respond correctly when common curricular 
conventions of graphing are maintained, but the 
associations are not productive in unconventional 
situations, such as describing the rate of change of 
the relationship represented in figure 4b.

FUNCTION
A function is a particular type of relation in which 
each element of a defined set, called an input, is 
mapped to a unique element of a second defined 
set, called an output. “Function” is not an inher-
ent property of a relationship between two sets, 
but instead depends on how one decides to define a 
relation between those sets. To illustrate a produc-
tive understanding of functions, consider Student 3, 
who was discussing the graph in figure 1b. (Note: 
[. . .] indicates a break in the transcript.)

Student 3: Well, it depends which axis is your 
input and which axis is your output. [. . .] If 
your inputs were actually your vertical axis, 
the outputs were your horizontal axis, then 
that would be a function ’cause you would 
have a [. . .] unique output for every input.  
[. . .] [Student 3 continued by discussing how 
figure 1b may not represent a function] if the 
x-axis is your input and y-axis is your output. 

In contrast to the students who argued that the 
graphs in figure 1b and c were different because 
one “graph is a function” and the other graph  
“is not,” Student 3 implied that it did not make sense 
to claim the graph “is” or “is not” a function. Rather,  
Student 3 understood that discussing whether the 

Student 1: So, my rate of change is, as x increases by 1, y increases by 
4. [. . .] But I could also say, as y increases by 1, x increases by [. . .] 
one-fourth. So we have a one to four relationship between the quanti-
ties on these axes. But [. . .] I don’t know which is my input and which 
is my output. [. . .] So there’s a one to four relationship between these 
no matter how you look at it. [. . .] So, if I’m calling my vertical [axis] 
my input, and my horizontal [axis] being my output, it’s not going to 
be rise over run. It’d be run over rise. So this would be change in x 
over change in y. And then that would give you one-fourth.

Fig. 3  Student 1 addresses the graph with a response that considers an unconven-

tional interpretation. Note: [. . .] indicates a break in the transcript.

	 (a)	 (b)

Student 2 rotated the graph in figure 4a as shown in figure 4b and laid 
the marker on the line that is sloping downward, left to right.

Student 2: This is negative slope. So I would [. . .] show them like the 
difference between positive and negative slopes. [. . .] Because that’s 
something that, like, when I was in middle school we, like, learned 
kind of like a trick to remember positive, negative, no slope, and zero 
[making tilted hand motions to indicate a direction of line for each]. 
Like where the slopes were. And it’s stuck with me until now, so it’s 
important to know which direction they’re going.

Fig. 4  The graph (a) of a hypothetical student, Xavier, prompts Student 2 to  

interpret the relationship using a horizontal y-axis (b). Note: [. . . ] indicates a break 

in the transcript. 
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Student 4: That x is a function of y? I mean x 
and y definitely correlate, there’s definitely a 
relationship between them. But, I’ve always 
been taught a function, it has an x-value it 
can only correspond to one y-value. The same 
x-value cannot have a different y-value and 
still be a function.

In contrast to Student 3, Student 4’s understand-
ing entailed maintaining the input quantity of a 
function along the x-axis; representing the input 
quantity of a function along the x-axis was not 
merely a convention but inherent to Student 4’s 
way of thinking. Thus, Student 4 did not interpret 
Yolanda’s statement that the graph represents “x is 
a function of y” as different than the statement “y 
is a function of x.” 

STUDENTS’ UNDERSTANDINGS
A notable difference exists between the students’ 
responses above with respect to what we perceive 
to be curricular conventions. Students 1 and 3 
held ways of thinking that entailed understand-
ing particular conventions of representing certain 
ideas as exactly that, conventions: standard ways 
of doing things chosen from equally viable ways of 
doing things. For example, Student 1 understood 
that the rate of change of a relationship could be 
measured in multiple ways. Although she usually 
considers the rate of change of y with respect to x, 
it was equally viable to describe the rate of change 
of x with respect to y. In contrast, what we perceive 
to be conventions were instead inherent to how 
Students 2 and 4 thought about rate of change and 
function. 

We are not surprised by Student 2’s and  
Student 4’s understandings, because these under-
standings likely worked in addressing questions 
posed by textbooks and teachers throughout their 
K–grade 14 schooling experiences. When we as 
educators (implicitly or explicitly) impose and 
maintain conventions, as opposed to having con-
ventions emerge from student activity and need, 

graphed relationship represents a function requires 
first defining input and output quantities and then 
determining uniqueness (e.g., total distance is not a 
function of vertical distance, but vertical distance is 
a function of total distance). 

As did the students in the opening vignette, Stu-
dent 4 initially claimed that the graph in figure 5 (a 
graph similar to fig. 1b but without explicitly defined 
quantitative referents on each axis) did not represent 
a function. We then posed that a hypothetical stu-
dent, Yolanda, argued that the graph represents “x 
is a function of y” and asked Student 4 to respond to 
Yolanda’s claim.

Fig. 5  Student 4 addressed the claim that this graph represents x as a function of y.

WHEN WE IMPOSE AND MAINTAIN 
CONVENTIONS, STUDENTS 

CONSTRUCT UNDERSTANDINGS 
RESTRICTED TO SPECIFIC 

REPRESENTATIONS AND 
CONSTRAINTS. 
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students can construct mathematical understand-
ings dependent upon those conventions. In turn, 
students’ understandings are restricted to specific 
representations and constraints, often obscuring 
features critical to a mathematical concept (e.g., 
rate of change as a coordination of covarying quan-
tities). For example, associations between rate of 
change and the direction of a line are helpful only 
as long as graphs are represented in the Cartesian 
coordinate system with conventionally defined 
axes. Similarly, the vertical line test works if the 
input of a function is represented on the horizon-
tal axis. However, these ways of thinking become 
problematic when conventions are not maintained 
(e.g., as in fig. 4b) or when students are asked to 
work in a different coordinate system (e.g., polar 
coordinates). When encountering graphs that 
depart from these conventions, students who hold 
such ways of thinking are not prepared to notice or 
interpret these departures as viable representations 
of an idea.

STUDENTS ADDRESS THEIR 
OWN ASSUMPTIONS
We provide sample questions (fig. 6) to focus 
classroom discussions. Rather than merely ask-
ing students to identify perceptual changes in the 
graphs, we encourage students to address their own 
assumptions about their graphical representations 

and to consider other students’ ways of represent-
ing the same situation.   

Tasks involving a collection of relationships 
between covarying quantities in various graphical 
orientations have helped students distinguish between 
what is mathematically critical versus what is merely 
a convention for representation. The key to orches-
trating a discussion around such tasks is to focus 
on the mathematical ideas underlying the different 
relationships and representations as well as to discuss 

Fig. 6  Sample questions and goals relate to the tasks presented.

Have you ever taken a dive to the bottom of a pool and felt pain or 
pressure in your ears? This is caused by an increase in water pressure 
as you descend. 

Although we do not feel it, 14.5 pounds per square inch (psi) of pres-
sure pushes down on our bodies at sea level. For every 33 feet down 
into water an individual travels, he experiences an additional 14.5 psi 
(NOAA 2016). For example, at 33 feet down, the diver experiences  
2 • 14.5 psi, and at 66 feet down, the driver experiences 3 • 14.5 psi. 

A deep-sea diver starts on a boat 5 feet above sea level, enters the 
water, and descends to an unknown depth. Assuming there is no  
discernible difference in pressure between sea level and 5 feet above 
sea level, create a graph representing the relationship between the 
diver’s height above sea level and the pressure he feels.

Fig. 7  The Deep Sea Diver problem was given to students.

Representation Questions for Students Goal

1.	 Do the two graphs rep-
resent the same relation-
ship? Why or why not?

2.	 Does each graph repre-
sent a function? Why or 
why not?

3.	 What are you considering 
as the input?

A graph represents a rela-
tionship that can be defined 
in different ways. Under cer-
tain definitions, the graph 
represents a function, and 
under other definitions, the 
graph does not represent a 
function. Key to determin-
ing if the graph represents 
a function is whether each 
value of the defined input 
quantity corresponds to one 
unique value of the defined 
output quantity.
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what aspects of representational options are not criti-
cal. We present the Deep Sea Diver problem (fig. 7) 
as another example of such a task and describe some 
common student solutions (fig. 8).

In the Deep Sea Diver problem, we allow stu-
dents to choose their own axes orientation and 
labeling, which often leads to four or more differ-
ent, yet mathematically correct, ways to represent 
the relationship (see fig. 8 for sample graphs). 
Some students represent the diver’s distance 
above sea level on the horizontal axis (fig. 8a, b), 
whereas other students represent this quantity’s 
values along the vertical axis (fig. 8c, d). Because 
the diver’s height above sea level has a negative 
value throughout most of the situation, some stu-
dents represent negative values in non-canonical 
orientations along the axes (fig. 8b, d), whereas 

other students maintain the canonical orientations 
of directed values (fig. 8a, c). Students might also 
change the point of intersection of the referent 
axes from the canonical (0, 0) (fig. 8a, c), since the 
diver starts by experiencing 14.5 psi 5 ft. above sea 
level (fig. 8b, d).

After students construct their graphs, we high-
light the work of students who used axes with 
different orientations and labels. As our students 
consider their classmates’ representations, we give 
them opportunities to discuss similarities and dif-
ferences among their graphs; we provide hypotheti-
cal student solutions if additional variety is needed. 
We make sure to raise questions such as these:

•	 Are the different graphs representing the same 
change in height for a certain change in pres-
sure? How can you tell?

•	 Does it matter in which direction the negative 
values are represented?

•	 Does it matter if the intersection of the horizon-
tal and vertical axis is at (0, 0) or at (14.5, 5)?

We also prompt the students to discuss whether the 
graphs represent functions, leading to conversa-
tions regarding the necessity of defining input and 
output quantities. 

The conversations that ensue allow students to 
discuss whether each graph accurately represents 
the intended relationship and if differences among 
the representations affect the “correctness” of each 
graph. These discussions afford students the oppor-
tunity to negotiate and establish representational 
conventions. After such conversations, students 
can conceive of conventions as useful tools for com-
municative purposes, often easing the burden of 
attending to different considerations involved when 
creating, interpreting, or comparing graphs. 

CONSEQUENTIAL DISTINCTIONS
Providing our students with repeated opportuni-
ties to work in what we perceive to be conven-
tional and unconventional representations—often 

	 (a)	 (b)	 (c)	 (d)

Fig. 8  Students produced these sample graphs for the Deep Sea Diver problem when they were permitted to choose their own axes and labeling.
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through hypothetical student work that could be 
interpreted as creative sense-making—has sup-
ported their using notation and representations 
purposefully and meaningfully. Such situations 
encourage our students to establish and differenti-
ate aspects specific to representational conven-
tions from those aspects that are critical to math-
ematical concepts. Moreover, we have found that 
our students can then critically reflect on their 
own ways of thinking and establish representa-
tional conventions within their class. Teachers 
who determine that their students are not distin-
guishing between what is essential to a concept 
and what is to be considered a representational 
convention can give the students a chance to 
develop richer ways of thinking for these concepts 
by engaging them in a multitude of representa-
tions with attention to differences and similarities 
in those representations. 
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