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W
hat might effective mathematics instruction look like if we were to see it? 
Engaging students with “challenging tasks that involve active meaning mak-
ing and support meaningful learning” (NCTM 2014, p. 9) is one possible 
description. Staples in our classrooms include problem solving with cognitively 
demanding tasks, working in teams to formulate and solve problems, com-

municating mathematically through written and spoken channels, and critiquing or assessing 
the work of others. This article highlights three of the eight Mathematics Teaching Practices 
(MTP) published in NCTM’s Principles to Actions: Ensuring Mathematical Success for All (2014, 
p. 10): facilitating meaningful mathematical discourse (MTP 4), posing purposeful questions 
(MTP 5), and eliciting and using evidence of student thinking (MTP 8). 

In this article, we have several objectives. We open with a brief discussion of the meaning of 
the term active learning, and we discuss the five practices (Smith and Stein 2011) as a particularly 
illuminating model. The five practices offer a powerful framework that we have used to activate 
our mathematics classrooms. Next, we share two vignettes of classroom learning from a first-year 
calculus class at a small university. Note that such teaching and learning experiences span all 
levels, K–16. The article’s focus is on the implementation and management of active instructional 
practices, irrespective of mathematical content. Thus, we encourage the curious reader to join us 
in this experience (even if you do not teach calculus). The article closes with examples of student 
feedback from having experienced active learning in their college mathematics class.

ACTIVE LEARNING AND THE FIVE PRACTICES 
Although many definitions of “active learning” exist, most describe the same core qualities, 
regardless of the discipline or environment in which they are used. As early as 1991, active 
learning was described as “involving students in doing things and thinking about what they are 
doing” (Bonwell and Eison 1991, p. 5). In a calculus class recently taught by the lead author, 
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active learning strategies were implemented in 
which students were problem solving, discussing, 
and explaining their results to their classmates. A 
typical fifty-minute class ran as follows: 

1. Preclass Phase
Students arrived to class “prepared” through a 
short preclass reading. The purpose of this read-
ing was to cover fundamental principles, notation, 
and other ideas so that students could immediately 
engage with the content and with one another. 

2. Problem Solving and Group Discussion
Once in class, students undertook a cognitively 
demanding task. Students worked in pairs or occa-
sionally in groups of three, sharing ideas and talk-

ing about the problem. Eventually, they provided a 
solution on a mini whiteboard. Whiteboards were 
chosen as a display tool because they symbolize a 
common sharing space for the group’s efforts and 
they proved suitable to assimilate group thinking.
 
3. Whole-Class Discussion
Students shared their solutions with the class. Some 
group members explained their work at the front 
of the room; others explained it from their seats (a 
classmate from the group elevated the whiteboard 
for peers to see). Still others preferred the projection 
of the whiteboard contents on the document camera 
for easy whole-class viewing. These “sharing ses-
sions” were the primary vehicle used to teach the 
day’s content and meet the goals of the lesson. 

Table 1. Descriptions of the Five Practices

Practice Description
Question(s) a

Teacher May Ask  
Himself or Herself

Miscellaneous

0: Identifying the Goal or 
Objective

Identify the specific goals of 
the lesson before class.

1. What do I want students to 
know and learn? 
2. How should they know it?

Find and develop rich math-
ematical tasks where students 
may easily gain entry but 
from which interesting and 
relevant mathematics is likely 
to emerge.

1: Anticipating Teacher predicts how stu-
dents will solve the problem.

1. What will students do?
2. How will they do it?
3. What misconceptions are 
likely?

The teacher should solve the 
problem using a variety of 
strategies. Doing this allows 
the teacher to interpret a solu-
tion that was not anticipated 
more easily.

2: Monitoring Teacher identifies the strate-
gies used by visiting with 
groups, and answering and 
asking questions. Teacher 
begins documenting who is 
doing what.

1. What are students doing?
2. What strategies are being 
used?

If a group has misconstrued 
the problem, the teacher may 
wish to steer those students 
back on course.

3: Selecting Teacher determines which 
groups should share their 
work.

1. Why should this group’s 
work be showcased?
2. Why might other work not 
be shared?

This selection is driven by the 
goals and objective of the les-
son (Practice 0).

4: Sequencing Teacher determines a specific 
sequence that makes peda-
gogical sense. Those selected 
will present and discuss their 
work in this predetermined 
order.

1. What presentation order 
makes sense? 

a. Informal to formal? 
b. Simple to sophisticated? 
c. Common to unusual? 

2. Should misconceptions 
be addressed immediately or 
later?

The sequence should allow 
students to see connections 
from one group’s solution to 
the next and offer opportuni-
ties for evaluating and critiqu-
ing work.

5: Connecting Teacher directly makes con-
nections in the approaches 
discussed or indirectly 
makes connections through 
questioning/focusing.

1. What is the story I want to 
tell with student work?
2. Are there other ideas that 
should be discussed—ideas 
that did not appear in stu-
dents’ efforts?

Student work is used to meet 
the goal of the lesson. A stu-
dent or group may ask about 
a method not publicly shared 
and the teacher may have fur-
ther opportunities to connect.
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A fifty-minute block had enough time to 
orchestrate two or three tasks (and their solu-
tions), depending on the nature and content of the 
tasks. The details of how class was conducted are 
described in 5 Practices for Orchestrating Mathemat-
ics Discussions (Smith and Stein 2011), which suc-
cinctly captures a way to bring social interaction 
and active learning to mathematics classrooms. 
Although the book focuses specifically on K–12 
levels, we feel that with suitable tasks, the practices 
can be a successful instrument at the college and 
university levels. The five practices are the follow-
ing: (1) Anticipating, (2) Monitoring, (3) Selecting, 
(4) Sequencing, and (5) Connecting. 

Smith and Stein contend that Planning/Goal 
Setting could be called “Practice 0,” as this is some-
thing teachers need to do before orchestrating a 
productive discussion. Table 1 summarizes the five 
(or six) practices and describes salient characteris-
tics of the implementation of each. 

The table indicates various stages of teaching 
implementation. Practices 0–1 happen before the 
class meets, whereas practices 2–5 indicate active 
learning. In particular, practice 5 is the only part 
of the framework that—to an outsider—seems 
like “teaching.” Students are the key players in the 
learning process (practices 2–4), and then once 
again when solutions are displayed and discussed 
(practice 5).

Before sharing classroom vignettes, some notes 
are in order. First, an essential piece of implement-
ing the five practices is using high-level, cognitively 
demanding tasks. Groups are unlikely to “discuss” 
the mathematics if a task is too straightforward. 
The task should have a low entry point for engage-
ment, a high bar for success, and be amenable to 
different approaches—all while meeting the specific 
goals of the lesson. This is a nontrivial cocktail of 
characteristics. We offer some resources at the end 
of this article to let readers know where to find 
mathematically rich tasks and how to repurpose 
“cookbook” tasks into more meaningful experi-
ences (practice 0). The richer the task, the more 
scenarios the teacher will likely need to anticipate 
(practice 1). 

Second, pedagogy of this sort embraces using 
student work to teach mathematical content. Practices 
3–5 are manifestations of student work, so trust-
ing what students are capable of producing is an 
absolute necessity. This phenomenon is not new to 
mathematics instruction (e.g., Rasmussen and  
Marrongelle 2006), but it is far from the norm in 
tertiary education. Third, it is important to empha-
size a classroom culture that values mistakes and 
learning from them. This pedagogy allows one 
to display common errors, build knowledge from 
these errors, and then connect this knowledge to 

valid mathematics. Finally, the five practices are 
not the same as a “show and tell” exhibit of student 
work (Smith and Stein 2011). The Selection stage 
is carefully aligned to the goals of the lesson, and 
Sequencing is purposely done to make explicit the 
Connection phase for students. Thus, “more” is 
rarely synonymous with “better.” The quantity and 
quality of the solutions should facilitate a produc-
tive discussion, which takes practice and skill on 
the teacher’s part. 

CLASSROOM VIGNETTES USING 
THE FIVE PRACTICES
In this section, we share classroom vignettes from 
two different units of first-semester calculus (one 
on limits and one on applications of the deriva-
tive). Our purpose is to highlight the similarities 
and differences of using the five practices with 
different types of problems and different types 
of student responses. As we emphasized earlier, 
teacher moves are situational and vary depending 
on the goals designated for the day’s lesson. We 
zoom in on the practices of Selecting, Sequencing, 
and Connecting because these practices examine 
what work the teacher chose, why he or she chose 
it, and how this directed a productive mathemati-
cal discussion.

Vignette 1: Limits
The task given to groups was as follows: 

TRUE or FALSE: If f(x) < g(x) for all x ≠ a, then

lim
x→a

f (x)< lim g(x)
x→a

.

lim
x→a

f (x),

lim
x→a

f (x)< lim g(x)
x→a

,

lim
x→a

f (x)≤ lim g(x)
x→a

.

(e.g., F∑  and Δx),

Justify!!

The goal of the task was for students to internalize 
that “operating” on a true statement with a limit 
may alter its truth value. A secondary goal supports 
the well-known fact that f(a), if it exists, has no 
bearing on

lim
x→a

f (x)< lim g(x)
x→a

.

lim
x→a

f (x),

lim
x→a

f (x)< lim g(x)
x→a

,

lim
x→a

f (x)≤ lim g(x)
x→a

.

(e.g., F∑  and Δx),

It is important to 
emphasize a classroom 

culture that values 
mistakes and learning  

from them.
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should the latter exist. This task is considered fairly 
complex, as it wraps these ideas into one simple 
true/false statement, and students are asked to 
defend their position. The whiteboards that were 
selected and sequenced (practices 3 and 4) are seen 
in figure 1. 

Board 1 (see fig. 1a) was chosen to start the 
discussion for two reasons. First, two groups had 
precisely this response and thought that if g(x) was 
“higher” than f(x), then this relationship should 
remain true for the limit. Second, showcasing this 
board allowed the teacher to ask a pointed question, 
such as, “Are other pictures possible?” Students 
were quick to suggest making f and g closer to each 
other, which was a perfect segue into board 2 (see 
fig. 1b). This board was shared next because this 
group had grasped the basic principles but were not 
confident about their answer. An observer can see 
that the group engaged in much discussion of the 
values of f and g near x = a (note the heavier lines 
there). Even though they had a valid response and 
two limit statements as added support, the group 
members were uncertain what was going on at 
x = a. They graciously confirmed this uncertainty 
with the class. 

Board 3 (see fig. 1c) came next, as this group 
claimed “false” by considering the original state-
ment in the problem,

lim
x→a

f (x)< lim g(x)
x→a

.

lim
x→a

f (x),

lim
x→a

f (x)< lim g(x)
x→a

,

lim
x→a

f (x)≤ lim g(x)
x→a

.

(e.g., F∑  and Δx),

and modifying it to read

lim
x→a

f (x)< lim g(x)
x→a

.

lim
x→a

f (x),

lim
x→a

f (x)< lim g(x)
x→a

,

lim
x→a

f (x)≤ lim g(x)
x→a

.

(e.g., F∑  and Δx),
This not only justifies the falsity of the state-

ment but also is the first of the three boards to use 
mathematically precise language aimed specifically 
at the original statement. Finally, board 4 (see 
fig. 1d) was shared; it encapsulates much of the 
work displayed on boards 1 and 2, refines board 
3, and opens the door to an important mathemati-
cal discussion (practice 5: Connecting). One sees 
immediately the two answers this group provided—
one analogous to the incorrect work on board 1 and 
one that challenges board 3 in that neither function 

need be defined at x = a. Group 4’s incorrect work 
further supports the need to address the misconcep-
tion in board 1, and their correct work illuminates 
the second goal of the lesson—that a function’s 
value need not connect to its limit (should either 
exist). 

The discussion that followed concerned the 
nature of mathematical truth: What does it mean 
for a statement to be true? Although students in 
group 4 thought both options were plausible, the 
members of group 1 explained to the class that it 
would take just one example to establish falsity. 
Group 1 members admitted they overlooked this 
situation before choosing to speak about it. Thus, 
although group 1 opened the Connecting stage 
with incorrect work, these students were, in fact, 
the ones driving the discussion of mathematical 
work on board 4. An unforeseen byproduct of 
this dialogue was a pointed discussion of two 
fundamental ideas that permeate all mathematical 
work—(1) needing proof to establish truth, and 
(2) generating a counterexample to establish falsity. 
Although this discussion was not one the teacher 
had anticipated, such welcome additions proved 
helpful in future discussions.

Vignette 2: Derivatives and Velocity
The task here read as follows:

A machine is causing a particle to move along 
the x-axis so that its position at time t is given 
by x(t) = (t – 4)2, where t is in seconds.

(a) What is the particle’s velocity at t = 2?

(b) The machine stops suddenly at t = 3, 
releasing the particle. As the particle con-
tinues, where will it be 5 seconds after the 
machine stops? Explain your thinking.

The goal of this task was to allow students oppor-
tunities to apply the principles of position, veloc-
ity, and acceleration to solve problems involving 
change. Additionally, it was hoped that students 
would (1) be drawn explicitly to velocity as having 
both magnitude and direction and (2) negotiate and 

(a) (b) (c) (d)

Fig. 1 Group solutions were presented to the class in the order a, b, c, and d.
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confirm specific assumptions (e.g., a frictionless 
environment) prior to solving the problem. Work 
was shared with the class (see fig. 2) after adequate 
time was given to produce a solution.

The rationale for the selection and sequence 
(practices 3 and 4) was as follows. Board 1 (see 
fig. 2a) started the discussion since this was both 
the most common solution and the highest priority 
with regard to anticipation. When a group member 
explained the group’s work—specifically that “the 
particle continues at –2 units/sec for 5 sec,” the 
student was clear in articulating what this meant: 
The particle was moving to the left, and no external 
forces were acting on the particle. The teacher had 
anticipated an explanation because no formal prereq-
uisite knowledge of physics (friction) was assumed. 
Board 2 (fig. 2b) followed due to its sophisticated 
mathematical nature. Although its contents are 
equivalent to board 1, it is more formal in notation

lim
x→a

f (x)< lim g(x)
x→a

.

lim
x→a

f (x),

lim
x→a

f (x)< lim g(x)
x→a

,

lim
x→a

f (x)≤ lim g(x)
x→a

.

(e.g., F∑  and Δx),

and it makes explicit the multiplicative relationship 
once the initial position is established (i.e., x = x0 + 
vt). For those who may not have understood where 
this formula came from, this knowledge was built 
from board 1, in which the same phenomenon was 
explained in simple, arithmetic terms. The atten-

tion to sequencing (practice 4) was deliberate—
mainly to highlight a hierarchy in student thinking 
and conventions in mathematics notation.

Board 3—an unusual gem—was selected next 
(see fig. 2c). Admittedly, the teacher initially ques-
tioned the validity of its contents, and not until a 
minidiscussion with the group members was he 
convinced of its correctness. The group interpreted 
velocity as the slope of the tangent line and used 
its fixed slope as an indicator of the particle being 
in a vacuum, similar to the first explanation. The 
group then let time equal 8 seconds in the tangent 
line equation and obtained –9. When the teacher 
asked what these numbers meant, one group mem-
ber claimed that the line was indicative of a con-
stant velocity and that the point (8,–9) was to be 
interpreted as the coordinate (time, position). Her 
defense was that the original graph showed time 
versus position, so by using a straight line, they 
were assuming a constant velocity and determining 
where something ended up at a later time—
precisely the objective of part (b) of the task (prac-
tice 0). Given this explanation, practice 5 was in 
full swing. We had an illuminating discussion con-
necting the equation from board 2, x = x0 + vt , to 
the well-known y = mx + b used in board 3. One 
class member added, “They’re both just saying that 
new equals change times time plus the old.” 

(a) (b) (c)

Fig. 2 The teacher provided a solution (d) on the basis of a student’s suggestion.

(d)
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As we were set to wrap up the task, one member 
of the class asked if we could just solve the problem 
by counting. This prompted the teacher to illus-
trate some work on the chalkboard (see fig. 2d). 
Students could see that by starting at x = 1 and 
moving in spurts of 2 units to the left, one could 
end up with the answer. This was prompted by the 
structure evident in x = x0 + vt, and it supported the 
written explanation on board 1. 

DISCUSSION 
The vignettes above were chosen to highlight two 
typical classroom discussions using the five prac-
tices in the teaching of calculus. Class discussions 
were a function of students’ ideas—paving the way 
to meaningful understanding. As a small represen-
tative sample, below are three responses from mem-
bers of the class in an anonymous, end-of-course 
evaluation:

• Classroom facilitated learning in a hands-on 
manner. Allowed students to test their knowl-
edge as well as inspired critical thinking.

• I like how the professor put the class into 
groups to try and solve problems together with 
peers instead of constant presentation-style 
instruction.

• I liked the style the class was taught with. The 
emphasis on group work and small-group discus-
sion helped me understand the material better 
than a straight lecture.

On the basis of the comments above, we see that 
students acknowledged the time that they were 
given to think, make meaning, and contribute to 
mathematical discussions. Meanwhile, the teacher 
received a steady flow of information vis-à-vis 
“How are my students doing?” Because the assess-
ment of students and groups was embedded in 
classroom teaching, this feedback then guided the 
teacher for the next lesson. 

Classroom teachers have asked us such ques-
tions as, “How does a student take notes in this 
environment?” and “What if a student or group 
misses the point entirely?” These are thoughtful 
questions, and our answers provide evidence of a 
paradigm shift in our teaching. For example, stu-
dents are supplied with a written record of each 
classroom discussion through photographs of the 
whiteboards, often embellished with teacher com-
ments. Knowing this ahead of time, students are 
less concerned with “taking notes” and more likely 
to make meaning of the mathematics being shared. 
The written record also addresses the second ques-
tion of missing the objective of the lesson. Should 
a student or group fail to understand the material 
or even miss a day of class, the written document 

informs the student what he or she missed and pro-
vides pictures (literally!) of classmates’ work and 
examples of student thinking. Generally, it is a win-
win scenario for all. Moreover, much of the discus-
sion above easily transfers to both high school and 
junior high school audiences.

CONCLUSION 
The classroom examples shared here demonstrate 
what the five practices might look like in any math-
ematics classroom. Students are at the center of the 
learning, and the teacher navigates the terrain to 
ensure equitable, meaningful, and deep discussions 
about important mathematics. We have reshaped 
and repurposed many of the courses we teach 
to reflect an atmosphere in which students ask, 
explain, and connect. Without a doubt, our stu-
dents are the greatest beneficiaries of this change.
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