
H
ow can we make sense of what we 
learned today?” This is a question I 
commonly pose to my algebra students 
in an effort to have them think about 
the connections between the new 

concept they are learning and concepts they have 
previously learned. For students who have a strong, 
expansive understanding of previously learned top-
ics, determining how to “make sense” of new con-
cepts may be relatively straightforward. However, 
for students who have limited understanding of 
foundational concepts, “making sense” of new mate-
rial may not be as simple.

NCTM defines sense making as “developing 
understanding of a situation, context, or concept by 
connecting it with existing knowledge” (Martin  

et al. 2009, p. 4). Providing opportunities for stu-
dents to engage in sense making allows them to 
extend their understanding of mathematical concepts 
by analyzing the relationship between different 
mathematical ideas; they are then able to use math-
ematics flexibly as a tool to reason through and solve 
varied problems. Sense making is instrumental in 
determining the meaning of problems and identifying 
appropriate entry points (CCSSI 2010); as such, it 
is a critical aspect of students’ mathematical under-
standing that should be inextricably interwoven into 
all high school programs (Martin et al. 2009).

As students’ sense-making skills are cultivated, 
each class of students navigates its own unique 
path to attempt individually and collectively to 
“make sense” of the mathematics that they are 
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learning. As teachers support students along their path 
of sense making, it is critical to consider that the extent 
to which students are able to make sense is related to 
the extent to which they can connect their learning with 
their existing knowledge. Therefore, as students grapple 
with making sense of new knowledge, it is important 
that they fortify their foundational knowledge that will 
serve as their existing knowledge on which they can build 
new understanding. In this article, I share the journey 
of some of my algebra students as they sought to “make 
sense” of imaginary zeros through their existing knowl-
edge of real zeros. 

CLASSROOM CONTEXT
The students who comprised my first-year algebra classes 
were heterogeneous with respect to ethnicity, gender, and 
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income level. With an average class size of 32, these 
classes also included students with varying levels of 
ability and interest; some students eagerly engaged 
with challenging mathematics problems; others 
continuously had difficulty with foundational alge-
braic concepts. At the time in the academic year 
when the students encountered quadratic func-
tions without real zeros, most students were able 
to calculate the zeros of a quadratic function using 
multiple methods, including the quadratic formula. 
They were able to estimate the nonintegral zeros of 
a function by observing its graph. They were also 
able to determine how a function is affected graphi-
cally when it is translated by adding a constant to 
the x- or y-variable. They were not, however, famil-
iar with imaginary numbers because in the curricu-
lum we follow, complex numbers are introduced in 
second-year algebra.

EXTENDING A CLASSROOM TASK
During one of the tasks in class, I provided students 
with various quadratic functions in the form f(x) = 
ax2 + bx + c, each of which had real zeros. As they 
worked with their peers in small groups, students 
identified some of the characteristics of each qua-
dratic function and its graph (e.g., axis of symme-
try, vertex, and zeros), graphed each, explored how 
each characteristic above related to the graph of the 
respective function, identified the similarities and 
differences between the given functions, and dis-
cussed how translating a function by adding a con-
stant to the x- or y-variable affected the graph and 
equation of each function. During their discussions, 
I joined each group for a few minutes to assess their 
understanding of the mathematics and to push their 
thinking further. Either on their own or with my 
support, they were able to identify the axes of sym-
metry, vertices, and zeros of the functions; most 
students were also able to discern how changes in 

the a, b, or c value of each quadratic affected its 
graph, roots, axis of symmetry, and vertex.

After a brief whole-class discussion, I presented 
students with the following quadratic equation:  
f(x) = x2 – 6x + 13. As part of the task, students 
were to graph the function and determine its sig-
nificant characteristics as before. All the students 
determined, on the basis of the graph, that the 
function did not have any (real) zeros. Students’ 
methods for justifying their answers, however, 
were varied; many attempted to use the quadratic 
formula to support their answer. In the past, when 
they used the quadratic formula to determine the 
zeros of similar problems, they were perplexed by 
the presence of negative radicands in their calcula-
tions. I explained that they would learn more about 
these types of zeros in second-year algebra. For this 
problem, when the students concluded that

x = 6± −16
2

,

−16,

−5± 6.

x = 3± −16
2

and x = 3± 16
2

.

they explained that since there was no (real) value 
equivalent to 

x = 6± −16
2

,

−16,

−5± 6.

x = 3± −16
2

and x = 3± 16
2

.

 this meant that no (real) 
x-value would make f(x) = 0 and, therefore, this 
supported their conclusion that the function did 
not have any (real) zeros. In general, the class 
agreed that this was an acceptable explanation. 
One student, however, was uncomfortable with 
the finality of that explanation. Fiona (all student 
names are pseudonyms) commented that although 
she understood there were no (real) zeros, she 
wanted to “make sense” of the value obtained for 
x in relation to the specific function and its graph. 
In other words, she wanted to understand how the 
roots of f(x) = x2 – 6x + 13 = 0 were specific to this 
quadratic function and different from a quadratic 
whose roots were, say,

x = 6± −16
2

,

−16,

−5± 6.

x = 3± −16
2

and x = 3± 16
2

.

Although she understood how to calculate the 
numerical answer, it seemed arbitrary and did not 
connect to her previously developed knowledge of 
zeros. Several students agreed. We did not have 
time during that lesson to address Fiona’s question, 
so I worked with her and six other interested stu-
dents the following day as they attempted to make 
sense of the imaginary zeros for this function.

RELATING IMAGINARY ZEROS 
TO REAL ZEROS
Before working with the smaller group of seven 
students the following day, I was concerned that 
their “existing knowledge” was not strong enough 
for them to make sense of complex zeros with 
nonzero imaginary values. Students had no prior 
notion of imaginary numbers nor had they learned 
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how to perform calculations with them. Addition-
ally, because they were in an entry-level algebra 
class, they rarely encountered quadratic functions 
without real zeros. I fully supported their quest to 
view an imaginary root as a value that was not arbi-
trary, as this could bring them further along a path 
to making sense of complex zeros.

Referring to the original function, f(x) = x2 – 6x 
+ 13, I told students they were going to determine 
whether there was a relationship between f(x) and 
another function with which they were more famil-
iar—a function with real zeros. I asked students 
about the types of functions they were familiar 
with graphing. They stated and sketched examples 
of functions with two zeros and one zero. They also 
distinguished between a function with a positive 
a-value graphed as a parabola that “looks like a ‘U’” 
and a function with a negative a-value graphed as 
a parabola that “looks like an upside-down ‘U.’” 
When I asked, “Why is the sign of the a-value 
significant?” they responded that the a-value deter-
mines the direction of the parabola; it is “flipped” 
by the additive inverse of the a-value.

As students individually drew a graph of f, I also 
drew it on the board. I asked, “What is different 
about this function compared with those we typi-
cally see in class?” They stated that the parabola 
does not intersect the x-axis and, therefore, it “has 
no [real] roots.” 

I then asked, “Is there a way we can figure out 
the equation of a parabola that has [real] zeros that 
would be related to this function that doesn’t have 
[real] zeros?” As students began their discussion, 
they determined that the related parabola would 
have to intersect the x-axis to have zeros. And, for 
the parabola to intersect the x-axis, they would 
have to “flip” it. I asked, “How could we ‘flip’ it?” 

Fiona stated that the “a-value would have to be 
negative.” 

As students continued their discussion, five of 
them decided to find the additive inverse of the a, 
b, and c values of f(x) because “we need a negative 
value for a.” Then they graphed their new equa-
tion, g(x) = –x2 + 6x – 13, on the same graph as 
the original equation. They realized that although 
the parabola was “flipped,” this did not resolve 
their initial issue of ensuring it would intersect the 
x-axis. I encouraged them to continue: “So, that 
didn’t work out exactly as we’d hoped, but you’re 
on the right track. Is there something else we could 
do to determine a related function that would be 
represented by a ‘flipped’ parabola that has real 
zeros?” 

After a few moments, Omari said that the origi-
nal parabola and the “flipped” parabola could still 
be related if they shared the same vertex. I asked 
the rest of the students if they agreed with him; 

they did. Since they agreed with Omari, I asked 
them to determine the equation of the parabola of 
the function that satisfied these conditions. 

Some students decided to reflect the parabola 
over the x-axis and then translate the reflected 
function to obtain a parabola with their desired 
conditions. Omari used an approach that was 
similar to some of his classmates’ (see fig. 1). In 
Omari’s explanation, although he referred to the 
equation of the reflected image as f(x), which 
he indicated as g(x) in the rest of his work, he 
explained how he arrived at the equation for the 
function that shares the same vertex with f but has 
real zeros. 

Two students determined the equation of the 
related function using a different method. Evelyn 
decided not to find the parabola of the image 
reflected over the x-axis. Instead, she used the 
equation of the axis of symmetry to determine the 
b-value of the new equation. Since she already 
deduced that the a-value would be –1, she used the 
x- and y-values from the vertex of the original equa-
tion to determine the c-value of the new equation 
that she referred to as f(x) (see fig. 2). 

Although students determined the equation of 
the new function using different methods, from this 
point forward, I will refer to the equations using 
Omari’s notation: f(x) = x2 – 6x + 13 as the origi-
nal function, g(x) = –x2 + 6x – 13 as the function 
reflected over the x-axis, and g(x) + 8 = –x2 + 6x – 5 
as the translation of the reflected parabola that 

Fig. 1 Omari explained how he determined the equation for g(x) + 8.

Fig. 2 Evelyn determined the equation of the function using a different method.



32  MATHEMATICS TEACHER | Vol. 112, No. 1 • September 2018

shares the same vertex with f(x) (see fig. 3).
After students shared how they had arrived at 

the equation for g(x) + 8, I told them to determine 
its zeros so they could decide whether they were 
related to those of f(x). The students used the 
quadratic formula to determine {1,5} as the zeros. 
During their discussion, several students stated 
they did not see a relationship between the zeros 
of f(x) and g(x) + 8; they began to discuss whether 
a different related parabola would be better suited 
for this exploration. I told them that they could not 
readily see the relationship because they had not 
yet formally learned how to work with negative 
radicands. Two students, however, were able to 
identify that the nonreal zeros of f(x) were related 
to the real zeros of g(x) + 8. Before the two students 
shared the relationship they identified, I showed 
the entire group how Alexis calculated the zeros 
of f(x) next to her work for the zeros of g(x) + 8 so 
that other students would have an opportunity to 
determine whether a relationship existed. Although 
Alexis incorrectly referred to the related function 
as f(x) + 8, her work was structured in a manner 
that allowed her peers to identify the relationship 
in the sixth line of her work for each function 
(see fig. 4). 

Students’ unfamiliarity with imaginary num-
bers prevented them from being able to compare 
the zeros of f(x), 3 ± 2, to those of g(x) + 8, 3 ± 2i. 
It would have been better had the computation of 
the real zero been delayed to allow students to see 
the imaginary and real zeros in parallel forms as, 
respectively,

x = 6± −16
2

,

−16,

−5± 6.

x = 3± −16
2

and x = 3± 16
2

.

Alexis’s work enabled them to see the relation-
ship between the radicand in both functions by 
comparing the respective steps in the quadratic 
formula (see fig. 5). In their discussion about how 
they could make sense of what they learned, stu-
dents determined that although they did not fully 
understand complex zeros at this stage, they were 
able to connect a nonreal zero to a related real zero, 
which allowed them to strengthen the foundation 
of their existing knowledge and to make sense of 
imaginary zeros in the future. 

PREPARING FOR SENSE MAKING
Through this exploration, students were able to 
identify a relationship between the complex zeros 
of a function and the real zeros of another func-
tion reflected over its vertex. They were also able 
to determine that complex zeros are not arbitrary 
and that complex numbers will make sense to 
them when they study mathematics in subsequent 

Fig. 3 The black parabola represents f(x), the maroon 

parabola represents g(x), and the blue parabola represents 

g(x) + 8 with its zeros.

Fig. 4 Alexis’s work allowed other students to see the 

relationship between f(x) and g(x) + 8.

Fig. 5 Fiona noticed the difference between the radicands of f(x) and g(x) + 8.
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classes. Supporting students’ expansion of 
mathematical understanding on which they will 
build in higher-level mathematics classes provides 
them with the existing knowledge they will need to 
“make sense” of those concepts.

As the students continue to explore these ideas, 
they will be able to understand imaginary roots in 
a more meaningful and codified way. “As sense 
making develops, it increasingly incorporates more 
formal elements” (Martin et al. 2009, p. 4). When 
students learn more structured ways to discuss 
complex numbers with nonzero imaginary parts, 
they will be able to develop a stronger understand-
ing of the relationship between imaginary roots 
or zeros expressed in a ± bi form and how they 
are related to the roots or zeros of the parabola 
reflected over the line y = k, where (h, k) is the 
vertex. They will also be able to determine the 
equation of the related function that has real roots 
based on what they learned and explored in 
first- year algebra. If the quadratic is represented 
in vertex form as f(x) = a(x – h)2 + k, then the 
equation of the related function g(x) + 2k = 
–(ax2 + bx + c) + 2k or g(x) + 2k = –f(x) + 2k.

CONCLUSION
Making sense of nonreal zeros can be challenging 
for students, particularly if they do not have the 
strong existing knowledge with which to connect 
these new ideas. I did not expect my students to 
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we will discuss “Making Imaginary Roots Real,” by Natasha 
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make sense of nonreal zeros or imaginary numbers 
in an entry-level algebra class. However, now they 
have an additional experience on which they can 
build to make sense of these concepts in the future. 
This is how students can begin to understand that 
numbers that are “not real” still have “real” math-
ematical value.
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