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B
oth the Common Core State Standards (CCSSI 2010) 
and the NCTM Process and Content Standards distin-
guish between Standards for Mathematical Practice 
(SMP) and standards for mathematical content. We 
believe this distinction is important and note that 

students often acquire knowledge of mathematical content with-
out necessarily developing the related mathematical practices. In 
fact, we would argue that students grappling with mathematical 
content without mathematical practices are developing a different 
understanding. For example, consider the following task: 

Find a value for x that satisfies x/(x + 3) = 1. 

Jake multiplies both sides by x + 3 to get x = x + 3, and then 
eliminates the x on each side. He then writes, “no solution,” 
applying the rule he has been taught that such nonsense state-
ments should be answered in this way. 

Madi reasons that because x + 3 is always 3 more than x, this 
means that the ratio of x + 3 to x can never equal 1. Although both 
approaches arrive at a correct solution, Madi’s approach invokes 
the mathematical practice to “look for and make use of structure” 
(CCSSM 2010, SMP 7, p. 8). But what does it mean to “look for 
and make use of structure,” and how can we as teachers support 
students in developing this practice? 

Examples of solving equations and inequalities, 
analyzing quadratic expressions, 

and reasoning with functions 
show three ways to engage students 

in this mathematical practice.
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Before unpacking these questions, we offer 
a problem to illustrate structural reasoning. We 
invite you to find two ways to reason about the 
values of x that make the following inequality true: 
|x – 3| > –4. 

This problem can be approached using algebraic 
techniques that leverage rules associated with sym-
bolic notation. To do so, students might write two 
separate inequalities, x – 3 > –4 and x – 3 < 4, solve 
each separately with the correct conjunction, x > –1 
or x < 7, graph their solution sets, notice that their 
union covers the entire number line, and conclude 
that the solution is all real numbers. Although this 
approach reflects one kind of mathematical under-
standing that we aspire to instill in students, this 
problem could also be approached by examining the 
structure of the inequality. Some students might 
observe that this absolute value will be positive for all 
values of x and thus will always be greater than –4. 
Yet other students might leverage the interpretation 
of absolute value as representing distance or magni-
tude, noting that because distance is never negative, 
then all numbers are a distance greater than –4 from 
3. Although all these understandings are critically 
important for students, too often we focus on the 
former. These latter approaches are not only efficient 
but also exciting to recognize.

Structural reasoning involves first taking a step 
back and looking for properties that are embedded 
in mathematical representations before selecting a 
procedure to use to solve a problem. Inviting stu-
dents to search for and examine relationships and 
properties can foster not only a greater understand-
ing of mathematics but also a sense of self-efficacy 
surrounding mathematical problem solving. 

STRUCTURE AND REPRESENTATIONS
In general, structure denotes characteristics of how 
objects are built. In mathematical terms, structure 
refers to the embodiment of properties and their 
relationships in mathematical objects. To build 
and access mathematics, we use representations of 
mathematical ideas, such as symbolic, graphical, 
verbal, contextual, and tabular representations. 
Depending on the representation used, the result-
ing structure takes on different forms. For instance, 
the symmetry of a quadratic equation can be seen 
more easily when graphed than in the symbolic 
equation y = ax2 + bx + c. Because different repre-
sentations offer different insights into properties 
(Cuoco 2001; Lesh et al. 1987), an object’s struc-
ture becomes clearer when we analyze a property 
across multiple representations.

One example of how engaging with a mathemat-
ical property across multiple representations may 
highlight structure can be seen when finding the 
x-value of the vertex of a quadratic y = ax2 + bx + 
c. Analyzing the problem graphically, we can see a 
symmetric parabola (see fig. 1). In words, we recog-
nize this property by saying that the vertex lies on 
the axis of symmetry. Focusing on specific points, 
the axis of symmetry occurs halfway between the 
two x-intercepts. Having noticed this property 
graphically and described it verbally, we now look 
for its instantiation in symbolic form.

Fig. 1 This representation connects a quadratic graph to 

the quadratic formula.
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Using a lens of structure, the quadratic formula 
can be transformed from a rule for calculating zeros 
of a function to reasoning about an embodiment of 
symmetry. This property is highlighted by analyz-
ing the quadratic through multiple representations. 
To first capture the symmetry of the parabola, we 
split up the quadratic formula into two fractional 
expressions:

x = −b ± b2 − 4ac
2a

,

x = −b
2a

± b2 − 4ac
2a

.

x = −b
2a
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2a

?
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Connecting the various parts of the expression to 
their graphical representations,

x = −b ± b2 − 4ac
2a

b2 − 4ac
2a

x = 0 ± 02 − 4(4)(−9)
2(4)

.

x = ± 9
4

.

f x( ) = 8 1− 25
x2

.

8 1 ,

is the distance between the axis of symmetry and 
each of the two roots. This means that x = –b/(2a) 
must be the center, consequently the x-value of 
the vertex. In summary, we can highlight struc-
ture resulting from the embodiment of symmetry 
within the symbolic form by describing and ana-
lyzing symmetry of parabolas through a graphical 
representation. 

STRUCTURE AND GOALS
In addition to acknowledging the role that rep-
resentation plays in structure, it is important to 
recognize that any structure that one sees in a 
mathematical representation will also depend on 
the mathematical goal. For instance, a student who 
does not consider the goal of a task may just see the 
symbolic representation of the expression 4x2 – 9 as 
a collection of disconnected symbols: 4, x, 2, and 9. 
It is not until the representation intersects with the 
goals that a student may begin to see structure in 
the notation. 

• Goal: to factor the expression 4x2 – 9.
We can view 4x2 – 9 as the difference of two 
squares. This may be conveyed more clearly as 
(2x)2 – 32, which can be factored as (2x + 3)(2x
– 3). 

• Goal: to solve an equation using the quadratic 
formula.
We could overlay the general symbolic form of 
ax2 + bx + c = 0 onto the given algebraic expression. 
Students might see that the absence of a middle 
term bx means a coefficient of zero and the opera-
tion of subtracting 9 as a constant term of –9. 
Such a view might be highlighted by rewriting 
4x2 – 9 as 4x2 + 0x + –9. We could then evaluate 
the quadratic formula where a = 4, b = 0, and
c = –9, resulting in

x=
-b± b2-4ac

2a

b2-4ac
2a

x=
-0± 02-4(4)(-9)

2(4)
.

x=±
9
4

.

f x( )= 8 1-
25
x2

.

8 1 ,

• Goal: to solve a quadratic by applying inverse 
operations.
Focusing on the three operations involved in the 
expression (squaring, multiplying by 4 and sub-
tracting 9) a new structure emerges, one that can 
be emphasized by rewriting the expression as 
4(x)2– 9. With these operations identified as sepa-
rate chunks, we can set this expression equal to 
zero and apply inverse operations in reverse order. 
This results in 4(x2) = 9, x2 = 9/4, and finally

x = −b ± b2 − 4ac
2a

b2 − 4ac
2a

x = 0 ± 02 − 4(4)(−9)
2(4)

.

x = ± 9
4

.

f x( ) = 8 1− 25
x2

.

8 1 ,

From this point of view, 4x2– 9 and 4x – 9 have com-
parable structures. Although a common perception 
is that quadratic and linear equations fundamentally 
possess different structure, the two equations can be 
viewed as having similar structures when thinking 
about steps in isolating an unknown variable.

• Goal: to graph the quadratic.
We can see the symbolic representation y = x2

as a base graph, with a vertical stretch of 4 and 
horizontal shift of 9 units down. Such transforma-
tions of the original y = x2 might be symbolized as 
y = 4(x2) – 9 and graphed as in figure 2.

With each of these four goals, the expression’s 
structure was not an inherent feature of the sym-
bolic notation. Instead, we were able to perceive the 
structure only when we recognized mathematical 

Fig. 2 This graphical representation shows transformations 

associated with y = x2.
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properties associated with the goals in the repre-
sentation. It is through this connecting process 
that structure emerges—it exists for a student only 
when the student sees it. This stands in contrast to 
structure being an intrinsic attribute that exists in 
mathematical representations. 

To summarize, we might help students by think-
ing of structure as existing when we connect math-
ematical understanding to the mathematical repre-
sentations, with a particular goal in mind. We now 
provide three ways that have helped our students 
look for and make use of structural reasoning. 

Helping Students Develop a Structural Lens 
Along with the role that representations and goals 
play as we look for and make use of structure, we 
find it useful to think of structure as a lens through 
which mathematics can be viewed. One must 
develop a structural lens just as one develops any 
productive habit and learn when and how to use it 
to be effective. This lens is similar to what has been 
referred to as structural thinking (Mason, Stephens, 
and Watson 2009), structural sense (Hoch 2003), 
or structural reasoning (Bishop et al. 2016). These 
terms suggest a disposition where one looks for, 
uses, and connects underlying mathematical prop-
erties in representations. In contrast to the way 
we learn a technique or a procedure (Mason et al. 
2009), we must develop structural sense over time. 
This is an understanding that teachers must think 
about developing during the course of the entire 
year by repeatedly drawing attention to this prac-
tice. We build on the work of Hoch and Dreyfus 
(2005) by providing three components involved in 
structural reasoning (see fig. 3). We also provide 
examples to illustrate each of their meanings.

1. Recognizing equivalent or similar 
mathematical properties in different 
forms and representations
The first component of structural reasoning is  
the ability to recognize equivalent or similar  

mathematical properties in different forms and across 
multiple representations. Rather than rely on con-
textual characteristics, this skill involves connecting 
similar ideas that may be represented in multiple 
ways. For example, we teach the slope-intercept and 
point-slope as two distinctive forms for linear equa-
tions. Our teaching experiences suggest that students 
often do not see these forms as connected. By taking 
a structural lens, one can see both forms as instantia-
tions of two properties that describe a line: a fixed 
point (e.g., an intercept in one form and a general 
point in the other) and a direction (e.g., the slope). 

Seeing both the slope-intercept and point-slope 
forms as representations involving a fixed point 
and a direction can be highlighted through graph-
ing. Although notationally y = mx + b and y = 
m(x – x1) + y1 look very different, their equivalent 
structure becomes more apparent by connecting 
these forms to their graphical representation and 
asking the question, “For what value of x can we 
evaluate each expression so that a point on the line 
can easily be identified?” For a linear function in 
slope-intercept form y = mx + b, one answer is x = 
0, producing y = b. This means that the line passes 
through the y-intercept (0, b). In the point-slope 
form y = m(x – x1) + y1, the choice of x = x1 makes 
the first part of the expression equal to zero, leav-
ing y = y1. This means that the line passes through 
(x1, y1). By finding the x-value that readily yields a 
y-value, we can identify the coordinates of a point 
in each form. Consequently, students can under-
stand a graphed line knowing a point and slope, 
whether that equation is written in slope-intercept 
form or point-slope form.

Additionally, the Common Core further empha-
sized the relationship between these two forms 
through the elevation of transformations. With this 
lens, the slope-intercept form y = mx + b can be 
interpreted as a vertical shift of the line y = mx, and 
the point-slope equation y = m(x – x1) + y1 can be 
interpreted as a horizontal shift of x1 and a vertical 
shift of y1, meaning that y = mx now passes through 
(x1, y1). 

2. (a) Seeing expressions as 
objects as well as processes
The second two components of structural reasoning 
are interrelated, one being an understanding and 
the other an associated skill. The first is an under-
standing that enables students to see a mathematical 
expression (or pieces of a mathematical expression) as 
a single object that can be operated on. This interpre-
tation contrasts seeing an expression as individual 
symbols combined by operations. Algebraic expres-
sions can simultaneously represent the process of 
a computation and the object of that process (Sfard 
1995). For example, the expression x + 3 can be 

1.	� Recognizing equivalent or similar mathematical properties in dif-
ferent forms and multiple representations. 

2.	 (a)	� Seeing a mathematical expression (or parts of a mathematical 
expression) as an object as well as a process.

	 (b)	� Decomposing (or chunking) algebraic expressions into a vari-
ety of sub-structures based on the context and goals at hand.

3.	� Making sense of appropriate manipulations that productively uses 
the structure instead of automatically applying a set procedure.

Fig. 3 Three components of structural reasoning involve recognizing, decomposing 

and making sense of properties, expressions and manipulations.
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interpreted as the process of adding three to an 
unknown quantity. It can also be interpreted as an 
object in and of itself, which is the result of three 
more than the quantity x. This difference can be 
emphasized contextually. For example, if the cost of 
a dinner is x dollars, and the tip is $3, from a pro-
cess perspective, x + 3 is the process of adding three 
dollars to the cost of the dinner. From the object 
perspective, x + 3 would represent the total cost of 
dinner. 

With numerical operations, the distinction 
between process and object is easier to see because 
we typically use a different symbol for the object 
that results from the process (i.e., the process 12 + 
3 can be represented by the single object 15). With 
algebraic expressions, no alternative exists to high-
light the resulting object, as the result of x + 3 is x + 
3. It may be challenging for students to see expres-
sions both as individual symbols combined by 
operations and as a single object (the result of these 
operations). Consequently, students often struggle 
with the property of closure, not seeing x + 3 as 
a viable answer (Tabach and Friedlander 2008). 
Not accustomed to seeing arithmetic expressions 
as objects, students may feel compelled to simplify 
algebraic expressions incorrectly, adding unlike 
terms, such as writing 3x in place of x + 3.

(b) Chunking algebraic expressions 
into substructures 
Once students are able to interpret an algebraic 
expression as an object, they have access to a differ-
ent way of thinking. Students are able to decompose 
algebraic expressions into a variety of substructures 
according to the context and goals at hand. Take the 
equation 2(x – 4) = 10. Students who see the left 
side of the equation as a set of operations are able 
to solve this equation by undoing the processes 
being applied to x in the reverse order (divide by 
2 and add 4). In contrast, for those who are able 
to take a step back and see 𝑥 – 4 as an object, the 
question then becomes what number, multiplied by 
2, gives 10? This leads to an understanding that the 
object x – 4 must be equivalent to 5, and x is 9. Such 
an approach of viewing the expression as embed-
ded chunks has been referred to as the “cover-up” 
method (Herscovics and Kieran 1980). 	

Cuoco, Goldenberg, and Mark (2010) refer  
to this component of structural reasoning as chunk-
ing. Chunking is often associated with factoring,  
but such an ability supports students in a wide  
variety of mathematical contexts. The understand-
ing associated with chunking is critical when solv-
ing quadratics where factoring is necessary or  
with more challenging rational expressions (e.g.,  
11 – 50/(x – 2) = 6). We can also use chunking 
when finding the domain and range of the function

x = −b ± b2 − 4ac
2a

b2 − 4ac
2a

x = 0 ± 02 − 4(4)(−9)
2(4)

.

x = ± 9
4

.

f x( ) = 8 1− 25
x2

.

8 1 ,We can interpret f(x) as a series of function decom-
positions. This requires reflecting on the structure 
and identifying various symbolic pieces as separate, 
individual chunks. First, looking for the domain, 
imagine the radicand g(x) = 1 – 25/x2 as a function. 
For the square root of g(x) to be real, the output of 
g(x) must be nonnegative. Likewise, by interpreting 
and analyzing 25/x2 as a new chunk or expression 
that is subtracted from 1, we can see this chunk 
must be less than or equal to 1 for the radicand to 
be nonnegative. Further decomposing 25/x2, we 
realize that the denominator x2 must be larger than 
or equal to the numerator 25 for the fraction 25/x2 
to be less than or equal to 1 and the output of g(x) 
to be nonnegative. Therefore, x must be greater 
than or equal to 5 or less than or equal to –5. Simi-
larly, with the range, we leverage the fact that x2 
must always be positive to reason that 25/x2 will 
also be positive. We can conclude that 1 – 25/x2 
will be strictly less than 1. Therefore, the range will 
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be less than 
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8 1 ,, which is equal to 8. The smallest 
value will be 0 because the radical must be non-
negative, which occurs when 25/x2 is equal to 1. 

Although chunking may be a specific case or 
even the result of an object understanding of nota-
tion, we see these two components of structural 
reasoning as mutually supportive. As students 
develop the ability to take a step back and see 
algebraic expressions as objects, they are able to 
see decompositions of expressions as multiple 
pieces according to the goals and context. Like-
wise, encouraging students to identify different 
chunks within algebraic expressions leads to an 
understanding of algebraic expressions as an object. 
Although details of this relationship are beyond the 

 STUDENT SEES IT.
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scope of this article, we encourage others to explore 
what activities might support students to develop 
connections between chunking and process/object 
reasoning. 

3. Using the lens of structure to make 
sense of appropriate manipulation
Finally, as students begin to possess the skills to 
decompose representations and chunk expressions 
into objects, they may engage in the last component 
of structural reasoning. This component requires 
students to pause to examine the structure and decide 
whether one manipulation may simplify a problem 
more than another. This contrasts with automati-
cally applying a set procedure to solve a problem. 
Making sense of the next steps that take advantage 
of structure is difficult to develop, as demonstrated 
by Hoch and Dreyfus (2004). When college-bound 
juniors were asked to solve 1/4 – x/(x – 1) – x = 
6 + 1/4 – x/(x – 1), close to 90 percent of them 
multiplied both sides of the equation by a common 
denominator to convert it into a linear equation, 
rather than observing that the expression  
1/4 – x/(x – 1) occurs on both sides of the equation. 
Noting this similarity in structure can help students 
see the original equation as equivalent to –x = 6. 
Although all students in the study were exposed 

to the “substitution method” in solving quadratics 
(i.e., substituting u for (x – 4) in the expression  
2(x – 4)2 – 5(x – 4) + 3), very few applied this tech-
nique. This may be because students viewed such 
a method as just that, a specific technique, not an 
overall orientation that permeates their thinking. 

IN THE EYE OF THE BEHOLDER
Whether an elementary school student is asked 
to complete the equation 123 + 98 = 122 + ___; a 
middle school student, to solve for x in the inequal-
ity | x – 3 | > –4; or a high school student, to use 
the quadratic formula to interpret the relationship 
of the roots to the vertex, structural reasoning is 
an important process and practice that shapes stu-
dents’ understanding of mathematics. With fear of 
stating the obvious, we note that we can only see 
what we look for. By taking a step back and looking 
for properties embedded in multiple mathematical 
representations, students can develop abilities to see 
expressions as both processes and objects, to chunk 
expressions into substructures, and to evaluate their 
next steps before automatically applying procedures. 
We find that thinking about structural reasoning as 
a lens for interpreting mathematics to be powerful 
for supporting students in learning mathematics. 

The three qualities described here involved in 
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looking for and making use of structural reason-
ing (see fig. 3) can be developed by teachers and 
used by students while problem solving. Although 
such an approach to mathematics is undoubtedly 
challenging to develop, focusing on structural 
thinking provides a powerful new way to reason 
mathematically. Because structure is in the eye of 
the beholder, teachers can play an important role 
in developing structural reasoning in students. As 
students practice looking for and using structural 
thinking across mathematical representations, they 
will begin to draw connections between previously 
compartmentalized topics. In this process of con-
necting mathematics, students will find greater 
enjoyment in developing their mathematical prac-
tices. We encourage others to further consider ways 
to develop structural reasoning in students.
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