Helpful resources, organizations, and tools were used to collaborate during the project.

Organizations and tools	Helpful resources, organizations, and tools
Illustrative Mathematics	Illustrative Mathematics (IM) is a discerning community of educators dedicated to the coherent learning of mathematics. IM shares carefully vetted resources for teachers and teacher leaders to provide children with an understanding of mathematics and skills for using it. Illustrative Mathematics has provided instructional and assessment tasks, lesson plans, unit blueprints, practice standard elaboration and materials, professional learning videos and other resources for teachers, assessment writers, and professional developers since 2011. http://www.illustrativemathematics.org
Teaching Channel	Teaching Channel is an online community where teachers can watch, share, and learn diverse techniques to help every student grow. Teaching Channel (TCH)
Teams is a fee-based, private professional learning platform. TCH Teams allows teachers to upload personally created videos or videos found on Teaching Channel to a private space where they can be shared, viewed, annotated and used for coaching and reflection.	
https://www.teachingchannel.org	

Google Hangouts and Google Docs

Google provides many free collaborative services. Google Hangouts is a service for group video calls. Google Docs allows for creating, editing, and collaborating on documents.

Fifth-grade instructional tasks	Standards
Connecting area model to a context https://www.illustrativemathematics.org/content-standards/tasks/2075	5.NF.B. 4
New park problem https://www.illustrativemathematics.org/content-standards/tasks/2102	5.NF.B. 4 5.NF.B. 6
Cross country training https://www.illustrativemathematics.org/content-standards/tasks/2080	5.NF.B. 4
Sharing lunches https://www.illustrativemathematics.org/content-standards/tasks/2074	5.NF.A. 2 5.NF.B. 3 5.NF.B. 4
Cornbread fundraiser (task and lesson plan) https://www.illustrativemathematics.org/content-standards/tasks/2078	5.NF.B. 4
Extending multiplication from whole numbers https://www.illustrativemathematics.org/content-standards/tasks/2076	5.NF.B. 4
Mrs. Gray's homework assignment https://www.illustrativemathematics.org/content-standards/tasks/2079	5.NF.B.5.b 5.NF.B. 4
Scaling up and down https://www.illustrativemathematics.org/content-standards/tasks/2101	5.NF.B. 5
To multiply or not to multiply variation 2 https://www.illustrativemathematics.org/content-standards/tasks/2077	5.NF.A 5.NF.B. 6

We organized samples of student work into themes and described them.

Exit task student work samples and teacher notes

(c)

I see it in $\frac{1}{5} \times \frac{1}{2}=\frac{1}{10}$ in each box.

Observations

Student uses an algorithm to solve. The algorithm and solution do not match the representation.

Student represents the

 problem and connects the representation to context. Student explains that multiplication was used to find a common denominator.Student multiplies $\frac{1}{5} \times \frac{1}{2}$ to find the value of each partitioned part of the cornbread. Student uses multiplication to find the value of the three remaining parts $\frac{1}{10} \times 3=\frac{3}{10}$. Student seems to understand algorithm for multiplying a fraction by a fraction.

Possible misconceptions or next steps

Student may be grappling with but not yet understanding the algorithm.

Student understands and represents the problem. Student may not yet connect the problem to an operation.

It is unclear if the student relied on the commutative property or misrepresented $3 \times \frac{1}{10}$.

Exit task student work samples and teacher notes

(g)

Student lists factors and multiples. Student finds equivalent fractions.

Student may not conceptualize the relative size of a given fraction. The student also misunderstands how to represent the problem.

