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In this study, an intuitive model was defined as an internal mental structure corresponding to a
class of calculation strategies. A sample of female students was observed 4 times during
Grades 2 and 3 as they solved the same set of 24 word problems. From the correct responses,
12 distinct calculation strategies were identified and grouped into categories from which the chil-
dren’s intuitive models of multiplication and division were inferred. It was found that the stu-
dents used 3 main intuitive models: direct counting, repeated addition, and multiplicative
operation. A fourth model, repeated subtraction, only occurred in division problems. All the intu-
itive models were used with all semantic structures, their frequency varying as a complex inter-
action of age, size of numbers, language, and semantic structure. The results are interpreted as
showing that children acquire an expanding repertoire of intuitive models and that the model they
employ to solve any particular problem reflects the mathematical structure they impose on it.

Several recent studies have shown that students can solve a variety of multiplicative
problems long before formal instruction on the operations of multiplication and divi-
sion. For example, Kouba (1989) found that 30% of Grade 1 and 70% of Grade 2
students could solve simple equivalent group problems and Mulligan (1992) found
a steady increase in success rate on similar problems from over 50% at the begin-
ning of Grade 2 to nearly 95% at the end of Grade 3. More recently Carpenter, Ansell,
Franke, Fennema, and Weisbeck (1993) found that even kindergarten students could
learn to solve multiplicative problems. 

Students use a range of solution strategies to solve multiplication and division
word problems, and from this it has been inferred that they acquire various intu-
itive models of multiplication and division (Fischbein, Deri, Nello, & Merino, 1985;
Kouba, 1989; Greer, 1992). The interest in intuitive models lies in the proposition
that they are formed early on in elementary contexts and can strongly influence stu-
dents’ understanding of more complex multiplicative situations in secondary
school and adulthood, often negatively (Fischbein et al. 1985; Graeber, Tirosh, &
Glover 1989; Simon, 1993). However, it is not clear what intuitive models young
children form, how they are related to the semantic structure of the problems to be
solved, and how the models develop over time. The present paper attempts to throw
light on these questions using data from a longitudinal study of students in Grades
2 and 3.
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We will use the term multiplicative to describe situations that lead to either mul-
tiplication or division, and we will restrict our attention to one-step word problems.

BACKGROUND

Semantic Structure

Multiplication situations can be classified according to the nature of the quan-
tities involved and the relation between them (Nesher, 1988; Vergnaud, 1988).
Greer (1992) lists four categories that primarily apply to problems involving
the multiplication of whole numbers.

• equivalent groups (e.g., 2 tables, each with 4 children)

• multiplicative comparison (e.g., 3 times as many boys as girls)

• rectangular arrays (e.g., 3 rows of 4 children)

• Cartesian product (e.g., the number of possible boy-girl pairs)

Greer also lists six other categories that readily admit fractions and decimals.
Every multiplication situation can lead to various division problems. Equivalent

groups division problems have classically been categorized as partition (sharing)
and quotition (measurement) situations (Fischbein et al., 1985; Kouba, 1989).
For example, “8 children, 4 tables; how many at each table?” is a partition prob-
lem, and “8 children, 4 at each table; how many tables?” is a quotition problem.

Following Nesher (1988), we will refer to the category to which a multiplicative
problem can be assigned as its semantic structure. It has been found that mathematically
equivalent problems of different semantic structure evoke different solution strate-
gies and vary widely in difficulty (Bell, Fischbein, & Greer, 1984; Bell, Greer, Grimison,
& Mangan, 1989; Brown, 1981; De Corte, Verschaffel, & Van Coillie, 1988;
Fischbein et al., 1985; Nesher, 1988; Vergnaud, 1988). 

Classification of semantic structure is clearly somewhat arbitrary in that the cat-
egories can be extended, collapsed, or refined depending on the purpose of the
investigation. For example, Schmidt and Weiser (1995) recently presented a four-
fold classification of semantic structures with several subclasses. The crucial point
is that the semantic structure of a problem is determined by a researcher prior to
its presentation to students and does not necessarily indicate how students will
solve the problem.

Solution Strategies

Several studies of the actual strategies students correctly use to solve whole-num-
ber multiplicative problems have yielded fairly consistent results (Anghileri, 1989;
Boero, Ferrari, & Ferrero, 1989; Carpenter et al., 1993; Kouba, 1989; Mulligan, 1992;
Mulligan & Mitchelmore, 1996; Murray, Olivier, & Human, 1992; Steffe, 1994).
Strategies have been classified in two ways. One way of classifying solution
strategies is by the calculation strategies students employ (Anghileri, 1989)—called
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degree of abstractness by Kouba (1989) and Mulligan (1992). Combining descrip-
tions from various studies leads to the five categories summarized in Table 1. Variations
of all strategies occur in both multiplication and division problems. In particular,
we interpret both unitary counting in multiplication problems and sharing or
dealing in division problems as direct counting. We will return later to the ques-
tions of what unitary counting and sharing involve and whether it is justified to put
them in one category.

Table 1
Children’s Calculation Strategies for One-Step, Whole-Number, Multiplicative Word Problems

Strategy Definition

1. Direct counting Physical materials are used to model the problem and the objects 
are simply counted without any obvious reference to the multi-
plicative structure.

2. Rhythmic counting Counting follows the structure of the problem (e.g., “1, 2; 3, 4; 5,
6” or “6; 5, 4; 3, 2.”) Simultaneously with counting, a second 
count is kept of the number of groups.

3. Skip counting Counting is done in multiples (e.g., “2, 4, 6” or “6, 4, 2”), making
it easier to keep count of the number of groups.

4. Additive calculation Counting is replaced by calculations such as “2 + 2 = 4, 4 + 2 = 6”
or “6 – 2 = 4, 4 – 2 = 2.”

5. Multiplicative Calculations take the form of known facts (e.g., “3 times 2 is 6” or
calculation derivations from a known fact (e.g., “3 × 2 = 2 × 2 + 2.”)

The second classification is called use of physical objects by Kouba (1989) and
modeling strategies by Mulligan (1992) and Carpenter et al. (1993). Students
may model the problem situation using such objects as tokens or fingers; they may
model it by drawing icons or tallies; or they may not model the situation externally
at all. All these possibilities have been reported as occurring in conjunction with
all five strategies in Table 1.

INTUITIVE MODELS

What Is an Intuitive Model?

The notion of intuitive models (also called implicit, tacit, or informal models) appears
to have originated with Fischbein et al. (1985). They hypothesize that “each fun-
damental operation of arithmetic generally remains linked to an implicit, unconscious,
and primitive intuitive model” (p. 4), which mediates the search for the operation
needed to solve a problem. They also state, “When trying to discover the nature of
the intuitive model that a person tacitly associates with a certain operation, one has
to consider some practical behaviour that would be the enactive, effectively per-
formable counterpart of the operation” (p. 5).

This definition seems to imply that an intuitive model is an internalization of the
physical operation involved in the corresponding problem situation, and therefore,
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that a direct correspondence exists between intuitive model and semantic structure.
Indeed, Fischbein et al. (1985) describe three intuitive models that directly corre-
spond to three semantic structures. For multiplication, they hypothesize a repeated-
addition model “in which a number of collections of the same size are put together”
(p. 6)—reflecting the equivalent-groups semantic structure. For division, they
describe intuitive models corresponding to partition and quotition semantic struc-
tures and claim that “the structure of the problem determines which model is acti-
vated” (p. 7). On the hypothesis that these are the dominant (but tacit) models among
students in Grades 5, 7, and 9, they were able to predict with some success how per-
formance on rational number multiplicative problems depends on the type of
numbers involved. Fischbein et al. also conjectured that the hypothesized models
persisted from intuitive models of multiplication and division, which had been formed
much earlier in whole-number contexts. 

Kouba (1989) was stimulated by the Fischbein et al. (1985) study to investigate
these earlier intuitive models directly, by observing how young children solved whole-
number problems. Problems were selected to fit the three semantic structures
already described. For our purposes, her most pertinent finding was that partition
and quotition problems did not generate different calculation strategies. She
reported, without citing specific data, that both types of division were solved by using
either repeated subtraction or by repeated building up. She concluded:

There also are similarities in the intuitive models that students appear to have for mea-
surement division and partitive division.… [A]t an intuitive level, many students may
perceive these different types of division as being more related than is evident in the
Fischbein et al. (1985) descriptions of the intuitive models.… The link probably has more
to do with the children’s use of counting as a means of doing all operations. (p. 157)

This finding implies that there may in fact be no direct correspondence between the
semantic structure of a problem and the method that a child uses to solve it. 

Kouba’s (1989) study suggests that it would be valuable to examine young
children’s solution strategies in more detail and, in particular, to look for categories
of similar calculation strategies used across a range of semantic structures. Each cat-
egory of calculation strategy could then be seen as evidence for an internal men-
tal structure that children impose on multiplicative situations and that reflects
particular aspects of the mathematical structure. Kouba is clearly thinking of such
internal mental structures when she uses the term intuitive model, and we will do
the same.

It seems preferable to define an intuitive model in terms of calculation strategies
rather than modeling strategies. For although modeling strategies are important in
practice—it is usually more efficient to use visualization or arithmetical symbols
than concrete models—it could be argued that they reflect children’s familiarity with
a particular calculation strategy rather than fundamental differences in the way chil-
dren structure the problem. In other words, the same intuitive model could be used
with a variety of modeling strategies. On this basis, what intuitive models can we
expect to find?
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Intuitive Models of Whole Number Multiplication and Division

Anghileri’s (1989) results, obtained over six semantic structures, suggest only three
intuitive models for whole-number multiplication: those corresponding to unitary
counting, repeated addition, and multiplicative calculation. It seems reasonable to
combine rhythmic counting, skip counting, and additive calculation strategies
into the one repeated addition model if we observe that all these strategies are based
on the same principle of double counting. As Anghileri argued, the increase in sophis-
tication from rhythmic counting to additive calculation is more a result of a deep-
ening understanding of addition than any basic change in calculation strategy. It is
important to emphasize that we are using the term repeated addition here to refer
to the structure of a particular class of calculation strategies and not, as many authors
do, to the semantic structure of equivalent groups.

For whole-number division, Kouba’s (1989) results suggest at least four intuitive
models: sharing, repeated taking away, building up, and multiplicative calculation.
Both repeated taking away and building up appear to be based on the same prin-
ciples as repeated addition. Other classes of calculation strategies might appear if
a wider range of semantic structures were included.

The above interpretation naturally raises the following questions:

1. Can the proposed intuitive models be identified in new data? In particular, is
it justified to put unitary counting and sharing in one model?

2. Do any new intuitive models appear when a broader range of semantic struc-
tures is included?

3. Does the semantic structure of the problem influence children’s intuitive models?

4. How do children’s intuitive models change over time, especially as a result
of instruction?

The longitudinal study to be described below was designed to provide some
answers to these questions.

METHOD

Design

Clinical interviews were conducted in March/April and November/December
(i.e., early and late in the Australian school year) in two successive years when the
students were in Grades 2 and 3. At the time of the first interview, students had received
teacher instruction in basic addition and subtraction but not in multiplication and divi-
sion. Between the third and fourth interviews, all students were given instruction in
basic multiplication facts with the 2–10 times tables but not in related division facts.
The mathematics teaching practice was monitored over the entire study. All partic-
ipating teachers followed the official K–6 mathematics syllabus (New South Wales
Department of Education, 1989), which emphasizes the acquisition of basic facts and
computational skills. No teacher reported giving instruction in solving word problems.
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Sample

The interview sample initially comprised 70 girls ranging from 6.5 to 7.5 years
of age at the time of the first interview; of these, 60 remained at the final interview.
The students were randomly selected from eight schools in Sydney. The interview
sample was limited by gender to avoid the effect of possible gender differences. Two
students with very poor reading ability were excluded.

The Problems

The problems used are shown in Table 2. All problems were set in familiar con-
texts and all involved only whole-number data and answers.

Table 2
Multiplication and Division Word Problems

Multiplication Division
Equivalent groups Partition

1. There are 2 tables in the classroom and 4 7. There are 8 children and 2 tables in the
children are seated at each table. How many classroom. How many children are seated
children are there altogether? (4, 7) at each table? (28, 4)
2. Peter had 2 drinks at lunchtime every day 8. Six drinks were shared equally among 3
for 3 days. How many drinks did he have children. How many drinks did they each
altogether? (3, 7) have? (14, 7)

Rate Rate

3. If you need 5 cents to buy 1 sticker, how 9. Peter bought 4 lollipops with 20 cents. If
much money do you need to buy 2 stickers? each lollipop cost the same, how much did
(5, 7) 1 lolly cost? (8, 40)

Comparison Comparison

4. John has 3 books, and Sue has 4 times as 10. Simone has 9 books. This is 3 times as
many. How many books does Sue have? (6, 5) many as Lisa. How many books does Lisa

have? (40, 8)

Array Quotition

5. There are 4 lines of children with 3 children 11. There are 16 children, and 2 children are
in each line. How many children are there seated at each table. How many tables are
altogether? (3, 8) there? (36, 4)

Cartesian product

6. You can buy chicken chips or plain chips 12. Twelve toys are shared equally among
in small, medium, or large packets. How many the children. If they each had 3 toys, how
different choices can you make? (8, 2) many children were there? (24, 6)

Note. The text gives the small-number problems. The large-number problems were worded identi-
cally except for the substitution of the numbers given in parentheses.

The multiplication problems were chosen to represent 5 of the 10 semantic
structures identified by Greer (1992). The other 5 structures were excluded on the
basis that they involved measurement concepts that would be unfamiliar to students
in Grade 2. Because the equivalent groups structure is the one most commonly used
in textbook word problems, two such problems were included.

The division problems were constructed as inverse problems in the equivalent groups,
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multiplicative comparison and rate structures; inverses in the array and Cartesian
product structures were judged to be inappropriate for the age level tested. Two prob-
lems were chosen for both the partitive and quotitive division structures.

Two categories of number size were selected to compare the influence of small
and large numbers: The product was either between 4 and 20 (small numbers) or
between 20 and 40 (large numbers). These number domains were used because the
Grade 1 curriculum focused on whole-number combinations between 0 and 20 and
extended to 100 by Grade 3.

Interview Procedures

All interviews were conducted by the first author in a small side room. Problems
were written on cards and read to the child by the interviewer. The problems were
re-read to the child as often as necessary to assist her in remembering the details.
Forty small cubes were available on the table, but no paper or pencil. The interviewer
explained to the child that she could use the cubes to assist in solving the problem
if she wished. In this way students were forced to use either concrete modeling, men-
tal calculation strategies, or both.

The small-number multiplication problems were administered first followed by the
small-number division problems, in the order shown in Table 2. The large-number
problems were then posed. However, a large-number problem was asked only if the
child had been successful on the corresponding small-number problem. Students were
praised for their attempts, but no feedback was given as to the correctness of their responses.
The interviews lasted from 15 to 55 minutes with an average time of 30 minutes.

When modeling with cubes was not used, or a response was unclear, additional
neutral questions were asked by the interviewer, for example, “Can you tell me how
you solved the problem?” and “Did you see anything in your mind when you were
solving the problem? Can you describe what this looks like?” When a child gave
an explanation that appeared to conflict with anything the interviewer had observed,
she was asked to describe what she was thinking at that time.

Data Coding

The interviewer recorded children’s responses as they solved each problem, draw-
ing diagrams of children’s modeling and noting gestures and finger movements. She
also coded each response as correct, incorrect, uncodable, or nonattempt. Where
the child began using a correct strategy but gave an incorrect answer, the response
was coded as incorrect. Each interview was also audiotaped. A research assistant
checked the interviewer’s notes and audiotapes and clarified uncertainties in con-
sultation with the interviewer. 

RESULTS

For two reasons, the data analysis is confined to those responses coded as correct.
First, the vast majority of incorrect responses resulted from superficial strategies (mainly,
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adding the two given numbers) or from incorrect models of the problem situation.
No intuitive model of multiplication or division could be inferred from such
responses. Second, children who used a correct strategy but made an error in the
calculation usually corrected themselves spontaneously in the process of explain-
ing their procedure.

Identification of Intuitive Models

Procedure

A two-stage procedure was used to identify children’s intuitive models. First, chil-
dren’s responses were examined to find if their calculation strategies could be reli-
ably identified. Second, the calculation strategies were grouped to infer underlying
intuitive models.

The first author initially coded children’s calculation strategies separately
according to whether they used concrete modeling or no modeling. Where a child
used two or more calculation strategies to solve the same problem, the most dom-
inant strategy was coded. Several strategies were used both with and without con-
crete modeling, and some were used in both multiplication and division. Eventually,
12 different calculation strategies were identified and defined. They were essentially
the same as those reported in a previous study (Mulligan, 1992).

Table 3
Intuitive Models for Multiplication and Division

Intuitive model Calculation strategies
Multiplication

1. Direct counting Unitary counting
2. Repeated addition Rhythmic counting forward

Skip counting forward
Repeated adding
Additive doublinga

3. Multiplicative operation Known multiplicative fact
Derived multiplicative fact

Division

1. Direct counting One-to-many correspondence
Unitary counting
Sharing
Trial-and-error grouping

2. Repeated subtraction Rhythmic counting backward
Skip counting backward
Repeated subtracting
Additive halvingb

3. Repeated addition Rhythmic counting forward
Skip counting forward
Repeated adding
Additive doublinga

4. Multiplicative operation Known multiplicative fact
Derived multiplicative fact

aFor example, “3 and 3 is 6, 6 and 6 makes 12.”
bFor example, “Cut 8 into two halves makes 4 and 4.”
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A research assistant then independently used the strategy definitions to code
every fifth interview (48 transcripts). A 92% agreement rate was found and regarded
as satisfactory.

Finally, the 12 calculation strategies were examined to identify overarching prin-
ciples. They could be grouped into the proposed intuitive models; no further mod-
els appeared. The resulting intuitive models, and the strategies that correspond to
them, are shown in Table 3.

We now give a more precise description of each model, as identified in our data,
concentrating on features that have not been widely described to date.

Intuitive Models for Multiplication

Direct counting. The classic strategy of modeling the problem (using either cubes
or visualization) and then counting the cubes one by one was frequently observed.
Some other strategies also failed to take advantage of the equal sizes of the groups.
For example, in response to Problem 1, Michelle put out three blue and five red cubes
in two groups of four, said there were three boys and five girls, and calculated “3
+ 5 = 8.”

We infer from these responses an intuitive model that represents the problem sit-
uation correctly but does not impose on it an appropriate mathematical structure.
The problem is essentially solved by the concrete materials themselves, together
with an independent counting procedure. As Steffe (1988) puts it, a child using direct
counting has not yet made the leap of regarding “three ones” as “one three.”

Repeated addition. As found in previous studies, many students successfully solved
multiplication problems by rhythmic counting, skip counting, or additive calcula-
tion. In effect, these methods all create an appropriate sequence of multiples.
Repeated addition is an advance on direct counting because it takes advantage of
the equal-sized groups present in the problem situation.

Multiplicative operation. This model was inferred when students gave correct responses
without appearing to form the entire sequence of multiples. A typical response was,
“I made one group of three and timesed it.” The few students who used concrete
modeling with this intuitive model only made one group of objects. More devel-
oped techniques were evident in responses that included recalled multiplication facts;
for example, “I knew it was multiplication straight away.… You just do the mul-
tiplication.… Three fours are twelve.” We justify including the use of derived facts
with this model because, even though addition is used, the basic aim is to calculate
a product without creating the entire sequence of multiples.

We call this an operation model because multiplication appears explicitly as a binary
operation for the first time in this model. Both Fischbein et al. (1985) and Kouba (1989)
comment on the importance of seeing multiplication as an operation, and Anghileri
(1989) found that use of multiplication facts was much more common among stu-
dents classified as above-average ability than among the others in her sample.

In the operation model, the final term is extracted from the implicit sequence of
multiples and treated as a single entity. In this respect, the operation model is based

317Joanne T. Mulligan and Michael C. Mitchelmore



on the repeated addition model but is distinctly different from it. Julianne typified
the difference when she remarked at Interview 4, “I just thought of using the num-
bers and the multiplying sign in my head, I didn’t need to count.”

Intuitive Models for Division

Direct counting. Several strategies relied on concrete modeling followed by an
independent counting process. The first step in all these strategies was to count out
a number of cubes equal to the dividend. For partition problems, one strategy was
simply to make a tentative grouping of the cubes and then move them from one group
to the other until the numbers were equal. Another strategy was to deal out the cubes
successively in ones or twos to the specified number of groups until they were exhausted.
For quotition problems, a typical strategy was to successively separate out groups
of the specified size until the cubes were exhausted and then to count the number
of groups.

All these strategies seem to represent little more than a correct modeling of the
problem situation together with accurate counting, as in the direct-counting model
for multiplication. It is true that they achieve the aim of creating equal-sized
groups, but the subsequent calculation procedure does not reflect this structure. Direct
counting for multiplication and direct counting for division therefore seem to
indicate essentially the same intuitive model.

Repeated subtraction. The strategies in this model all start with the dividend and
use a systematic calculation procedure in which the number in each group is
repeatedly taken away. For the quotition problems, the method is direct. For
example, in response to Problem 11, Amy counted out 16 cubes and then took away
groups of 2 cubes, saying “16, 14, 12, 10, 8, 6, 4, 2, nothing left … that’s 8
tables.” The important distinction between Amy’s model and a direct counting model
is that Amy simultaneously counted both the number of cubes left and the number
of groups already formed. For nonquotition problems, a number has to be guessed
and repeatedly taken away the specified number of times to check if the result is
zero. Students seemed to be extraordinarily good at determining such numbers, with-
out revealing any direct process for doing so. 

All calculation strategies in this model, including additive halving, create a
decreasing sequence of multiples starting with the dividend.

Repeated addition. This model is similar to the repeated subtraction model
except that, instead of starting with the dividend, the child builds up to the dividend.
This model is also direct for quotition problems and indirect for other problems. For
example, in response to Problem 11, Susan counted aloud the sequence of multi-
ples 2, 4, 6, …, and after each count identified the number of tables (shown in paren-
theses): “2 (1), 4 (2), 6 (3), 8 (4), 10 (5), 12 (6), 14 (7), 16 (8)—8 tables.” Kouba
(1989) called these strategies building up.

All strategies in this model create an increasing sequence of multiples. It is there-
fore basically the same model as the repeated-addition model for multiplication. We
also argue that it is a more advanced model than repeated subtraction because it allows
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the same model to be used for both division and multiplication problems. Such uni-
fication would be expected to reduce cognitive load and lead to greater efficiency
and a more rapid adoption of a multiplicative operation model.

Multiplicative operation. Strategies in this model used multiplication as an oper-
ation. In some cases, the solution was guessed and checked by multiplication. In
others, the student appeared to search for a multiple of the divisor that was equal
to the dividend—but without generating the entire sequence of multiples.
However, all these strategies used known or derived multiplication facts. Only
a few students demonstrated an explicit awareness of division as an operation, mostly
in a halving strategy. 

The multiplicative operation model of division is essentially the same model
as the multiplicative operation model for multiplication. It appears to be
related more closely to the repeated-addition model of division than to the repeated-
subtraction model.

Variation in Intuitive Models

We turn now to an analysis of how children’s intuitive models were related to the
semantic structure of the problem and how they changed over time. The data
show many complex interactions, and we can only summarize general trends
here. To simplify the discussion, data on the duplicated problems (equivalent-groups
multiplication, partition and quotition division) will be combined. Tables giving the
percentages of the sample using each intuitive model correctly for each problem
at each interview are available from the authors.

Multiplication

Figure 1 shows the overall distribution of the intuitive models employed in cor-
rect responses to the multiplication problems at each interview stage. The percentage
of correct responses increased steadily from 31% to 68%, mainly because of a 12%
increase in the successful use of repeated addition between Interview 1 and
Interview 2 and a 24% increase in the successful use of the multiplicative opera-
tion model between Interview 2 and Interview 4. The percentage of correct
responses using the direct-counting model remained steady at about 10%. 

There was a consistent difference in performance between problems at all inter-
views and for both small and large numbers. The equivalent-groups, rate, and array
problems were approximately equal in difficulty, the success rate increasing from
an average of 45% at Interview 1 to 86% at Interview 4. The comparison problem
was intermediate in difficulty, increasing from 6% to 52% over the period of the
study. The Cartesian product problem was very difficult, averaging 1% correct over
Interviews 1–3 but jumping to 14% at Interview 4.

Correct use of the direct-counting model was only frequent for the array prob-
lem (22% overall) and the equivalent-groups problems with large numbers (20%).
Correct usage rarely exceeded 10% for the other problems, and it was never the most
successful strategy. 
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Figure 1. Percentage of sample giving correct responses to multiplication problems at each interview
stage. Responses are classified by intuitive model: direct counting (DC), repeated addition (RA), or mul-
tiplicative operation (MO). Data pooled from 12 problems.

The repeated-addition model was the most frequent correctly used model on almost
all occasions for all semantic structures except comparison. Figure 2 compares the
various problem types. The relatively high success rate for rate problems is likely
the result of the particular numbers involved. Both problems involved multiples
of 5, which seem to be second only to multiples of 2 in terms of their familiarity
to young children. However, in the small-number problem, doubling 5 was most
often solved using a “5 and 5 makes 10” argument. In the large-number problem,
the odd multiple of 5 seemed to be relatively unfamiliar and students simply counted
in fives. The overall tendency shown in Figure 1 for the successful use of the repeated-
addition model to increase and then decrease again was only present for the
equivalent-groups, array, and comparison problems.

Figure 3 shows the variation in the successful use of the multiplicative oper-
ation model. Success was rare in the first two interviews, but it began to increase
at Interview 3—just prior to formal instruction in multiplication—and had
become fairly common by Interview 4 on all structures except the Cartesian prod-
uct. It is notable that in Interviews 3 and 4, the comparison and equivalent-groups
problems—although differing in overall difficulty—elicited almost equal num-
bers of correct responses using the multiplicative operation model. In fact, the mul-
tiplicative operation model was the most frequent correctly used model for the
comparison problem. The cause seemed to be the linguistic cue “times”; for exam-
ple, Lisa responded to the small-number problem by saying, “times as many …
that’s multiply … three fours.”
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Figure 2. Percentage of sample using a repeated-addition model in correct responses to various mul-
tiplication problems at each interview stage.

Figure 3. Percentage of sample using a multiplicative operation model in correct responses to var-
ious multiplication problems at each interview stage.

The size of the numbers in the problems had a fairly consistent effect. As might
have been expected, overall success rate was lower on the large-number problems
(43% correct) than the small-number problems (59%). Successful use of direct count-
ing was more common for large numbers than small numbers (14% compared to 7%),
whereas the reverse was true for both the repeated-addition model (20% compared
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to 38%) and multiplicative operation model (9% compared to 13%). Many students
who had successfully used repeated addition for a small-number problem seemed
to experience a “processing overload” when attempting to use the same strategy for
the corresponding large-number problem; they then often solved the problem
using direct counting. Students who had used a multiplicative operation for a
small-number problem were often unable to retrieve the number fact required for
the corresponding large-number problem and reverted to repeated addition. 

Division

Figure 4 shows the overall distribution of the intuitive models employed in cor-
rect responses to the division problems at each interview stage. Overall performance
increased from 33% at Interview 1 to 68% at Interview 4, despite the absence of
formal teaching, which was virtually the same as for multiplication. As was the case
for multiplication, correct use of direct counting was fairly constant (12% on
average) and correct use of a multiplicative operation model increased substantially
(by 16%) between Interviews 2 and 4. By contrast, correct use of the repeated addi-
tion and subtraction models increased steadily from 20% at Interview 1 to 38% at
Interview 4.

Figure 4. Percentage of sample giving correct responses to division problems at each interview stage.
Responses are classified by intuitive model: direct counting (DC), repeated subtraction (RS), repeated
addition (RA), or multiplicative operation (MO). Data pooled from 12 problems.

Performance on the partition, rate, and quotition problems was approximately the

322 Children’s Intuitive Models

70

60

50

40

30

20

10

0

1 2 3 4

Interview stage

P
er

ce
nt

ag
e 

of
 c

or
re

ct
 re

sp
on

se
s

MO

RA

DC

RS



same, ranging from 37% at Interview 1 to 78% at Interview 4. The comparison prob-
lem was extremely difficult, averaging 2% correct over Interviews 1–3 but jump-
ing to 14% at Interview 4. 

Correct use of the direct counting model was mainly observed in the quotition
problems (23% of responses) and in the large-number partition problems (13%).
For the quotition problems, it was the most frequent correctly used model in
Grade 2 and was still common at the end of Grade 3.

Correct use of the repeated-subtraction model was only consistently common on
the small-number partition problem, Problem 7 ( average 31%). This was the
only problem easily solved by additive halving, which many of the students used.
The only other cases where the repeated subtraction was successfully used in
more than 10% of the responses were the other partition problems and the rate prob-
lems at Interview 4.

On all problems except comparison, repeated addition was common and almost
always the most frequent correctly used model. Figure 5 shows the relevant data.
Most notable is the difference between the increasing pattern for the quotition struc-
ture and the more stable pattern for the partition and rate structures. From Interview
2 to Interview 3, correct use of direct counting dropped from 34% to 16% and repeated
addition or subtraction climbed from 17% to 33%. In Grade 2, the quotition prob-
lems were more difficult to understand than the partition and rate problems, chil-
dren often interpreting “There are 2 children at each table” as “The children are at
2 tables.” By Grade 3, more children were modeling the quotition situations cor-
rectly. The quotition structure, once understood, seemed to encourage double
counting more than partition or rates.

Figure 6 shows the variation in successful use of the multiplicative operation model
for division. As for multiplication, it was rarely used successfully in the first two inter-
views but began to appear at Interview 3. The greater success of the multiplicative
operation model on the rate problems is explained by the specific numbers involved.
Both problems involved multiples of 5. On the small-number problem, the multi-
plication fact 4 × 5 = 20 was frequently recalled, and on the large-number problem,
8 × 5 was often derived from it by doubling. It is instructive to compare this result
with the two rate multiplication problems, which also involved multiples of 5 but
where the most frequent correctly used model was repeated addition. The difference
seems to lie entirely with the particular multiples required to solve the problems.

The size of the numbers in the division problems had an effect similar to that noted
for multiplication. Overall success rate was lower on the large-number problems
(38% correct) than the small-number problems (58% correct). Successful use of direct
counting was slightly more common for large numbers than small numbers (12%
compared to 11%). For the other models, correct solutions were less frequent for
the large-number problems than the small-number problems: repeated subtraction
(5% compared to 11%), repeated addition (16% compared to 27%), and multiplicative
operation (5% compared to 9%). As for multiplication, large-number problems seemed
to make demands on information retrieval or processing capacity that forced many
students to revert to a more primitive and less demanding model. 
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Figure 5. Percentage of sample using a repeated-addition model in correct responses to various divi-
sion problems at each interview stage.

Figure 6. Percentage of sample using a multiplicative operation model in correct responses to var-
ious division problems at each interview stage.

Consistency of Students’ Intuitive Models

It is obvious from Figures 1–6 that most students were not consistent in the intu-
itive models they used correctly at any one time. Problem characteristics, such as
semantic structure and the specific numbers used, seemed to influence which
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intuitive model would be employed. At each interview, there were some students
who used the same intuitive model correctly on all problems, but there were oth-
ers who used as many as three different models.

Nonetheless, students showed a consistent progression of intuitive model used
from interview to interview within each problem. For example, consider the first
small-number, equivalent-groups multiplication problem. Of the 17% of responses
employing direct counting successfully at Interview 1, only 2% used direct count-
ing at Interview 2; the other 15% employed repeated addition successfully. Of the
66% of responses showing successful use of repeated addition at Interview 3, 29%
changed to a multiplicative operation model at Interview 4, 35% remained with repeated
addition, and 2% failed to solve the problem. On all 12 multiplication problems,
in only 3% of the cases did students successfully use a more primitive intuitive model
to solve a problem that they had successfully solved at the previous interview, and
only 2% failed to solve it.

For the division problems, the data confirm our earlier claim that repeated subtraction
is a more primitive model of division than repeated addition. On all 12 division prob-
lems, there was not one case in which a successful use of repeated addition was fol-
lowed by successful use of repeated subtraction at the next interview.

DISCUSSION

Summary of Results

The present study has extended previous research on young children’s intuitive
models of whole-number multiplication and division by widening the range of seman-
tic structures included and by including the effect of maturation. Our definition of
an intuitive model as an internal mental structure corresponding to a class of cal-
culation strategies—as opposed to a class of solution strategies, modeling strate-
gies, or semantic structures—has clarified the literature and proved to be reliably
applicable in practice.

Among students in Grades 2 and 3, we have been able to clearly identify three
intuitive models for multiplication (direct counting, repeated addition, and multi-
plicative operations) and four for division (direct counting, repeated subtraction,
repeated addition, and multiplicative operations). As the names imply, these are basi-
cally only four different models. The direct counting model is little more than prim-
itive counting applied to a correct interpretation of the given word problem. The
repeated addition and subtraction models arise when students devise more efficient
counting procedures to take advantage of the equal-sized groups in the problem. Both
in effect create a sequence of multiples. The operation model represents the use of
multiplication as a binary operation whose output is the final number in the
sequence of multiples.

Other classifications of students’ calculation strategies are, of course, possible.
For example, the repeated-addition and repeated-subtraction models could well be
broken into two parts: those strategies that use sequences of multiples and those that
use known addition or subtraction facts. No doubt this is an important transition.
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Also important is how students represent the problem situations within the various
intuitive models. We claim only that the suggested classification is valuable for the
purpose of studying overall changes in students’ understanding of multiplication
and division prior to and during formal schooling.

Our data show a consistent progression in the intuitive models used by students
in Grades 2 and 3, from direct counting to repeated addition or subtraction to mul-
tiplicative operations. There was also a steady increase in performance. In partic-
ular, although many students were successfully solving multiplicative problems by
the end of Grade 2, instruction in Grade 3 saw a considerable increase in the use
of the operation model as well as in the overall success rate. Furthermore, although
instruction was reportedly limited to multiplication and only illustrated in equiv-
alent group situations, the use of operation models and the overall success rate also
increased in other semantic structures and in division problems.

Previous findings that problem difficulty varies with semantic structure have been
confirmed. In particular, comparison problems were relatively difficult and
Cartesian product problems extremely difficult. We also found a clear variation in
the intuitive models successfully employed in different problems. However, the struc-
ture of the preferred intuitive models did not necessarily correspond to the seman-
tic structure of the problems: All intuitive models were employed across all
problems. Many of the observed differences in preferred model were readily
explained by the size of the numbers, the particular multiples involved, or the pres-
ence of superficial verbal cues.

We did not expect to find such a strong preference for the repeated-addition model
of division across all semantic structures. This phenomenon appears to be a result
of the close connection that students see between division and multiplication
problem situations before they receive instruction in division. The same close con-
nection is evidenced by students’ spontaneous use of an operation model for divi-
sion shortly after instruction in multiplication. 

Our findings are in clear contrast to the one model of multiplication and the two
models of division proposed by Fischbein et al. (1985), models that are essentially
reflections of three common semantic structures. We found no evidence that Grade
2 and 3 students solve equivalent-groups, partition, and quotition problems
using intuitive models reflecting these three semantic structures, or that they use
only models corresponding to these three semantic structures to solve problems
with other semantic structures. Instead, it would seem that they use a different set
of intuitive models (direct counting, repeated addition/subtraction, and multiplicative
operations), which they can apply to both multiplication and division problems
of various semantic structures. One consequence of this finding is the need to dif-
ferentiate clearly between the equivalent-groups semantic structure and the
repeated-addition intuitive model.

We might ask why the same intuitive models can be used for all semantic structures.
The reason appears to lie in the fact that in every multiplicative situation, “there must
be equal-sized groups” (Confrey, 1994, p. 307; italics in original). Therefore, funda-
mental to processing a multiplicative situation effectively must be the recognition of
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the appropriate equal-sized groups. This step is not always an easy one; for exam-
ple, it is not at all obvious in a Cartesian product situation. It is the equal-groups
structure that allows the use of repeated addition/subtraction or multiplication, not
the semantic structure. The intuitive model employed to solve a particular problem
therefore does not reflect any specific problem feature, but rather the mathemati-
cal structure that the student is able to impose on it.

Learning Multiplication and Division of Whole Numbers

Our results allow us to form a tentative picture of how young children’s intuitive
understanding of whole-number multiplication and division of whole numbers evolves.

It would appear that young students acquire a sequence of increasingly efficient
intuitive models that are applicable to whole-number multiplicative situations. The
structure of each model derives from the previous one. Students do not simply switch
from one model to the next, but rather develop a widening repertoire of models. Which
one (or more) of all the available intuitive models is called into play to solve a par-
ticular problem depends on several factors, including previous experience of and
instruction in that problem situation and knowledge of the relevant number facts.

In fact, three factors seem to develop in a parallel and interrelated fashion:

1. Students progress in their ability to interpret word problems, even without spe-
cific instruction. They learn to build concrete models of a widening variety of mul-
tiplicative contexts and to visualize them more and more easily. Students therefore
become able to solve problems with an increasing range of semantic structures, although
they might only use direct counting.

2. Students begin to recognize the equal-sized-group structure in many problem
situations. This enables them to develop repeated addition and subtraction strate-
gies first and then multiplicative operations, and to apply them to a widening range
of problems.

3. The corpus of easily retrievable number facts extends. The students probably
learn first to skip count by twos and fives, but may later learn other sequences. They
also learn to add without concrete modeling and later start memorizing multipli-
cation facts. The cognitive processing load of each strategy is gradually reduced,
and it becomes more likely that students will be able to apply to any particular prob-
lem the most efficient calculation strategy they know. (This assumes, of course, that
the number facts are meaningful and have not simply been learned by rote.)

We conjecture that students first learn a new strategy to solve problems where
the situation is familiar and the relevant number facts are well known. They would
then gradually adopt their new strategy for other problems as their understanding
of multiplicative situations and their numerical skills improve. As a result, the most
efficient calculation strategy available to a student gradually becomes more refined
and more widely used—eventually developing into a new, more sophisticated intu-
itive model. However, at least during the early learning period, different problems
may be solved using different intuitive models.
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Learning Multiplication and Division of Rational Numbers

At first glance, there would seem to be little connection between whole-number
and rational-number multiplication. As Fischbein et al. (1985) remarked, “One can-
not intuitively conceive of taking a quantity 0.63 times” (p. 6). However “0.63 times
something” means “partition it into 100 equal-sized groups and take 63 of them,”
so the equal-sized-group structure characteristic of whole-number multiplication
is still present when dealing with rational numbers. We would therefore expect to
find a close link between students’ intuitive models for whole-number and ratio-
nal-number multiplication. Research similar to the longitudinal study reported in
the present paper is needed to identify and study the intuitive models that students
develop for rational-number multiplication and division.

The poor performance of older students on rational-number multiplicative prob-
lems has been interpreted as inappropriate application of whole-number knowledge
(Bell et al., 1989; Fischbein et al., 1985; Greer, 1994). One explanation for this behav-
ior is that students may never have had the opportunity to develop intuitive mod-
els of rational-number multiplication and so may not be aware of the equal-group
structure of all multiplicative situations. In the circumstances, the students have no
choice but to try to apply their whole-number models.

Implications for Teaching

The present study raises several questions about traditional approaches to teach-
ing multiplication and division of whole numbers in elementary school. First, the
standard curriculum takes no advantage of the informal understanding of multiplicative
situations that many students have developed well before Grade 3. Second, mul-
tiplication is usually introduced before division and separated from it, whereas chil-
dren spontaneously relate them and do not necessarily find division more difficult
than multiplication. Children would surely benefit if teachers provided them with
opportunities to solve multiplicative word problems as early as the first year of school-
ing and if they linked multiplication and division much more closely.

As we see it, the teacher’s task is to assist students to widen their repertoire of
calculation strategies. This can take place at three levels. At one level, students may
need assistance in modeling some semantic structures so that they can apply direct
counting successfully to them. At the next level, students who can solve a variety
of multiplicative problems by direct counting may be encouraged to use the equal-
groups structure to develop more efficient strategies involving repeated addition.
Teachers can also help students to develop their facility with addition and repeated
addition at the same time. At the third level, when students can use repeated addi-
tion in a wide variety of semantic structures, the idea of a multiplicative operation
can be encouraged. Children can be helped to further improve their calculation effi-
ciency through activities designed to develop multiplicative number sense (includ-
ing the memorization of number facts), and more difficult semantic structures such
as the Cartesian product can be investigated. 

It would also seem possible to include multiplicative word problems involving
rational numbers much earlier than is presently the case, as suggested by Fischbein
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(1987)—even at the same time or soon after whole-number problems. For example,
Confrey and Smith (1995) describe a broad category of measurement situations that
appear familiar to young children and easily extend into rational numbers, but which
are currently neglected in the school curriculum. Behr, Harel, Post, and Lesh (1994)
show how rational-number arithmetic can be approached in such a way as to make
the connection with whole numbers explicit. The result could be a far greater aware-
ness of the equal-groups structure of multiplicative situations and the development
of powerful intuitive models that apply to both whole numbers and rationals.
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