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In this study, an intuitive model was defined as an internal mental structure corresponding to a
class of calculation strategies. A sample of female students was observed 4 times during
Grades 2 and 3 as they solved the same set of 24 word problems. From the correct responses,
12 ditinct calculation strategies were identified and grouped into categories from which the chil-
dren’ sintuitive models of multiplication and division were inferred. It was found that the stu-
dents used 3 main intuitive models: direct counting, repeated addition, and multiplicative
operation. A fourth model, repeated subtraction, only occurred in division problems. All theintu-
itive modelswere used with all semantic structures, their frequency varying asacomplex inter-
action of age, size of numbers, language, and semantic structure. The results are interpreted as
showing that children acquire an expanding repertoire of intuitive models and that the model they
employ to solve any particular problem reflects the mathematical structure they impose onit.

Severd recent sudies have shown that students can solve avariety of multiplicative
problemslong before formal instruction on the operations of multiplication and divi-
sion. For example, Kouba (1989) found that 30% of Grade 1 and 70% of Grade 2
students could solve simple equivalent group problems and Mulligan (1992) found
asteady increase in success rate on similar problems from over 50% at the begin-
ning of Grade 2 to nearly 95% at the end of Grade 3. More recently Carpenter, Ansell,
Franke, Fennema, and Weisbeck (1993) found that even kindergarten students could
learn to solve multiplicative problems.

Students use a range of solution strategies to solve multiplication and division
word problems, and from this it has been inferred that they acquire various intu-
itive models of multiplication and division (Fischbein, Deri, Nello, & Merino, 1985;
Kouba, 1989; Greer, 1992). Theinterest in intuitive modelsliesin the proposition
that they are formed early on in e ementary contexts and can strongly influence stu-
dents' understanding of more complex multiplicative situations in secondary
school and adulthood, often negatively (Fischbein et al. 1985; Graeber, Tirosh, &
Glover 1989; Simon, 1993). However, it isnot clear what intuitive models young
children form, how they are related to the semantic structure of the problemsto be
solved, and how the models develop over time. The present paper attemptsto throw
light on these questions using datafrom alongitudinal study of studentsin Grades
2and 3.
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We will use the term multiplicative to describe situations that |ead to either mul-
tiplication or division, and we will restrict our attention to one-step word problems.

BACKGROUND

Semantic Structure

Multiplication situations can be classified according to the nature of the quan-
titiesinvolved and the relation between them (Nesher, 1988; Vergnaud, 1988).
Greer (1992) lists four categories that primarily apply to problemsinvolving
the multiplication of whole numbers.

* equivalent groups (e.g., 2 tables, each with 4 children)

» multiplicative comparison (e.g., 3 times as many boys as girls)
* rectangular arrays (e.g., 3 rows of 4 children)

» Cartesian product (e.g., the number of possible boy-girl pairs)

Greer also lists six other categories that readily admit fractions and decimals.

Every multiplication situation can lead to various division problems. Equivalent
groups division problems have classically been categorized as partition (sharing)
and quotition (measurement) situations (Fischbein et al., 1985; Kouba, 1989).
For example, “8 children, 4 tables; how many at each table?’ is a partition prob-
lem, and “8 children, 4 at each table; how many tables?’ isaquotition problem.

Following Nesher (1988), we will refer to the category to which amultiplicative
problem can be assigned asits semantic structure. It has been found that mathematicaly
equivalent problems of different semantic structure evoke different solution strate-
giesand vary widdy in difficulty (Bell, Fischbein, & Greer, 1984; Bdl, Greer, Grimison,
& Mangan, 1989; Brown, 1981; De Corte, Verschaffel, & Van Coaillie, 1988;
Fischbein et al., 1985; Nesher, 1988; Vergnaud, 1988).

Classification of semantic structureis clearly somewhat arbitrary in that the cat-
egories can be extended, collapsed, or refined depending on the purpose of the
investigation. For example, Schmidt and Weiser (1995) recently presented afour-
fold classification of semantic structures with several subclasses. The crucial point
isthat the semantic structure of aproblem is determined by aresearcher prior to
its presentation to students and does not necessarily indicate how students will
solve the problem.

Solution Strategies

Severa studies of the actual strategies students correctly use to solve whole-num-
ber multiplicative problems have yielded fairly consistent results (Anghileri, 1989;
Boero, Ferrari, & Ferrero, 1989; Carpenter et d., 1993; Kouba, 1989; Mulligan, 1992;
Mulligan & Mitchelmore, 1996; Murray, Olivier, & Human, 1992; Steffe, 1994).
Strategies have been classified in two ways. One way of classifying solution
strategiesis by the calculation strategies students employ (Anghileri, 1989)—called
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degree of abstractness by Kouba (1989) and Mulligan (1992). Combining descrip-
tionsfrom various sudies |leadsto the five categories summarized in Table 1. Variaions
of all strategies occur in both multiplication and division problems. In particular,
we interpret both unitary counting in multiplication problems and sharing or
dealing in division problems as direct counting. We will return later to the ques-
tions of what unitary counting and sharing involve and whether it isjustified to put
them in one category.

Tablel

Children’s Calculation Strategies for One-Sep, Whole-Number, Multiplicative Word Problems
Strategy Definition

1. Direct counting Physical materials are used to model the problem and the objects

are simply counted without any obvious reference to the multi-
plicative structure.

2. Rhythmic counting Counting follows the structure of the problem (e.g., “1, 2; 3, 4; 5,
6" or “6; 5, 4; 3, 2.") Simultaneously with counting, a second
count is kept of the number of groups.

3. Skip counting Counting isdonein multiples (e.g., “2, 4, 6" or “6, 4, 2”), making
it easier to keep count of the number of groups.
4. Additive calculation Counting isreplaced by calculationssuchas“2+2=4,4+2=6"
or“6-2=4,4-2=2"
5. Multiplicative Calculations take the form of known facts (e.g., “3times2is6” or
calculation derivationsfrom aknown fact (e.g., “3x2=2x2+2.")

The second classification is called use of physical objects by Kouba (1989) and
modeling strategies by Mulligan (1992) and Carpenter et a. (1993). Students
may model the problem situation using such objects as tokens or fingers; they may
model it by drawing icons or tallies; or they may not model the situation externally
at al. All these possibilities have been reported as occurring in conjunction with
al five strategiesin Table 1.

INTUITIVE MODELS

What I's an Intuitive Model ?

Thenotion of intuitive models (also cdled implicit, tacit, or informa models) appears
to have originated with Fischbein et al. (1985). They hypothesize that “ each fun-
damenta operation of arithmetic generally remainslinked to an implicit, unconscious,
and primitive intuitive model” (p. 4), which mediates the search for the operation
needed to solve a problem. They also state, “When trying to discover the nature of
theintuitive model that a person tacitly associates with a certain operation, one has
to consider some practical behaviour that would be the enactive, effectively per-
formable counterpart of the operation” (p. 5).

This definition seemsto imply that an intuitive model isan internalization of the
physical operation involved in the corresponding problem situation, and therefore,
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that adirect correspondence exists between intuitive model and semantic structure.
Indeed, Fischbein et al. (1985) describe three intuitive modelsthat directly corre-
spond to three semantic structures. For multiplication, they hypothesize arepeated-
addition model “inwhich anumber of collections of the same size are put together”
(p. 6)—reflecting the equivalent-groups semantic structure. For division, they
describeintuitive models corresponding to partition and quotition semantic struc-
tures and claim that “the structure of the problem determines which model is acti-
vated” (p. 7). On the hypothesisthat these are the dominant (but tacit) models among
studentsin Grades5, 7, and 9, they were able to predict with some success how per-
formance on rational number multiplicative problems depends on the type of
numbers involved. Fischbein et al. also conjectured that the hypothesized models
persisted from intuitive models of multiplication and division, which had been formed
much earlier in whole-number contexts.

Kouba (1989) was stimulated by the Fischbein et al. (1985) study to investigate
these earlier intuitive mode s directly, by observing how young children solved whole-
number problems. Problems were selected to fit the three semantic structures
already described. For our purposes, her most pertinent finding was that partition
and quotition problems did not generate different calculation strategies. She
reported, without citing specific data, that both types of division were solved by using
either repeated subtraction or by repeated building up. She concluded:

There also are similaritiesin the intuitive model s that students appear to have for mea-
surement division and partitive division.... [A]t anintuitive level, many students may
perceive these different types of division as being more related than is evident in the
Fischbein et a. (1985) descriptions of theintuitive models.... Thelink probably has more
to do with the children’ s use of counting as ameans of doing all operations. (p. 157)

Thisfinding impliesthat there may in fact be no direct correspondence between the
semantic structure of a problem and the method that a child usesto solveit.

Kouba's (1989) study suggests that it would be valuable to examine young
children’ s solution strategiesin more detail and, in particular, to look for categories
of similar calculation strategies used across arange of semantic structures. Each cat-
egory of calculation strategy could then be seen as evidence for an internal men-
tal structure that children impose on multiplicative situations and that reflects
particul ar aspects of the mathematical structure. Koubais clearly thinking of such
internal mental structures when she uses the term intuitive model, and we will do
the same.

It seems preferable to define an intuitive model in terms of calculation strategies
rather than modeling strategies. For although modeling strategies are important in
practice—it isusually more efficient to use visualization or arithmetical symbols
than concrete models—it could be argued that they reflect children’ sfamiliarity with
aparticular calculation strategy rather than fundamental differencesin theway chil-
dren structure the problem. In other words, the same intuitive model could be used
with avariety of modeling strategies. On this basis, what intuitive models can we
expect to find?
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Intuitive Models of Whole Number Multiplication and Division

Anghileri’s (1989) results, obtained over six semantic structures, suggest only three
intuitive models for whole-number multiplication: those corresponding to unitary
counting, repeated addition, and multiplicative calculation. It scemsreasonableto
combine rhythmic counting, skip counting, and additive calculation strategies
into the one repeated addition model if we observethat al these strategies are based
on the same principle of double counting. As Anghileri argued, theincreasein sophis-
tication from rhythmic counting to additive calculation is more aresult of adeep-
ening understanding of addition than any basic changein calculation strategy. Itis
important to emphasi ze that we are using the term repeated addition hereto refer
to the structure of a particular class of calculation strategies and not, as many authors
do, to the semantic structure of equivalent groups.

For whole-number division, Kouba' s (1989) results suggest at least four intuitive
models: sharing, repeated taking away, building up, and multiplicative cal culation.
Both repeated taking away and building up appear to be based on the same prin-
ciples as repeated addition. Other classes of calculation strategies might appear if
awider range of semantic structures were included.

The above interpretation naturally raises the following questions:

1. Can the proposed intuitive models be identified in new data? In particular, is
it justified to put unitary counting and sharing in one model?

2. Do any new intuitive models appear when a broader range of semantic struc-
turesisincluded?

3. Doesthe semantic structure of the problem influence children’ sintuitive models?

4. How do children’ s intuitive models change over time, especialy as a result
of instruction?

The longitudinal study to be described below was designed to provide some
answersto these questions.

METHOD
Design

Clinical interviews were conducted in March/April and November/December
(i.e., early and late in the Australian school year) in two successive years when the
sudentswerein Grades2 and 3. At thetime of thefirgt interview, students had received
teacher instruction in basic addition and subtraction but not in multiplication and divi-
sion. Between the third and fourth interviews, al studentswere given instructionin
basic multiplication facts with the 2—10 timestables but not in related division facts.
The mathematics teaching practice was monitored over the entire study. All partic-
ipating teachersfollowed the official K—6 mathematics syllabus (New South Wales
Department of Education, 1989), which emphasizesthe acquisition of basic factsand
computationa skills. No teacher reported giving instruction in solving word problems.
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Sample

Theinterview sampleinitially comprised 70 girlsranging from 6.5 to 7.5 years
of age at thetime of thefirst interview; of these, 60 remained at thefinal interview.
The students were randomly selected from eight schoolsin Sydney. The interview
sample waslimited by gender to avoid the effect of possible gender differences. Two

students with very poor reading ability were excluded.

The Problems

The problems used are shown in Table 2. All problemswere set in familiar con-
textsand all involved only whole-number data and answers.

Table2
Multiplication and Division Word Problems
Multiplication Division
Equivalent groups Partition

1. There are 2 tablesin the classroom and 4
children are seated at each table. How many
children are there altogether? (4, 7)

2. Peter had 2 drinks at lunchtime every day
for 3 days. How many drinks did he have
atogether? (3, 7)

Rate

3. If you need 5 centsto buy 1 sticker, how
much money do you need to buy 2 stickers?
(5,7)

Comparison

4. John has 3 books, and Sue has 4 times as
many. How many books does Sue have? (6, 5)

Array

5. There are 4 lines of children with 3 children
in each line. How many children are there
atogether? (3, 8)

Cartesian product

6. Y ou can buy chicken chips or plain chips
in small, medium, or large packets. How many
different choices can you make? (8, 2)

7. There are 8 children and 2 tablesin the
classroom. How many children are seated
at each table? (28, 4)

8. Six drinks were shared equally among 3

children. How many drinks did they each
have? (14, 7)

Rate

9. Peter bought 4 lollipops with 20 cents. If
each lallipop cost the same, how much did
1lolly cost? (8, 40)

Comparison

10. Simone has 9 books. Thisis 3timesas
many as Lisa. How many books does Lisa
have? (40, 8)

Quotition

11. There are 16 children, and 2 children are
seated at each table. How many tables are
there? (36, 4)

12. Twelve toys are shared equally among
the children. If they each had 3 toys, how
many children were there? (24, 6)

Note. The text gives the small-number problems. The large-number problems were worded identi-
cally except for the substitution of the numbers given in parentheses.

The multiplication problems were chosen to represent 5 of the 10 semantic
structuresidentified by Greer (1992). The other 5 structures were excluded on the
basisthat they involved measurement concepts that would be unfamiliar to students
in Grade 2. Because the equivalent groups structure is the one most commonly used
in textbook word problems, two such problems were included.

Thedivison problemswere condructed asinverse problemsin the equivaent groups,
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multiplicative comparison and rate structures; inversesin the array and Cartesian
product structures were judged to be inappropriate for the age leve tested. Two prob-
lems were chosen for both the partitive and quotitive division structures.

Two categories of number size were selected to compare the influence of small
and large numbers. The product was either between 4 and 20 (small numbers) or
between 20 and 40 (large numbers). These number domains were used because the
Grade 1 curriculum focused on whole-number combinations between 0 and 20 and
extended to 100 by Grade 3.

Interview Procedures

All interviews were conducted by thefirst author in asmall side room. Problems
were written on cards and read to the child by the interviewer. The problemswere
re-read to the child as often as necessary to assist her in remembering the details.
Forty small cubeswere available on the table, but no paper or pencil. The interviewer
explained to the child that she could use the cubes to assist in solving the problem
if shewished. In thisway students were forced to use either concrete modeling, men-
tal calculation strategies, or both.

The small-number multiplication problems were administered first followed by the
small-number division problems, in the order shown in Table 2. The large-number
problemswere then posed. However, alarge-number problem was asked only if the
child had been successful on the corresponding small-number problem. Studentswere
praised for thar atempts, but no feedback was given asto the correctness of thelr responses
Theinterviews lasted from 15 to 55 minutes with an average time of 30 minutes.

When modeling with cubes was not used, or aresponse was unclear, additional
neutral questions were asked by the interviewer, for example, “Can you tell me how
you solved the problem?’ and “ Did you see anything in your mind when you were
solving the problem? Can you describe what this looks like?” When a child gave
an explanation that appeared to conflict with anything the interviewer had observed,
she was asked to describe what she was thinking at that time.

Data Coding

Theinterviewer recorded children’ s responses as they solved each problem, draw-
ing diagrams of children’ s modeling and noting gestures and finger movements. She
also coded each response as correct, incorrect, uncodable, or nonattempt. Where
the child began using a correct strategy but gave an incorrect answer, the response
was coded asincorrect. Each interview was also audiotaped. A research assistant
checked the interviewer’ s notes and audiotapes and clarified uncertaintiesin con-
sultation with the interviewer.

RESULTS

For two reasons, the data analysisis confined to those responses coded as correct.
Firg, the vast mgority of incorrect responses resulted from superficid drategies (mainly,
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adding the two given numbers) or from incorrect models of the problem situation.
No intuitive model of multiplication or division could be inferred from such
responses. Second, children who used a correct strategy but made an error in the
calculation usually corrected themsel ves spontaneously in the process of explain-
ing their procedure.

Identification of Intuitive Models

Procedure

A two-stage procedure was used to identify children’ sintuitive models. First, chil-
dren’ sresponses were examined to find if their calcul ation strategies could bereli-
ably identified. Second, the calculation strategies were grouped to infer underlying
intuitive models.

The first author initially coded children’s calculation strategies separately
according to whether they used concrete modeling or no modeling. Where achild
used two or more cal cul ation strategies to solve the same problem, the most dom-
inant strategy was coded. Several strategies were used both with and without con-
crete modeling, and some were used in both multiplication and division. Eventualy,
12 different calculation strategies were identified and defined. They were essentially
the same as those reported in a previous study (Mulligan, 1992).

Table3
Intuitive Models for Multiplication and Division
Intuitive model Calculation strategies
Multiplication
1. Direct counting Unitary counting
2. Repeated addition Rhythmic counting forward
Skip counting forward
Repeated adding
Additive doubling®
3. Multiplicative operation Known multiplicative fact
Derived multiplicative fact
Division
1. Direct counting One-to-many correspondence
Unitary counting
Sharing
Trial-and-error grouping
2. Repeated subtraction Rhythmic counting backward
Skip counting backward
Repeated subtracting
Additive halving®
3. Repeated addition Rhythmic counting forward
Skip counting forward
Repeated adding
Additive doubling®
4. Multiplicative operation Known multiplicative fact

Derived multiplicative fact

®For example, “3 and 3is 6, 6 and 6 makes 12.”
PFor example, “ Cut 8 into two halves makes 4 and 4.”
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A research assistant then independently used the strategy definitions to code
every fifth interview (48 transcripts). A 92% agreement rate was found and regarded
as satisfactory.

Finally, the 12 calculation strategies were examined to identify overarching prin-
ciples. They could be grouped into the proposed intuitive models; no further mod-
els appeared. The resulting intuitive models, and the strategies that correspond to
them, are shown in Table 3.

We now give amore precise description of each model, asidentified in our data,
concentrating on features that have not been widely described to date.

Intuitive Models for Multiplication

Direct counting. The classic strategy of modeling the problem (using either cubes
or visualization) and then counting the cubes one by one was frequently observed.
Some other strategies also failed to take advantage of the equal sizes of the groups.
For example, in response to Problem 1, Michelle put out three blue and five red cubes
in two groups of four, said there were three boys and five girls, and calculated “3
+5=8"

We infer from these responses an intuitive model that represents the problem sit-
uation correctly but does not impose on it an appropriate mathematical structure.
The problem is essentially solved by the concrete materials themselves, together
with an independent counting procedure. As Steffe (1988) putsit, achild using direct
counting has not yet made the leap of regarding “three ones’ as “one three.”

Repeated addition. Asfound in previous studies, many students successfully solved
multiplication problems by rhythmic counting, skip counting, or additive calcula-
tion. In effect, these methods all create an appropriate sequence of multiples.
Repeated addition is an advance on direct counting because it takes advantage of
the equal-sized groups present in the problem situation.

Multiplicative operation. Thismodd wasinferred when sudents gave correct responses
without appearing to form the entire sequence of multiples. A typical response was,
“1 made one group of three and timesed it.” The few students who used concrete
modeling with this intuitive model only made one group of objects. More devel-
oped techniques were evident in responses that included recaled multiplication facts;
for example, “1 knew it was multiplication straight away.... You just do the mul-
tiplication.... Threefoursaretwelve.” We justify including the use of derived facts
with thismodel because, even though addition isused, the basic aimisto calculate
aproduct without creating the entire sequence of multiples.

We cdl thisan operation mode because multiplication appears explicitly asabinary
operation for thefirst timein thismodd. Both Fischbein et d. (1985) and Kouba (1989)
comment on theimportance of seeing multiplication as an operation, and Anghilei
(1989) found that use of multiplication facts was much more common among stu-
dents classified as above-average ability than among the othersin her sample.

In the operation model, thefinal term is extracted from theimplicit sequence of
multiples and treated as asingle entity. In this respect, the operation model is based
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on the repeated addition model but isdistinctly different from it. Julianne typified
the difference when she remarked at Interview 4, “1 just thought of using the num-
bers and the multiplying signin my head, | didn’t need to count.”

Intuitive Models for Division

Direct counting. Several strategiesrelied on concrete modeling followed by an
independent counting process. Thefirst step in all these strategies was to count out
anumber of cubes equal to the dividend. For partition problems, one strategy was
simply to make atentative grouping of the cubes and then move them from one group
to the other until the numberswere equal. Another strategy wasto deal out the cubes
successvely inones or twaos to the specified number of groups until they were exhausted.
For quotition problems, atypical strategy was to successively separate out groups
of the specified size until the cubes were exhausted and then to count the number
of groups.

All these strategies seem to represent little more than a correct modeling of the
problem situation together with accurate counting, asin the direct-counting model
for multiplication. It is true that they achieve the aim of creating equal-sized
groups, but the subsequent cal culation procedure does not reflect this structure. Direct
counting for multiplication and direct counting for division therefore seem to
indicate essentially the same intuitive model.

Repeated subtraction. The strategiesin thismodel all start with the dividend and
use a systematic calculation procedure in which the number in each group is
repeatedly taken away. For the quotition problems, the method is direct. For
example, in response to Problem 11, Amy counted out 16 cubes and then took away
groups of 2 cubes, saying “16, 14, 12, 10, 8, 6, 4, 2, nothing left ... that's 8
tables.” Theimportant distinction between Amy’smoded and adirect counting model
isthat Amy simultaneously counted both the number of cubes|eft and the number
of groups aready formed. For nonquotition problems, anumber hasto be guessed
and repeatedly taken away the specified number of timesto check if theresult is
zero. Students seemed to be extraordinarily good at determining such numbers, with-
out revealing any direct process for doing so.

All calculation strategies in this model, including additive halving, create a
decreasing sequence of multiples starting with the dividend.

Repeated addition. This model is similar to the repeated subtraction model
except that, instead of starting with the dividend, the child builds up to the dividend.
Thismodel isaso direct for quotition problems and indirect for other problems. For
example, in response to Problem 11, Susan counted aloud the sequence of multi-
ples2, 4,6, ..., and after each count identified the number of tables (shown in paren-
theses): “2 (1), 4 (2), 6 (3), 8 (4), 10 (5), 12 (6), 14 (7), 16 (8)—8 tables.” Kouba
(1989) called these strategies building up.

All strategiesin thismodel create an increasing sequence of multiples. It isthere-
fore basically the same model as the repeated-addition model for multiplication. We
aso arguethat it isamore advanced mode than repeated subtraction becauseit dlows
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the same model to be used for both division and multiplication problems. Such uni-
fication would be expected to reduce cognitive load and lead to greater efficiency
and amore rapid adoption of a multiplicative operation model.

Multiplicative operation. Strategiesin this model used multiplication as an oper-
ation. In some cases, the solution was guessed and checked by multiplication. In
others, the student appeared to search for amultiple of the divisor that was equal
to the dividend—but without generating the entire sequence of multiples.
However, all these strategies used known or derived multiplication facts. Only
afew students demonstrated an explicit awareness of division as an operation, mostly
in a halving strategy.

The multiplicative operation model of division is essentially the same model
as the multiplicative operation model for multiplication. It appears to be
related more closely to the repeated-addition model of division than to the repeated-
subtraction model.

Variation in Intuitive Models

We turn now to an analysis of how children’ sintuitive models wererelated to the
semantic structure of the problem and how they changed over time. The data
show many complex interactions, and we can only summarize general trends
here. To smplify the discussion, data on the duplicated problems (equiva ent-groups
multiplication, partition and quotition division) will be combined. Tables giving the
percentages of the sample using each intuitive model correctly for each problem
at each interview are available from the authors.

Multiplication

Figure 1 showsthe overall distribution of the intuitive models employed in cor-
rect responses to the multiplication problems at each interview stage. The percentage
of correct responses increased steadily from 31% to 68%, mainly because of a12%
increase in the successful use of repeated addition between Interview 1 and
Interview 2 and a 24% increase in the successful use of the multiplicative opera-
tion model between Interview 2 and Interview 4. The percentage of correct
responses using the direct-counting model remained steady at about 10%.

Therewas a consistent difference in performance between problemsat all inter-
views and for both small and large numbers. The equivalent-groups, rate, and array
problemswere approximately equal in difficulty, the successrate increasing from
an average of 45% at Interview 1 to 86% at Interview 4. The comparison problem
was intermediate in difficulty, increasing from 6% to 52% over the period of the
study. The Cartesian product problem was very difficult, averaging 1% correct over
Interviews 1-3 but jumping to 14% at Interview 4.

Correct use of the direct-counting model was only frequent for the array prob-
lem (22% overall) and the equival ent-groups problems with large numbers (20%).
Correct usage rarely exceeded 10% for the other problems, and it was never the most
successful strategy.
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Interview stage

Figure 1. Percentage of sample giving correct responses to multiplication problems at each interview
stage. Responses are classified by intuitive model: direct counting (DC), repeated addition (RA), or mul-
tiplicative operation (MO). Data pooled from 12 problems.

The repeated-addition model was the most frequent correctly used model on almost
all occasionsfor all semantic structures except comparison. Figure 2 comparesthe
various problem types. Therelatively high successrate for rate problemsislikely
the result of the particular numbersinvolved. Both problems involved multiples
of 5, which seem to be second only to multiples of 2 in terms of their familiarity
to young children. However, in the small-number problem, doubling 5 was most
often solved using a“5 and 5 makes 10” argument. In the large-number problem,
the odd multiple of 5 seemed to be rdatively unfamiliar and students smply counted
infives. The overdl tendency shown in Figure 1 for the successful use of the repeated-
addition model to increase and then decrease again was only present for the
equivalent-groups, array, and comparison problems.

Figure 3 shows the variation in the successful use of the multiplicative oper-
ation model. Successwasrarein thefirst two interviews, but it began to increase
at Interview 3—just prior to formal instruction in multiplication—and had
become fairly common by Interview 4 on all structures except the Cartesian prod-
uct. It isnotablethat in Interviews 3 and 4, the comparison and equival ent-groups
problems—although differing in overall difficulty—elicited almost equal num-
bers of correct responses using the multiplicative operation model. In fact, the mul-
tiplicative operation model was the most frequent correctly used model for the
comparison problem. The cause seemed to be the linguistic cue “times’; for exam-
ple, Lisaresponded to the small-number problem by saying, “timesas many ...
that’s multiply ... threefours.”
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Figure 2. Percentage of sample using arepeated-addition model in correct responses to various mul-

tiplication problems at each interview stage.
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Percentage of correct responses
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—3¥— Cart. prod.

Interview stage

Figure 3. Percentage of sample using a multiplicative operation model in correct responsesto var-

ious multiplication problems at each interview stage.

The size of the numbersin the problems had afairly consistent effect. As might
have been expected, overall successrate was lower on the large-number problems
(43% correct) than the small-number problems (59%). Successful use of direct count-
ing was more common for large numbers than small numbers (14% compared to 7%),
whereasthe reverse wastrue for both the repeated-addition model (20% compared
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to 38%) and multiplicative operation model (9% compared to 13%). Many students
who had successfully used repeated addition for a small-number problem seemed
to experience a“ processing overload” when attempting to use the same strategy for
the corresponding large-number problem; they then often solved the problem
using direct counting. Students who had used a multiplicative operation for a
small-number problem were often unable to retrieve the number fact required for
the corresponding large-number problem and reverted to repeated addition.

Division

Figure 4 showsthe overall distribution of the intuitive models employed in cor-
rect responses to the division problems at each interview stage. Overall performance
increased from 33% at Interview 1 to 68% at Interview 4, despite the absence of
formal teaching, which was virtually the same asfor multiplication. Aswasthe case
for multiplication, correct use of direct counting was fairly constant (12% on
average) and correct use of amultiplicative operation model increased substantially
(by 16%) between Interviews 2 and 4. By contrast, correct use of the repeated addi-

tion and subtraction modelsincreased steadily from 20% at Interview 1 to 38% at
Interview 4.
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Figure 4. Percentage of sample giving correct responsesto division problemsat each interview stage.
Responses are classified by intuitive model: direct counting (DC), repeated subtraction (RS), repeated
addition (RA), or multiplicative operation (MO). Data pooled from 12 problems.

Performance on the partition, rate, and quotition problems was approximately the
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same, ranging from 37% at Interview 1 to 78% at Interview 4. The comparison prob-
lem was extremely difficult, averaging 2% correct over Interviews 1-3 but jump-
ing to 14% at Interview 4.

Correct use of the direct counting model was mainly observed in the quotition
problems (23% of responses) and in the large-number partition problems (13%).
For the quotition problems, it was the most frequent correctly used model in
Grade 2 and was still common at the end of Grade 3.

Correct use of the repeated-subtraction model was only consistently common on
the small-number partition problem, Problem 7 ( average 31%). This was the
only problem easily solved by additive halving, which many of the students used.
The only other cases where the repeated subtraction was successfully used in
more than 10% of the responses were the other partition problems and the rate prob-
lemsat Interview 4.

On all problems except comparison, repeated addition was common and almost
always the most frequent correctly used model. Figure 5 shows the relevant data.
Most notable isthe difference between the increasing pattern for the quotition struc-
ture and the more stable pattern for the partition and rate structures. From Interview
2to Interview 3, correct use of direct counting dropped from 34% to 16% and repeated
addition or subtraction climbed from 17% to 33%. In Grade 2, the quotition prob-
lems were more difficult to understand than the partition and rate problems, chil-
dren often interpreting “ There are 2 children at each table” as*“ The children are at
2 tables.” By Grade 3, more children were modeling the quotition situations cor-
rectly. The quotition structure, once understood, seemed to encourage double
counting more than partition or rates.

Figure 6 showsthe variation in successful use of the multiplicative operation model
for divison. Asfor multiplication, it wasrarely used successfully in thefirst two inter-
views but began to appear at Interview 3. The greater success of the multiplicative
operation model on the rate problemsis explained by the specific numbersinvolved.
Both problems involved multiples of 5. On the small-number problem, the multi-
plication fact 4 x 5 = 20 was frequently recalled, and on the large-number problem,
8 x 5 was often derived from it by doubling. It isinstructive to compare this result
with the two rate multiplication problems, which also involved multiples of 5 but
where the most frequent correctly used model was repeated addition. The difference
seemsto lie entirely with the particular multiples required to solve the problems.

The size of the numbersin the division problems had an effect similar to that noted
for multiplication. Overall success rate was lower on the large-number problems
(38% correct) than the small-number problems (58% correct). Successful use of direct
counting was dlightly more common for large numbers than small numbers (12%
compared to 11%). For the other models, correct solutions were less frequent for
the large-number problems than the small-number problems: repeated subtraction
(5% compared to 11%), repeated addition (16% compared to 27%), and multiplicative
operation (5% compared to 9%). Asfor multiplication, large-number problems seemed
to make demands on information retrieval or processing capacity that forced many
students to revert to amore primitive and less demanding model.
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Figure 5. Percentage of sample using arepeated-addition model in correct responsesto various divi-

sion problems at each interview stage.
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Figure 6. Percentage of sample using a multiplicative operation model in correct responsesto var-

ious division problems at each interview stage.

Consistency of Students’ Intuitive Models

It isobviousfrom Figures 1-6 that most students were not consistent in the intu-
itive models they used correctly at any one time. Problem characteristics, such as
semantic structure and the specific numbers used, seemed to influence which
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intuitive model would be employed. At each interview, there were some students
who used the same intuitive model correctly on al problems, but there were oth-
ers who used as many as three different models.

Nonethel ess, students showed a consistent progression of intuitive model used
from interview to interview within each problem. For example, consider the first
small-number, equivalent-groups multiplication problem. Of the 17% of responses
employing direct counting successfully at Interview 1, only 2% used direct count-
ing at Interview 2; the other 15% employed repeated addition successfully. Of the
66% of responses showing successful use of repeated addition at Interview 3, 29%
changed to amultiplicative operation modd at Interview 4, 35% remained with repeated
addition, and 2% failed to solve the problem. On all 12 multiplication problems,
inonly 3% of the cases did students successfully use amore primitive intuitive model
to solve aproblem that they had successfully solved at the previousinterview, and
only 2% failed to solveit.

For the division problems, the data confirm our earlier claim that repeated subtraction
isamore primitive modd of division than repeated addition. On al 12 division prob-
lems, there was not one case in which a successful use of repeated addition wasfol-
lowed by successful use of repeated subtraction at the next interview.

DISCUSSION

Summary of Results

The present study has extended previous research on young children’ sintuitive
models of whole-number multiplication and division by widening the range of seman-
tic structuresincluded and by including the effect of maturation. Our definition of
an intuitive model as an internal mental structure corresponding to aclass of cal-
culation strategies—as opposed to a class of solution strategies, modeling strate-
gies, or semantic structures—has clarified the literature and proved to be reliably
applicable in practice.

Among students in Grades 2 and 3, we have been able to clearly identify three
intuitive models for multiplication (direct counting, repeated addition, and multi-
plicative operations) and four for division (direct counting, repeated subtraction,
repeated addition, and multiplicative operations). Asthe namesimply, these are basi-
cally only four different models. The direct counting mode islittle more than prim-
itive counting applied to a correct interpretation of the given word problem. The
repeated addition and subtraction models arise when students devise more efficient
counting procedures to take advantage of the equal-sized groupsin the problem. Both
in effect create a sequence of multiples. The operation model represents the use of
multiplication as a binary operation whose output is the final number in the
sequence of multiples.

Other classifications of students' calculation strategies are, of course, possible.
For example, the repeated-addition and repeated-subtraction models could well be
broken into two parts: those strategies that use sequences of multiples and those that
use known addition or subtraction facts. No doubt this is an important transition.
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Also important is how students represent the problem situations within the various
intuitive models. We claim only that the suggested classification is valuablefor the
purpose of studying overall changesin students' understanding of multiplication
and division prior to and during formal schooling.

Our datashow aconsistent progression in the intuitive models used by students
in Grades 2 and 3, from direct counting to repeated addition or subtraction to mul-
tiplicative operations. There was also a steady increase in performance. In partic-
ular, although many students were successfully solving multiplicative problems by
the end of Grade 2, instruction in Grade 3 saw a considerable increase in the use
of the operation model aswell asin the overall successrate. Furthermore, although
instruction was reportedly limited to multiplication and only illustrated in equiv-
alent group situations, the use of operation models and the overall successrate aso
increased in other semantic structures and in division problems.

Previousfindings that problem difficulty varies with semantic structure have been
confirmed. In particular, comparison problems were relatively difficult and
Cartesian product problems extremely difficult. We also found aclear variationin
the intuitive model s successfully employed in different problems. However, the struc-
ture of the preferred intuitive models did not necessarily correspond to the seman-
tic structure of the problems: All intuitive models were employed across all
problems. Many of the observed differences in preferred model were readily
explained by the size of the numbers, the particular multiplesinvolved, or the pres-
ence of superficial verbal cues.

Wedid not expect to find such astrong preference for the repeated-addition model
of division across all semantic structures. This phenomenon appearsto be aresult
of the close connection that students see between division and multiplication
problem situations before they receive instruction in division. The same close con-
nection isevidenced by students' spontaneous use of an operation model for divi-
sion shortly after instruction in multiplication.

Our findings arein clear contrast to the one model of multiplication and the two
models of division proposed by Fischbein et al. (1985), modelsthat are essentially
reflections of three common semantic structures. We found no evidence that Grade
2 and 3 students solve equivalent-groups, partition, and quotition problems
using intuitive models reflecting these three semantic structures, or that they use
only models corresponding to these three semantic structures to solve problems
with other semantic structures. Instead, it would seem that they use adifferent set
of intuitive models (direct counting, repeated addition/subtraction, and multiplicative
operations), which they can apply to both multiplication and division problems
of various semantic structures. One consequence of thisfinding isthe need to dif-
ferentiate clearly between the equivalent-groups semantic structure and the
repeated-addition intuitive model.

We might ask why the same intuitive modes can be used for al semantic structures.
Thereason appearstoliein thefact that in every multiplicative situation, “there must
be equal-sized groups’ (Confrey, 1994, p. 307; italicsin origina). Therefore, funda-
mental to processing amultiplicative situation effectively must be the recognition of
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the appropriate equal-sized groups. This step is not always an easy one; for exam-
ple, itisnot at all obviousin a Cartesian product situation. It is the equal-groups
structure that allows the use of repeated addition/subtraction or multiplication, not
the semantic structure. Theintuitive model employed to solve aparticular problem
therefore does not reflect any specific problem feature, but rather the mathemati-
cal structure that the student is able to impose on it.

Learning Multiplication and Division of Whole Numbers

Our results allow usto form atentative picture of how young children’ sintuitive
understanding of whole-number muiltiplication and division of whole numbers evolves.

It would appear that young students acquire a sequence of increasingly efficient
intuitive models that are applicable to whole-number multiplicative situations. The
structure of each mode derives from the previous one. Students do not Ssmply switch
from one modd to the next, but rather develop awidening repertoire of models. Which
one (or more) of al the available intuitive modelsis called into play to solve a par-
ticular problem depends on several factors, including previous experience of and
instruction in that problem situation and knowledge of the relevant number facts.

In fact, three factors seem to develop in aparallel and interrelated fashion:

1. Students progressin their ability to interpret word problems, even without spe-
cificinstruction. They learn to build concrete models of awidening variety of mul-
tiplicative contexts and to visualize them more and more easily. Studentstherefore
become able to solve problems with an increesing range of semantic structures, dthough
they might only use direct counting.

2. Students begin to recogni ze the equal-sized-group structure in many problem
situations. This enables them to devel op repeated addition and subtraction strate-
giesfirst and then multiplicative operations, and to apply them to awidening range
of problems.

3. The corpus of easily retrievable number facts extends. The students probably
learn first to skip count by twos and fives, but may later learn other sequences. They
also learn to add without concrete modeling and later start memorizing multipli-
cation facts. The cognitive processing load of each strategy is gradually reduced,
and it becomes more likely that studentswill be able to apply to any particular prob-
lem the most efficient calculation strategy they know. (Thisassumes, of course, that
the number facts are meaningful and have not simply been learned by rote.)

We conjecture that students first learn a new strategy to solve problems where
the situation isfamiliar and the relevant number facts are well known. They would
then gradually adopt their new strategy for other problems as their understanding
of multiplicative situations and their numerical skillsimprove. Asaresult, the most
efficient calculation strategy available to a student gradually becomes more refined
and more widely used—eventually devel oping into anew, more sophisticated intu-
itive model. However, at least during the early learning period, different problems
may be solved using different intuitive models.



328 Children’ s Intuitive Models

Learning Multiplication and Division of Rational Numbers

At first glance, there would seem to be little connection between whole-number
and rational-number multiplication. AsFischbein et al. (1985) remarked, “ One can-
not intuitively conceive of taking aquantity 0.63times’ (p. 6). However “0.63 times
something” means “partition it into 100 equal-sized groups and take 63 of them,”
so the equal-sized-group structure characteristic of whole-number multiplication
isstill present when dealing with rational numbers. We would therefore expect to
find aclose link between students’ intuitive models for whole-number and ratio-
nal-number multiplication. Research similar to the longitudinal study reported in
the present paper is needed to identify and study the intuitive modelsthat students
develop for rational-number multiplication and division.

The poor performance of older students on rational-number multiplicative prob-
lems has been interpreted as inappropriate application of whole-number knowledge
(Bell et d., 1989; Fischbein et d., 1985; Greer, 1994). One explanation for this behav-
ior isthat students may never have had the opportunity to develop intuitive mod-
els of rational-number multiplication and so may not be aware of the equal-group
structure of al multiplicative situations. In the circumstances, the students have no
choice but to try to apply their whole-number models.

Implications for Teaching

The present study raises several questions about traditional approachesto teach-
ing multiplication and division of whole numbersin elementary school. First, the
standard curriculum takes no advantage of theinforma understanding of multiplicative
situations that many students have devel oped well before Grade 3. Second, mul-
tiplication isusually introduced before division and separated from it, whereas chil-
dren spontaneously relate them and do not necessarily find division more difficult
than multiplication. Children would surely benefit if teachers provided them with
opportunitiesto solve multiplicative word problems as early asthefirst year of school-
ing and if they linked multiplication and division much more closely.

Aswe seeit, the teacher’ stask isto assist students to widen their repertoire of
calculation strategies. This can take place at three levels. At onelevel, students may
need assi stance in modeling some semantic structures so that they can apply direct
counting successfully to them. At the next level, students who can solve avariety
of multiplicative problems by direct counting may be encouraged to use the equal -
groups structure to develop more efficient strategies involving repeated addition.
Teachers can aso help students to develop their facility with addition and repeated
addition at the sametime. At the third level, when students can use repeated addi-
tionin awide variety of semantic structures, the idea of amultiplicative operation
can be encouraged. Children can be helped to further improve their calculation effi-
ciency through activities designed to devel op multiplicative number sense (includ-
ing the memorization of number facts), and more difficult semantic structures such
as the Cartesian product can be investigated.

It would also seem possible to include multiplicative word problemsinvolving
rational numbers much earlier than is presently the case, as suggested by Fischbein
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(1987)—even at the sametime or soon after whole-number problems. For example,
Confrey and Smith (1995) describe abroad category of measurement situations that
appear familiar to young children and easily extend into rational numbers, but which
are currently neglected in the school curriculum. Behr, Harel, Post, and Lesh (1994)
show how rational-number arithmetic can be approached in such away asto make
the connection with whole numbers explicit. Theresult could be afar greater aware-
ness of the equal-groups structure of multiplicative situations and the devel opment
of powerful intuitive models that apply to both whole numbers and rationals.
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