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Predications of the Limit Concept:
An Application of
Repertory Grids

Steven R. Williams, Brigham Young University

This study uses repertory grid methodology together with a predicational view of
human thinking to describe the informa models of the limit concept held by two
college calculus students. It describes how their models, based oniteratively choosing
points that get closer to the limiting value, are affected by experimental sessions
designed to alter them. Theinformal model s are based on the notion of actual infinity,
which poses a severe cognitive obstacle to the learning of the formal definition of
limit. The study also suggeststhat the predicational view of cognition, together with
analysis of repertory grid data based on fuzzy set theory, can be useful in studying
students' concept images of advanced mathematical concepts.
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Inaprevious paper (Williams, 1991), | suggested that students establish and give
meaning to informal notions of limit by way of metaphorical extensionsfrom phys-
ical experience (e.g., moving along apath, approaching awall, or drawing agraph
getting close to an asymptote). Kaput (1979), indeed, has suggested that it is the
motion metaphor that gives the limit notion “its primary meaning” (p. 294) and
argues for the “basic, irreducible, and essential metaphoric nature of human
thinking” (p. 289). More recently, Lakoff and Nufiez (2000) proposed that the
primary understanding of limitsis rooted in what they call the “Basic Metaphor
for Infinity” and is built up from that using other metaphors, including viewing
numbers as points on aline and thinking of a path as the motion tracing that path.
Thus, for Lakoff and Ndfiez, our basic understanding of limit is accomplished by
idealizing a process very much like choosing points (or numbers) that approach a
given point and watching the function values approach alimiting value. From this
and what we know from previous studies of students’ understanding of limit
(summarized below), it is reasonable to conjecture that many students have a
mainly experientia notion of limit, based on something like what Lakoff and
Johnson (1999; L akoff, 1987) call image schemata. By these, they mean kinesthetic
and orientational structuresthat recur in everyday experiences, such ascontainers,
paths, balance, part-whole relations, and so forth. These are built on mental cate-
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gories defined from gestalt perceptions, body movements, and mental imagery.
L akoff and Johnson argue that image schemata form a foundation for all concep-
tual understanding. From theseinherently meaningful structureswe reason by way
of propositional extensions, metaphorical extensions, and categorical extensions
to more abstract structures.

If thisistrue, how do these informal notions of limit relate to the formal € — o
definition of limit? Lakoff and Nufez (2000) state:

The point of thisis not to eliminate the epsilon-delta condition from mathematics but,
rather, to comprehend how we understand it. We understand it first in geometric terms
using the notion of “approaching alimit.” And we understand “approaching a limit”
in arithmetic terms viathe BMI [the Basic Metaphor of Infinity].... (p. 199)

The basic point here is that the mathematical approach to limit and the cognitive
approachto limit are quite different. The mathematical approach, which makesuse
of universal and existential quantifiers, is designed to solve mathematical diffi-
culties, not psychological ones.

The approach taken in this paper is that, much as we cannot understand young
children’ s thinking about addition and subtraction solely in terms of binary oper-
ations and commuitativity, we cannot understand calculus students reasoning
solely in terms of inequalities and universal quantification. Thus, the analysisin
this paper begins not with the formal mathematical definition of limit, which has
been developed to solve mathematical difficulties, but rather with the informal
models that are invoked in giving meaning to the limit idea and at how these
informal modelsarise and devel op. Specifically, the purposes of the study reported
here are (1) to introduce a theory of understanding, based on the idea of predica-
tion, that offers an alternative way of describing understanding that is sensitive to
and begins with the informal notions brought to bear in complex domains, (2) to
use thistheory to gain insight into the informal notions of limit held by two repre-
sentative students, and (3) to examine repertory grid methodology as a way of
capturing the predications students bring to bear in understanding the concept of
limit. In particular, | argue that the methodology providesacoherent picture of these
students' understandings, a picture that helps explain and illuminate students
struggles to make sense of the limit idea.

After describing existing research on students' understandings of limit, | describe
thetheoretical and methodol ogical backgrounds of the study and discussthe proce-
dures for data collection and analysis. | then present two case studies, discussing
along the way the understandings held by the two subjects, called Gerry and Jacob
(both names are pseudonyms). In the concluding section, | discuss both method-
ological and theoretical contributions of the study.

RESEARCH ON STUDENTS UNDERSTANDINGS OF LIMIT

Much of the work on students’ understandings of the limit concept has been
focused in three major areas. One body of work makes use of Tall and Vinner's
(1981; Vinner, 1983) distinction between concept image—the “total cognitive
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structurethat is associated with the concept, which includes all the mental pictures
and associated properties and processes’ (Tall & Vinner, 1981, p. 152)—and
concept definition, the formal definition as understood and accepted in the math-
ematical community. Thefocus hereison the relationships between the informal
limit notions held by students and the more formal and mathematically preciseidea
represented by the € — ddefinition, and on the typical misconceptions or informal
conceptions held by students. Cornu’ swork on spontaneous conceptions (Cornu,
1981, 1983), the work of Schwartzenberger and Tall (1978) on informa mean-
ings of technical language, Robert’s work on limits of sequences (1982), and
Monaghan’ s (1991) treatment of language use aretypical of thiswork. All assume
some underlying mental models or representations of limit held by students and
seek to understand those models as they relate to more formally expressed math-
ematical definitions.

A second, closely related line of work focuses on obstacles to learning, seeking
to understand why the coordination of concept image and concept definition can
be so difficult. Such work has often used the notion of cognitive obstacles
(Brousseau, 1983) to explain the difficulties students haveinlearning. Such obsta-
cles can betheresult of students' own psychological or social development, inad-
equate or misleading (though usually well-intentioned) instruction, or the nature
of the concepts themselves (Cornu, 1991). These later obstacles have been called
epistemol ogical obstacles by Bachelard (1938) and discussed in the context of peda-
gogical theory by Brousseau (1983), who describes them as well-established
pieces of knowledge that are useful in one arenaof activity but not in another and
that, therefore, stand in the way of proper functioning in that second arena. Other
obstacles might include the unintended side effects of technology or the beliefs
students hold about the nature of mathematical knowledge. Sierpinska’s (1985,
1987) work on student’ sinformal notions of limits and infinity, Cornu’ s descrip-
tion (1991) of epistemological obstacles related to limits, Davis and Vinner's
(1986) discussion of “seemingly unavoidable misconception stages’ inthelearning
of limit, Williams' (1991) work on informal models and the tenacity with which
students hold them, Lauten, Graham, and Ferrini-Mundy’ s (1994) work on inter-
actionswith technology, and Szydlik’ s (2000) work on beliefs about mathematics
and their affect on limit understanding provide examples of this genre.

A third major focus of work grows from a Piagetian tradition and istypified by
thework of Dubinsky and his colleagues (1991; Cottrill et a., 1996) on reflective
abstraction. Thiswork assumesthe existence of aschema—"amore or less coherent
collection of objects and processes’ (Dubinsky, 1991, p. 102), where objects are
understood to be mental or physical objects and processes are mental actions
performed on objects. Central to thiswork istheideathat processes can be encap-
sulated into objects that are then available to be operated on themselves, an idea
also advanced by Sfard (1991). Central aswell isthe genetic decomposition of the
limit concept, which is“adescription ... of the mathematics involved and how a
subject might make the constructions that would lead to an understanding of it”
(Dubinsky, 1991, p. 96). This approach begins with the mathematics, positing the
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existence of objects, processes, and schemata that lead to the development of the
appropriate concept, and then enters a cyclical process of refinement, drawing on
empirical datato test and adjust the decomposition. Dubinsky (1991) notesthat his
approach is complementary to the two approaches discussed above (i.e., concept
image and cognitive obstacles): “One can think of reflective abstraction astrying
to tell uswhat needs to happen, whereas the other notions attempt to explain why
it doesnot” (p. 103).

Growing from these three bodies of work is afairly consistent set of standard
conceptions, or mental models, that student seem to have about limit. These
conceptionsinclude beliefsthat alimit isaboundary, whether local or global (see
Szydlik, 2000); that functions cannot reach their limits; and that limit is best
described in terms of a dynamic process of points or numbers “ getting closeto” a
limit point or number. Contrasted with this are various static views, ranging from
informal and intuitive (e.g., “Thelimit of afunctionisL if whenever x is close to
thelimiting value s, thefunctioniscloseto L.” [Szydlik, 2000, p. 268]) to theformal
€ — ddefinition. These views of limit, which may be parts of more sophisticated
mental models, recur throughout the literature on the understanding of limit and
represent students’ attempts to make sense of what is a very subtle and complex
mathematical concept.

These models of understanding arise from studies whose common featureis an
analytical starting point in the mathematical definition of limit, and an assumption
that apsychological understanding of limit should ultimately be based in the math-
ematical understanding of limit, as represented by the € — d definition. Much of
the previous work on limit, indeed, relied upon comparing student’s notions to
accepted, formal mathematical descriptions of limit. Often, the historical devel-
opment of limit was compared to students' own personal development of theidea,
with the € — ddefinition being the ultimate goal in both cases. Other studies rely
on afairly in-depth analysis of limit from a mathematical viewpoint and go on to
compare student’ sunderstandingsto theresults of these analyses (Davis& Vinner,
1986) or to suggest that the analysesyield probabletrg ectoriesfor learning (Cottrill
et al., 1996). In al cases, the big ideas of limit are external, and the focusis on the
formal, complete, expert view of limit.

As mentioned above, the research presented in this paper takes a different
approach. After adiscussion of the theoretical and methodological background for
the study, two case studies are discussed in detail, with attention to the informal
models of limit held by two students, the nature of these models, and how these
models devel op during the course of a 7-week experiment.

THEORETICAL BACKGROUND

Oneway of understanding the ways students give meaning to the notion of limit
isthrough Lakoff and NUfiez' s (2000) analysis of specific conceptual metaphors.
Another approach, which takes metaphorical thinking asaspecial case, isprovided
by Rychlak (1988, 1991, 1994), who usesthe term predication to describe theloca-
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tion of oneitem of meaning within a broader item of meaning. Rychlak’ sframing
of predication and of cognition in general insists that al cognition, including
learning, is a matter of bringing to bear broader precedent assumptions that then
extend meaning to narrower target items. Rychlak calls this process meaning
extension. Meaning extension occurs when a precedent premise is extended “by
way of what are called inductions, deductions, implications, metaphors, analog-
ical extensions, and so forth” (Rychlak, 1975, p. 253). For example, when we say
“Broccoli is avegetable,” we place broccoli within the larger context of vegeta-
bles, so that meaning is extended to theitem broccoli by our knowledge of vegeta-
blesin general. Similary, the proposition“Sego Lily bulbsare avegetable” extends
the broad meaning of “vegetable” tothe narrow “ Sego Lily bulb,” providing infor-
mation about Sego Lily bulbs (e.g., that they are edible). Both metaphorical
thinking and traditional logical implications are special cases of the more genera
concept of predication.

It isworth pausing here to see how thisistrue. When we say, for example, that
alifeisajourney, we place the referent “life” in the wider meaning of “journey”
and thus let what we understand of a journey give meaning to the idea of life.
Similarly, in an example more specific to limits, when our mental model of “letting
x approach the value 2" is metaphorically like the iterative choosing of numbers
closer and closer to 2, we predicationally place the mathematical concept of
“letting x approach 2" in the wider circle of meaning of iteratively choosing
numbers. Thisiterative choosing of numbers may in turn be metaphorically based
in other iterative physical processes and, thus, may be predicated on these other
processes. Similarly, traditional logical implication is also a case of predication.
When we say “If asquare, then arhombus,” we place the referent “square” in the
wider set of “rhombus,” and the meanings we hold for “rhombus” are extended to
squares. Our idea of rhombus, in turn, is predicated on other ideas that extend
meaning to it.

It isalso worth pausing to note a difference between this view of understanding
and apredominant view that equates understanding with the quality or integrity of
internal mental representations. Hiebert and Carpenter (1992) describe this view-
point well:

A mathematical ideaor procedureor fact isunderstood if it ispart of an internal network.
More specifically, the mathematicsisunderstood if itsmental representation is part of
anetwork of representations. The degree of understanding is determined by the number
and the strength of the connections. (p. 67)

Rather than viewing understanding as anetwork of connections between discrete
pieces of information, a predicational viewpoint suggeststhat understanding flows
from core meanings. Thus the strength of understanding is not in number of
connections but in the power of the core meanings that can serve as predicational
“targets’ and, hence, extend meaning to new ideas.
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METHODS

The datareported here were gathered using repertory grid methodol ogy and were
collected as part of alarger study. The following sections provide a description of
repertory grid methodol ogy, then go on to describe the original study and provide
the details of subject selection, data gathering, and analysis.

Repertory Grids

Repertory grid methodology was originally developed by George Kelly as a
research tool for his Personal Construct Psychology (Kelly, 1955). Assuch, it is
firmly based in Kelly’s view of human thought, particularly upon the notion of
construct. A construct can be thought of as a precedent assumption, or predicative
category, used to extend meaning to a subject’s world. As such, it is generally
compatible with Rychlak’s (1994) meaning extension. The basic technique is to
elicit constructs used to extend meaning to aparticular set of itemsand thento have
the subject rate theseitemsin termsof thedicited constructs. Popeand Keen (1981)
point out that the techni que has evolved into a“ methodol ogy involving highly flex-
ible techniques and variable application” (p. 36). Thomas and Harri-Augstein
(1985) list over 250 types of items used in the elicitation of personal constructs,
among them physics concepts, statistics concepts, mathematical operations, and
chemical bonds. In the literature of mathematics education, repertory grids have
been used to capture affective knowledge structures, such as belief systems about
teaching, learning, or motivation (Lucock, 1987; Owens, 1987; Hoskonen, 1999;
Middleton, 1995, 1999) and conceptual knowledge structuresin particular domains
such as geometry, Logo programming (Lehrer & Koedinger, 1989), and teachers
knowledge of fractions (Lehrer & Franke, 1992).

Methodologicaly, Kelly (1955), described a construct as “a way in which two
elements are similar and contrast with thethird” (p. 61). It can thus be thought of as
a predicative category used to distinguish among elements. A common method of
eliciting aconstruct isto present subjectswith threeitemschosenfromalist of interest
and to ask themto designate how two of theitemsare similar, and therefore different,
fromthethird. In other cases, subjects may be asked to ssmply compare and contrast
twoitems. Theresult in either caseisaconstruct with two poles, each onerepresented
by one of the contrasting items. To the extent possible, this construct is then named
and described by the subject. Other constructs emerging from the items are elicited
inthis manner, after which the subject isasked to rate the other itemsin thelist asto
the degree to which each construct applies to them. Following the ranking of each
item in terms of the elicited constructs, the subject isthen given more items and the
processis repeated until such time as the experimenter and subject feel there are no
moredifferencesor similaritiesto be noted. At theend of the session, amatrix of items
by constructs has been created, with elements consisting of ratings of the itemsin
terms of how well the constructs apply to each.

Gaines and Shaw (1986) have proposed an analysis of repertory grid data that
usesfuzzy set theory to gain someindication of the relationship among constructs.
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They interpret the constructs as predicates defining fuzzy setsand theitem ratings
for each construct as indicating membership in these sets. Thusthe constructs are
essentially determined by the degree of membership of each itemin thefuzzy set.
They go on to develop an analytic method that reveals the implication structure
among these fuzzy predicates. The method provides uswith ameasure of the extent
towhich itemsdefining thefuzzy predicate u also definethefuzzy predicatev. Thus,
it provides ameasure of the extent to which the predicate v extends meaning to the
predicate u and istherefore particularly suited to studying predication structure as
amore general case of the implication structure suggested by Gaines and Shaw.

L ehrer haswritten software that provides arepresentation of theimplication struc-
ture among constructs on the basis of the Gaines and Shaw (1986) technique. L ehrer
and Koedinger (1989) have used the analysis of implication structures successfully
in analyzing data from studies on adult learners of Logo and on fourth-grade
learners of geometry. L ehrer and Franke (1992) empl oyed this method in studying
teachers’ knowledge of fractions. In essence, the software measures the degree to
which construct u implies construct v by measuring the degree to which theitems
that are members of the fuzzy set defined by predicate u are also members of the
fuzzy set defined by predicate v. In the analyses presented in thisreport, strengths
of implications are computed for each pair of constructs and their negations.
Implicationsthat are vacuously true (such aswhen afal se precedent will imply any
statement) and hence provide little real information are eliminated. Among those
that remain, whenever two constructs imply one another, they form a bi-implica-
tion or are logicaly equivaent in the fuzzy sense discussed above. On the other
hand, when a construct A implies a construct B, but construct B does not imply
construct A, or the implication is weak (see Lehrer & Koedinger, 1989, for a
discussion of thetechnical details), then an asymmetric association issaid to exist
between the constructs. Whereas Gaines and Shaw would interpret this as an
implication A — B, the predicational interpretation isthat B is a broader referent
than A, and meaning is extended from B to A.

The Original Study

Data reported here are from alarger project that investigated the changes that
10 second-semester cal culus students experienced in their understanding of the limit
notion as the result of a 7-week experimental treatment. These 10 students were
selected from 341 students enrolled in second-semester cal culus classeson thebasis
of answers to a questionnaire about their understanding of limit. On this ques-
tionnaire, studentswere asked to indicate whether each of six statementsabout limit
were true or false, to tell which of the six best described limit as they understood
it, and to write a description of limit as they understood it (see Figure 1). The 10
students were chosen to represent various alternative conceptions of limit, partic-
ularly those involving reachability of limits, dynamic or motion-oriented views of
[imit, and notions of limit asaboundary, aswell asaspectrum of formality intheir
own descriptions of how they understood limit. All students had completed a
traditional, large-section first-semester calculus class.
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I.  Please mark the following six statements about limits as being true or
false:

1. T F Alimitdescribes how a function moves as X moves toward
a certain point.

2. T F Alimitis a number or point past which a function cannot
go.

3. T F Alimitisanumber that the y-values of a function can be
made arbitrarily close to by restricting x-values.

4. T F Alimitis a number or point the function gets close to but
never reaches.

5. T F Alimitis an approximation that can be made as accurate
as you wish.

6. T F Alimitis determined by plugging in numbers closer and
closer to a given number until the limit is reached.
II.  Which of the above statements best describes a limit as you under-
stand it? (Circle one)
1 2 3 4 5 6 None
lll. Please describe in a few sentences what you understand a limit to be.

That is, describe what it means to say that the limit of a function f as
X - Sis some number L.

IV. If possible, write down a rigorous definition of limit.

Figure 1. Initial questionnaire given to all students.

Subject Selection and Data Gathering

This report focuses on 2 of the 10 students from the original study, Gerry and
Jacob. Gerry was chosen as a subject for this report because he had a clearly
described and strongly held image, or base metaphor, for the limit process that
emerged during interviews. Jacob was chosen as a contrasting case of astudent with
alesswell-articul ated base metaphor for limit, which nevertheless devel oped over
the course of the study. The methodology employed hereis shown to highlight the
similarities and contrasts between Gerry and Jacob through its ability to capture
their idiosyncratic knowledge.

Students in the study met individually with the investigator for five sessions
spread over 7 weeks. During each session, students’ definitions of limit were
explored and discussed, so that their personal definitions of limit were modified
and refined over the 7 weeks. During thefirst and fifth session, repertory gridswere
elicited. During the middle three experimental sessions, students were asked to
respond to a series of tasks aimed at moving their aternative or informal concepts
of limit toward amore formal concept. The focus was on altering students' views
on reachability of thelimit, adynamic or motion-oriented view of limit, and aview
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of limit asabound. Thetasks studentsworked on included (@) typical textbook limit
problems to assess students' technical competence; (b) discussing contrasting
opinions about limits as voiced by hypothetical students, some of which voiced
conceptions shared by the subjects; and (c) working problems designed to produce
cognitive conflict and thus provideimpetusfor change. For example, one problem

provided atable of valuesof thefunctionf(x) =x+ 1+ 1&—20)( and asked the students

whether they could determine the limit as x approached 0. Subsequent discussion
focused on the sense in which alimit could or could not be found by evaluating
the function at numbers that got closer and closer to a given value. The tasks
included answering written questions, and students were often asked clarifying
guestions or probing questionsin an effort to better understand their views of limit.
The questioning and interviewing that surrounded these tasks form another corpus
of data against which the predicational relationships from the repertory grids are
discussed. Thus, the data reported here are primarily from the first and fifth
sessions, where gridsweredicited, with clarifying evidence coming from transcripts
of the middle three sessions.

A series of 10 written statements about limits were used in the €elicitation of a
repertory grid. They were composed based on students’ statements gleaned from
theliterature, from apilot questionnaire, and from pilot work with cal culus students.
The aim was to provide students with statements in which each of three miscon-
ception themes were present: alimit is unreachable, alimit involves motion, and
alimitisaboundary. The statements were made as broad as possible to encourage
the dlicitation of other constructs that students saw as important to their under-
standing of limit. The statements were also designed to differ in their degree of
formality; some more closely approximated the € — ddefinition, and otherswere
moreinformal. Thelimit statements, referred to hereafter asitems, were subjected
to pilot testing with cal culus students and were substantially rewritten. They were
also reviewed by six graduate studentsin mathematicsto ensurethat al three themes
occurred in theitems and that no important themeswere missed. Theitemsarelisted
in Figure 2.

Constructs were dlicited following the procedures described in general above,
using the 10 limit statements as items. A subject was given two of the items and
asked to describe how thetwo itemswere alike or different. The subject responded
with verbal descriptions of what was alike or different, which the interviewer
recorded. Clarification was asked for as needed, such as when the verbal descrip-
tions of two constructs seemed to be the same. The interviewer chose afew of the
subject’ swords to use as alabel for the emergent construct and, when offered by
the subject, alabel to stand for the opposite construct. When all similarities and
differences between one pair of itemswere written asconstructs, all 10itemswere
rated by the subject on a5-point scale asbeing more like the emergent pole of each
construct or its opposite. This procedure was then repeated for a second pair of
items, and the process continued until the interviewer and the subject both agreed
that they were unlikely to elicit new constructs. Pairs of items were presented to
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Item 1:

A limit is a sort of estimate of a given value the function attains within a given
amount of tolerance. You can get better and better estimates by restricting x,
so the tolerance gets smaller and smaller, but a function never reaches its limit.

A limit is really an approximation, not an exact number. If you plug in numbers
close to s, you can get close to the limit, but not beyond it.

Item 2:

A limitis a number or point that the function has values close to but never exactly
equal to. If you take the limit of f(X) as X - S, you can make the function as close
as you want to the limit, but it will never actually equal the limit, just like X never
actually equals s.

When you take a limit, you don’t care if X is ever really equal to s, just that it's
close. Same with f(X). It doesn’t really matter if f(X) is bigger or smaller than the
limit, but just that it's close. If f(X) ever equals the limit, you don’t really have
a limit.

Item 3:

The limit is the maximum (or minimum) of a function as x approaches some
number. As you get close to that number, the values of the function are trapped
by the limit number. For example, when a function grows really fast but then
levels off to an asymptote, the limit is the value of the line.

So a limit is a point or a number past which values of the function will not go;
in fact, the values never even reach the limit, but they do get close.

Item 4:

A function f has a limit L as Xx- sif the values of numbers near sare near L.
Specifically, for any tiny interval you draw around L, you can find an interval
around sso that all x values in the interval around shave function values some-
where in the interval around L.

Item 5:

A limit means that when x moves closer to some number s, f(X) is moving closer
to the limit. The function gets infinitely close to the limit but never touches it.
It's like an asymptote that the function might cross over a few times (or even
infinitely many times) but will get closer and closer to.

Item 6:

When a function moves toward a certain number and gets closer and closer
to it, that number is the limit. So a limit is a number or point that a function grows
toward but doesn’t go past.

It's like walking halfway to a wall, then halfway again, and so forth. You keep
moving closer, and the wall is like the limit. Eventually, you reach the limit, just
like you reach the wall.

Continues




Seven R. Williams 351

Item 7:

What's important about limits is the idea of “closeness.” When you say limit as
X approaches s, it means that if X is close to s, then f(X) is close to the limit. That's
what the definition is trying to say.

The idea of the definition is proving you can get as close as you want: | say |
can make f(x) as close as you want to the limit by making x close enough to
s, and | prove it by telling you how close x has to be to swhenever you tell
me how close you want f(X) to be to the limit. That's what all the delta-
epsilon stuff is about.

Item 8:

You can't evaluate a limit by just plugging in points close to the number,
because you can only plug in a finite humber of points, and that isn’t enough
to tell you what the function is really doing. It might be different when you get
closer to the point.

You really have to prove that you can get as close as you want to the number
and the function is still close to the limit. That's why you need the limit theorems.

Item 9:

Finding a limit is a lot easier than understanding the definition. When you need
to find a limit, you just plug the number in. Like, to find the limit of f(X) as x
approaches 0, you plug 0 into f(xX). If it doesn’t work, you do some algebra, try
to cancel some stuff out, and then try again.

The definition talks about “getting close” and all that, but when you work the
problems, the limit turns out to be what you get when you plug the value in.

Item 10:

If you want to picture a limit, picture X moving closer and closer to some
number and the point on the graph above it moving along the graph, getting
closer and closer to the limit. You're just approaching a point on the graph that
the function goes through.

The function goes through the limit point, and the points are just moving along
the graph toward the point. There’s no restriction on how close they can get
and eventually, when X reaches the number, the function will reach the limit.

Figure 2. Items used in €liciting repertory grids.

all subjectsinthe sameorder. Thefirst four pairs(7-10, 2-6, 3-10, 4-9) were chosen
because they seemed to represent opposite points of view on motion, reachability,
boundedness, and formality. After thesefirst four pairs, pairs 3-6, 6-10, and 8-10
were presented to the subjects according to alist of pairs chosen at random prior
to al interviewing. The same list of pairs was used for each subject; however not
every subject saw the same number of pairs because the number of constructs
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elicited varied across subjects, and not all item pairselicited new constructs. After
al constructs were elicited, subjects were asked to rate all 10 items on two
constructs supplied by the researcher: whether the item was true and whether the
subject liked the item. Beyond the obvious presence of the misconception themes
intheitemsthemselves, every attempt was madeto insure that the constructselicited
were not suggested to the student. This interview typically lasted about an hour,
with the subjects examining five to eight pairs of items.

Theresults of the above procedure was amatrix in which each row represented
one construct and consisted of a series of ten rankings (one for each item) on a5-
point scale. A rank of “5” for an item indicated that the emergent (left-hand) pole
of the construct applied strongly to that item, whereas arank of “1” implied that
the opposite pole of the construct applied strongly to theitem.

Initial analysis was aimed at obtaining information about (a) the features of the
[imit notion that have organizational salience for mathematics students (i.e., the
constructs) and (b) the relationships between those features. Analysis based on
Gaines and Shaw’ s (1986) logic of fuzzy predicates was used to gain insightsinto
students’ predicational structures surrounding limits.

RESULTSAND DISCUSSION

In this section, | discussin detail the understandings of limit held by Gerry and
Jacob and how meaning is extended to the limit notion for each student. | also
discuss how their understandings evolved and solidified over the course of the
experiment.

Gerry' sinitial View of Limit

Gerry’sinitial description of what it meant to say “thelimit of f asx - sisL” was
given asfollows:. “As one gets closer to s the function begins getting closer to its
valueat s. Thisalowsoneto get an ideaof what f(s) will bewithout actually finding
f(s).” Gerry chose#4, “A limit isanumber or point the function gets close to but
never reaches’ fromthelist of six statements as best describing alimit as he under-
stood it and chose #3, “A limit is a number that the y-values of afunction can be
made arbitrarily closeto by restricting x-values’ asthe only fal se statement among
the six statementsin Figure 1.

Gerry seemed to hold conflicting views of what alimitis. It is probable that in
responding to the questionnaire, Gerry viewed his task as describing limit, rather
than defining it. In the language of Tall and Vinner (1981), Gerry was working
solely with concept image and not with concept definition. Tall and Vinner note,
“ Asthe concept image devel opsit need not be coherent at al times.... At different
times, seemingly conflicting images may be evoked” (p. 152). Certainly thiswas
true of Gerry as he struggled with verbalizing an understanding that was based
largely on kinesthetic and image-laden understandings. In addition, it is possible
that Gerry wasfocusing on different aspects of hisimage of limit as he considered
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the different statements. For example, although heinitially accepted the statement
above that alimit was a number the function got close to but never reached, it is
likely that he really understood this statement as reflecting his description of the
process of finding a limit, not as a description of how a function can behave. In
summary, Gerry’ sinitial understanding of limit can be characterized as somewhat
inconsistent and verbalized in ways that failed to adequately expressit.

Initial repertory grid. During theinitial grid elicitation session with Gerry, the
following constructs were elicited. Related comments are given in detail hereto
give the reader a sense of how the constructs were expressed. The labelsin bold
are the constructs eventually used to rank all 10 items.

1. Closeness. | think both [items#7 and #10] aretrying to zero in on the close-
ness. That the x gets close.

2. Goesthrough vs. Just near. It seemsto melikethisone[#10] saysthefunc-
tion kind of goesthrough the point, where this one [#7] saysthat it takes you near
it.

3. Precise value vs. Approximation/Not precise. Thisone [#4] saysif you
plug in the number, you get a vague number. Y ou get something close to it, but
you never actually get it. But this one [#9] says you stick in the number and you
get it exactly. This one’'s more precise.

4. Stoppingvs. Continuing. Thisone [#6] seemsto say that the function stops
at thelimit, and this one [#10] seemsto say the function keeps going through.

5. Don’t actually know it vs. Definitely find it. Thisone [#10] saysthat you
definitely can find the limit, and this one [#8] says that you can’t find the limit
concretely but you have to prove it exists. But you really don’t know what it is.

Theresultsof therankingsfor all seven resulting constructs (including Truevs.
Falseand Likevs. Didlike) are shown in Figure 3. The items and constructs have
been rearranged to show the similarities between constructs and the rel ationships
between constructs and item rankings. Thisrearrangement is based on aclustering
technique employing additivetrees (Sattath & Tversky, 1977) but isdisplayed here
only to highlight how itemsdifferentiated between constructs. Here, ascore of “5”
represents high ranking for the emergent pole, and ascore of “1” representsalow
ranking on the emergent pole (or a high ranking on the opposite pole).

Although the primary focus of this report is on the predicational structure, it is
worth noting a few obvious relationships. Firgt, it is interesting that Gerry ranks
items4, 7, and 9 as“true, liked, and dealing with closeness.” In addition, both truth
and closeness have high rankings on itemsthat imply the limit isreachable (Items
6, 9, and 10). That all of these are seen asliked and trueis particularly interesting
because Items 4 and 7 most closely represent aformal € — d definition, whereas
Item 9 reflectsapractical orientation to doing limit problems. Thissupportsalater
argument that Gerry isstruggling with the rel ationship between theoretical and prac-
tical views of limit. It is also interesting that Gerry associates the formal defini-
tion with approximations rather than with exact values. By contrast, Iltem 9 was
seen as associated with providing definitive answers.
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Construct Item Numbers Construct

Emergent Opposite

Pole Pole

“5” 1 (521|386 4|7 ]9 |10 “1”

Goesthrough |1 |1 |3 |1 |2 |12 |1 |5 |5 | JustNear

Precisevalue |1 |2 |3 |2 |2 |4 |1 |1 |5 |3 | Approxi-
mation/
Not Precise

Closeness 312411 |2]|5|5|5]|5

True 1112112 |1|5|5|5|5]|65 False

Stopping 4 |2 |2 |4 |3 |5]1 ]2 |3 |1 Continuing

Don't actually Definitely

know it 4 12|32 |5|514 14|11 findit

Like 514111113145 |51 Dislike

Figure3. Gerry’sinitial repertory grid arranged to show rel ationshi ps between constructs
and item rankings.

Initial predicational structure. If the constructs elicited in arepertory grid give
an ideaof the major meanings used to understand the limit notion, the predicational
structure shows how those meaningsarerelated (see Figure 4). If, as seemsreason-
able, Gerry would like and view astrue those ideas most central to hisview of the
l[imit notion, then it isclear that “closeness’ is one such fundamental idea. The bi-
implication between the constructs“ True” and “ Closeness’ form one of three major
clustersin Figure 4. Moreover, the opposite of the “ Closeness’ construct, equated
by Gerry with “stopping at the limit,” isdisliked. Gerry’ sfeeling that “ stopping at
thelimit” was somehow antithetical to closeness makes sensein light of the funda-
mental model that Gerry eventually expresses. For Gerry, it is vital to his model
that limits be two-sided (this will be expanded later). Finally, there is a third
cluster, inwhich Gerry equates getting aprecise valuefor alimit by “plugging in”
avalue (i.e.,, when the function is continuous) with the fact that a function goes
throughitslimit point (instead of just getting near). Theseimply that aprecisevalue
can befound for thelimit. Thisis keeping with Gerry’ s association of Items 4 and
7, those resembling the e — ddefinition, with approximate val ues.

In summary, Gerry’sinitial predicational structure for limits seems to empha-
size closeness (althoughit isnot clear, at this point, what closeness meansto Gerry)
aswell asthefinding of an exact valuefor alimit ascentral ideas. It also seem that
although both of these ideas are important to Gerry, they are not necessarily
related. “ Closeness,” on the one hand, was a foundational construct for Gerry in
that it largely determined the truth of statements about limits, and statements seen
as not dealing with closeness tended to be disliked. On the other hand, the process
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Stopping <> Not Close — Disliked

Precise (Plug in) < Going Through — Definitely Find it

Closeness <> True

Figure 4. Gerry’sinitial predicational structure.

of finding limitswas something else entirely; it dealt with issues of evaluating func-
tions at the points of interest and perhaps inspecting their graphsto determine the
values at which they “went through” their limit point. It isinteresting to note that
these two aspects echo the two very rea divisions in Gerry’s classroom life
between understanding limitsin theory and being ableto find limitsin order to do
homework and test problems.

In the intervening five weeks, Gerry attended the three experimental sessions
described earlier. These sessions offered Gerry an opportunity to refine histhinking
on each of the three mi sconception themes and provided him with anomal ous exam-
ples of limit problems that were best understood from a more formal, structural
viewpoint. At thefifth session, his*“definition” of limit was again elicited, aswas
a second repertory grid.

Gerry' sEmerging View of Limit

In thefifth interview session, Gerry settled on this description for what it meant
tosay “thelimitof fasx - sisL.”

As one gets closer to sthe function begins getting closer to avalue. If you approach s
from both sides and the value that the function is getting close to isthe same, then that’s
the limit.

Notice that this description does not mention the value of the function at s, asdid
Gerry’ sfirst description. However, Gerry did add the“both sides” restriction. This
isindicative of hisemerging model of limit. Gerry considered questionnaire state-
ments 1, 2, and 4 (see Figure 1) as false, and statements 3, 5, and 6 as true. He
rejected notions of limit being a bound or being unreachable, and he felt uncom-
fortable with the idea of x “moving” toward a certain point as expressed in state-
ment 1. He did recognize the truthfulness of statement 3, essentially arestatement
of the e — & definition; but he chose statement 6, “A limit is determined by plug-
ging in numbers closer and closer to a given number until the limit isreached” as
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best describing his understanding of limit. This also was consistent with his base
metaphor for limit, which had emerged as the sessions progressed.

Gerry discussed several timesininterviewswhat he called his* sandwich” view
of limit. Inadiscussion of how he*plugged in” anumber to acontinuous function
to find the limit, he said: “... because you can plug them in but if you think about
them, if you think about the two sides coming in from both sides, it kind of, kind
of fitsthe sameway [asmy definition].” Later, heclarified thisand gaveit aname:
Gerry: Well, you' rekind of sandwiching your number between the valuesthat you' re

choosing, so you never get to the number but you keep closing it in.
Interviewer: So you' re choosing points?
Gerry: Y eah, you’ re sandwiching in your—the number that you' re getting close to.

Gerry took as hisfundamental metaphor for limit this“sandwiching” notion, in
which the value of the limit is approached from both sides and eventually trapped
by the sides of the sandwich. He almost always described this process by saying
that the number was * not reached” but understood that the function could take on
the value of the limit. This viewpoint remained strong for Gerry as the sessions
progressed. Although thethird interview session was expressly aimed at discounting
the notion that |im f(X) could be found by evaluating the function at points that
got successively closer to s, Gerry admitted in thefinal session that he still saw that
viewpoint asvalid.

Final repertory grid. During thefinal dicitation session with Gerry, thefollowing
constructs were elicited.

1. Very very close. They [Items #7 and #10] are both saying that there’s no
restriction on how close you get. Y ou can get very very close.

2. X’sgetting closer/sandwich. They’re[#7 and #10] both saying that your x
IS getting closer to the number around which you' re taking your limit. And, uh, |
think that’s what they’ re both saying, that your X' sare moving in. Again, it’slike
your sandwich.

3. Never goesthrough vs. Doesgo through. Thisone [#3] saysthat the func-
tion never goes through the limit. And this one [#10] saysthat it does.

4. Just plugin number vs. Closein upon it. OK, these are like totally oppo-
site. Thisone’ s [#9] saying that your limit—you just plug in and that’ sit. | mean
it has none of this sandwich stuff or anything. That’ sjust it—that’ sthe limit. Where
this one [#4] says—Yyou know, you have to closein uponit.

5. Reachvs. Not reach. This[#6] one saysthat you reach thelimit but you don’t
go any further than that. And this one [#10] says you reach the limit but you go
through it. [This was judged to be the same as #3 above]. They both say you can
reach the limit.

6. Can get exact number vs. Can just proveit’sclose. Thisone [#10] says
you can actually find an exact number for the limit and this one [#8] says you can
never find an exact one. Y ou can just prove that it’ s about that.

Inaddition, Gerry was asked to rank all 10itemson the constructs Truevs. False
and Like vs. Dislike. The results of the rankings for all eight constructs are
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shown in Figure 5. Again, theitems and constructs have been rearranged to show
the similarities between constructs and the relationships between constructs and
item rankings.

Construct Item Numbers Construct
Emergent Opposite
Pole Pole

‘5" 2|(3|5|1|8|4|7|6]|10|9 “1”
X’s getting 2|13|5|2|1|5|3|4|5]|1
closer/
sandwich
Never goes 5155|5253 |5|1|1| Doesgo
through through
Just plug in 2 (3|1 |1|3|1|2|1|2]|5]| Closein
number upon it
Cangetexact |5 (5 (3|1 |1|1|1|4]|5 |5/ Canjust
number prove it's

close

Reach 1 /111 [1]2|2]5]|5]| 3] Notreach
Veryveryclose| 2 |1 |3 |2 |1 ]|5|5|4|5]3
Like 2112|314 |5]|4]|4]|5 | Dislike
True 211]3[3|3|5([5]4]4]|4]| False

Figure5. Gerry’ sfinal repertory grid arranged to show relationships between constructs
and item rankings.

Aswith Gerry’sinitial repertory grid, Items4 and 7, representing aformal defi-
nition, are seen astrue and are liked. Moreover, Items 6, 9, and 10, which repre-
sent graphical and practical concerns, arealso seen astrueand areliked. In general,
there seems to be less polarization in this repertory grid. However, the fine struc-
ture of the grid ismore easily seen in terms of its predication structure.

Final predication structure. At least two magjor changesrelativetotheinitia grid
are apparent in predicational structure given by thefinal repertory grid (see Figure
6). First, foundational concepts have pulled together into a tighter structure. A
cluster of four constructs(Liked, True, Very Very Close, X’sMoving I n) linked
by bi-implicationsform acorethat for Gerry represents the fundamental model of
limit—his*“ sandwich” model. Thisgivesaconsistent picture of hisbase metaphor
of X' sbeing chosen closer and closer (indeed, very very close) to the target value,
and the limit being the number that the functional values approach.

Second, anew relationship has emerged that reflects Gerry’ sambival ence about
reaching the limit. One the one hand, there is an implication chain Just Plug In
- Reach - Vey Very Close. This has face validity, since if the limit of a
continuous function can be obtained by finding the functional value, itisclear that
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Not Like v\

Reach «———  JustPlug In

Not X’s /

Moving In

V4
Very, Very «—— Like

/Close \ /
X’s Moving In

True

Figure 6. Gerry’sfinal predicational structure.

the function reaches its limit and also that there are no restrictions on how close
one can get to the limit point. In thissense, “plugging in” to obtain the limit value
seemsto beaspecia case of themore general “sandwich” notion. On the other hand,
“just plugging in” numbers is aso disliked and is seen as antithetical to the X's
Moving I n construct—that is, as antithetical to the sandwich model.

Thus, for Gerry, “plugging in” to get alimitisnot really part of his core concept
of what alimitis—it doesn’tinvolve* sandwiching.” On the other hand, being able
to “just plug in” clearly implies that the limit is reached, and if it is reached, the
end result of the “sandwiching” process must be the same point.

Herethe complexity of Gerry’ smeaning-making processisdemonstrated nicely
by the predicational structure. On the one hand is his base metaphor of x values
being chosen to close in on the given value from both sides. On the other hand, as
hefreely admits, he doeslimit problemswithout recourseto that metaphor, by eval-
uating the function at the point of interest (possibly after some algebraic manipu-
lation to yield asuitable continuous function with the same limit) or by inspection
of the graph. He hastried to take account of a new aspect of limit, highlighted in
the experimental sessions he attended, by incorporating limits that are reached—
but thisincludes all those continuousfunctionsfor which the theoretical grounding
isnot necessary. In fact, “just plugging in” resultsin limitsthat are reached and is
seen as contrasting starkly with his theoretical model. That he recognizes this
contrast is indicated by his not liking the “just plugging in” idea.

In summary, what interviews reveal as fundamental in Gerry’s experience
throughout thefive sessionsis, infact, reflected in thefinal predicational structure
as constructed from his repertory grid. The contrast between theoretical under-
standing of the limit and practical actions involved in evaluating limits is still
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present, but there has been somerefinement. The“sandwich” model, whichis, in
fact, aninformal model that is based largely on ametaphorical moving of pointers
along the graph, has come to occupy acentral part of Gerry’ sview of limit. At the
sametime, the relationship between thismodel and the practical aspectsof finding
limits has also been highlighted. The mediator between the theoretical sandwich
model and the practical methods of evaluating limitsis the notion of “reaching.”
Getting close and eventually reaching the limit seemsto lend meaning both to the
model and to everyday practice. Thus, the notion of the function reaching itslimit
isambivalent for Gerry. On the one hand, Gerry was convinced by the experimental
sessions that some functions take on their limiting value. On the other hand, his
sandwich metaphor does not require that the function do so. Thus the notion of
reaching alimit point enriches both theory and practice for Gerry, but it does not
reconcile them.

We now look briefly at a second student, Jacob, in order to more fully illustrate
the explanatory power of repertory grids and predicational relationships. Jacob
differsfrom Gerry in having no clearly described, overarching image of limit, like
Gerry’ s“sandwich” notion, and a so in devel oping asomewhat more sophisticated
view of limit. He shareswith Gerry astrong, robust, dynamic view of limit, which
he begins to question by the end of the session.

Jacob’ s Initial View of Limit

Jacob’sinitia description of what it meant to say “thelimit of fasx - sisL”
wasgiven as“Thelimit of f(X) asx — smeansthat, asyou have afunction f(x,) if
you keep plugging in numbers (X) closer and closer to s, you will finally achieve
thelimit (L) asx —» s.”

Jacob chosethe statement, “ A limit isdetermined by plugging in numbers closer
and closer to agiven number until thelimitisreached,” ontheinitial questionnaire
as best describing his understanding of limit. Initially, and on the surface, Jacob’s
view seemsto have much in common with Gerry’ s—an essentially dynamic view
of limit characterized by considering a sequence of points that get closer and
closer tothelimit value. Indeed, by thetime of thefirst meeting, when hewas asked
to again describe hisview of limit, he chose the statement “ A limit describes how
a function moves as x moves toward a certain point” as best describing how he
understood limit.

Itisclear that adynamic view predominated Jacob’ searly reporting of limit ideas.
He did express some confusion over “reaching” alimit, as many of the other nine
subjects did, but even with that his view was fairly sophisticated:

| understand that what they’ relooking for is not the point when you plugitin, but | do
understand that when it’s continuous and you do plug in the point, that is what the
numbers, as you pick them close, are convergent to. So, | know that if it’s not contin-
uous and you substitute in the number, and you get anumber out, that that’ s not neces-
sarily thelimit. | understand that it’ sthe points, that it’ sthe neighborhood around there
asyou get infinitely close, but, whether—I don’t know whether it reachesits limit or
not. | don’t remember if we were taught [that].
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By our second meeting Jacob had established a pattern of answersthat remained
stable for the rest of the 7 weeks. He indicated that statements 1, 3, and 5 on the
guestionnaire (see Figure 1) were true, that statements 2, 4, and 6 were false, and
he chose statement 3, “A limit is a number that the y-values of a function can be
made arbitrarily close to by restricting x-values,” as best describing his under-
standing. Thus, Jacob espoused aview of limit that strongly resembled theformal,
“static” definition (represented by statements 3 and 5) but at the sametime had a
strong dynamic flavor as well (statement 1).

The following constructs were elicited from Jacob during the initial session:

1. Closeness. [Both #7 and #10 say that] as x moves closer and closer to some
number, the graph approaches the limit.

2. Can’'t reach vs. Can reach. [#7, incontrast to #10, says| you get closer but
you never really actually reachit.

3. Growing toward. They're both [#2 and #6] talking about going toward a
function but not going past ... growing toward the limit.

4. Plugginginvs. Areaaround limit. Thisone[#9] isjust talking about plug-
ging in and this one [#4] is talking about the arearight around [the limit].

5. Can’t go past. [Both #3 and #6 say] you can’t go past the limit.

6. Proveyou can get close. [Both #8 and #10 say] you have to prove you can
get as close as you want to the number.... there s no restrictions on how close you
can get.

Figure 7 presents Jacob’ sinitial predication structure, including hisrankingson
Likevs. Didikeand Truevs. False. Two linked clusters of constructs are imme-
diately apparent. Thefirst, linking false and disliked statements with those about
“pluggingin” and “reaching,” givesaclear indication of Jacob’ sbeliefsthat limits
are not about just plugging in a value, and they cannot be reached. The second
cluster, one that extends meaning to the first, links the idea of closeness with the
idea of “growing toward” alimit. This makes two things clear: that Jacob views
closeness in terms of numbers or points “growing toward” the limit and also that
false and disliked statements lack this view of closeness. This provides further
evidencethat Jacobinitially hasaview of limit similar to Gerry’ s sandwiching idea.
A second relation, that of “can’t go past” implying “can’'t reach,” is sensible and
helpsto establish that, for Jacob, theissue of “reaching” isstill relevant. “ Reaching”
the limit is associated with fal se statements, and “not going past” the limit seems
to share conceptual space with growing toward thelimit and being concerned with
closeness—for Jacob, both dynamic notions. This supports and enriches Jacob’s
expressed ambivalence about reaching a limit. He understood that the limits of
continuous functions could be found by evaluating the function at avalue, but was
not sureif, in general, limits were reachable.

In summary, Jacob’ sinitial predicational relationshipsindicate a preference for
adynamic view of limit, which he also sees as associated with closeness and not
“reaching” the limit. Aswill be shown below, the issue of “reaching” eventually
becomes resolved for Jacob, and there is some movement toward a less dynamic
view of limit by the end of the 7-week experience.
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Dislike «— Plugging «—> Can Reach

\ /

False
Not Growing
Toward
I Can't Go Past
Not
Closeness

Can’'t Reach

Figure 7. Jacob’sinitial predicational structure.

Jacob’s Emerging View of Limit

Asmentioned above, Jacob’ sanswersto the questionnairein Figure 1 wererela-
tively stable from the second session to the end of the 7-week period. He seemed
to have settled on aview of limit that combined elements of aformal static view
with adynamic feel of valuesof x and values of f(x) moving toward specified values.
Hisown definition from the final session reflectsanincreased sophisticationin his
view:

AsXx - a, the function will approach a certain limit, but doesn’t necessarily have to

reach it (depending on continuity, etc.). Plugging in numbers “far out” from the limit
won’'t necessarily approach it.

Thisreflects Jacob’ scoming to understand, like Gerry, that theidea of “reaching”
thelimit was not relevant from aformal viewpoint and depended on the continuity
of thefunction. It also reflected the ideathat limits were concerned with what was
happening locally, not “far out” from the limit value. Thus, Jacob was beginning
to consider what was happening in small intervals around the limit point, asis
reflected in his predicational relationships.

The following constructs were elicited from Jacob during the final session:

1. Alwaysreachesvs. getting closeto. [InItem# 10] They’'resaying it aways
reaches the limit, and here [#7] they’ re talking about closeness, getting close to.

2. Norestriction on how close. [Both #7 and #10 say that] there' sno restric-
tion on how close you can get.
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3. Reach vs. Can’t reach. This one [#6] says you can reach it; this one [#2]
saysyou don't ever reach it.

4. Can’t go past. The both [#2 and #6] say you can’'t go past [the limit].

5. Plugging in numbersvs. Understanding intervals. One's[#9] just plug-
ging in numbers, and the other [#4] is actually understanding the intervals.

6. Can tell from function vs. Can’t get close enough by plugging. [In #10]
they’ rekind of assuming you can tell what happensjust by looking at the function,
what happens when you get very close. And [#8] is kind of saying you can’t get
close enough [that way] because it might be different when you get closer to the
point.

7. Following graph toapoint. Thisone[#10] givesmethe pictureof following
the graph right along ... that the limit isjust a point on agraph, no big deal. This
one [#6] ... makes it seem like something funny is going to happen right before
the limit.

Jacob’ s predicational relationships at the end of the 7 weeks are shown in Figure
8. There are three points of focus. Thefirst isa cluster of bi-implications that tie
false statements with statements involving plugging in numbers, failing to prove
that there are no restrictionson how closethe function getstoitslimit, and not being
abletotell from examining thefunction what itslimitis. A second cluster suggests
that “liked” statements are both true and deal with understanding intervals (as
opposed to just plugging in numbers). The combination of these implications and
bi-implications suggest that Jacob now values an understanding of intervals, as
opposed to just plugging in numbers, and does not value statements that rely on
just plugging in numbers, without some argument about the function being ableto
get close “without restriction” to thelimit value. However, hea so links“can’t get
close enough by plugging in numbers’ with fal se statements, indicating that he still
believesthat hisinitial view of limits being approached by plugging valuesin the
function has some validity. A third cluster, involving statements about reaching
the limit, or the dynamic view of limit (following a graph to a point) is unrelated
to statements seen as either true or false. This may mean that the dynamic view of
limit is still significant but he had not yet reconciled that significance with what
he was coming to believe astrue.

This view is supported by Jacob’s reactions to working the problem involving

thefuntionf(x) =x+ 1+ 10°% mentioned earlier. He decided that, although it

did not redlly alter hisfundamental way of looking at limit, he did have to be more
careful about describing what “far away” meant—that is, he had to be more careful
about guaranteeing that he really understood the behavior “close enough” to the
limit value. Without deciding what “close enough” means, he did at |east begin to
recognize that thiswas an issue. It seemsthat Jacob came to understand the major
issuesthat gaveriseto the current definition of limit without necessarily completely
resolving them. In thisway, hisunderstanding was more sophisticated that Gerry’s.
At the same time, his hold to the dynamic notion was still strong. After deciding
that the experimental session had not really changed his dynamic way of looking
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Figure 8. Jacob’ sfinal predicational structure.

at limits, he was asked what it would take to make him give up the notion of limit
he held. Hereplied, “I don’'t know. That’sjust kind of theway | look at it. If you
show mean easier way....” Inthefinal analysis, although he made some changes
inhisview of limit, hestill clung to what wasfor him apowerful underlying motion
metaphor.

SUMMARY AND CONCLUSIONS

The analysis above offersinsight into Gerry’s and Jacob’ s individual thinking
about limits and so suggests some theoretical directionsto be explored in the area
of students’ understanding of limits. It also provides some insights into repertory
grid methodology and predication theory as a way of capturing cognition in a
complex domain. These topics are discussed in thisfinal section.

Gerry sand Jacob’ s Understanding of Limits

In looking at the approaches both Gerry and Jacob take to limits, one is struck
by the similarity between their descriptions of limits and the basic metaphor for
limit discussed in Lakoff and Nufiez (2000). In both cases, the natural approach of
examining values that get “closer and closer” to the limit forms a foundation for
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their understanding. Moreover, even though the experimental sessionswere specif-
icaly designed to create some cognitive discord with this notion, both Gerry and
Jacob continued to believein it and still claimed it was their fundamental way of
understanding limits. Inthis, they were not a one; nine of the 10 subjectsin the study
also remained convinced that this dynamic view of alimit was essentially correct.
The remaining student could see it as problematic but had no competing scheme
withwhichtoreplaceit. In general, absent the mental action of iteratively choosing
points and eval uating the function, students seem to have very little with which to
frame atheory of limits.

For both Gerry and Jacob the notion of “reaching” alimit carried some ambiva-
lence. Both understood that continuous functions“reached” their limitsin the sense
of taking onthelimit value, but both still felt unsure whether, in the process of taking
alimit, it was accurate to say that the limit was actually reached. In Lakoff and
Nufiez's (2000) basic metaphor for limit, the “reaching” is accomplished by
metaphorically extending theiterated choosing of pointsto a“final resulting state”
(p. 159) in which the limiting value is clear. This final resulting state is equated
with “actual infinity” and isalso the critical step in the basic metaphor for infinity;
itisthe cognitiveleap fromfinitetoinfinite. Itisprecisely at thispoint where Gerry
and Jacob are not sure of themselves.

The necessity for this cognitive leap helps to explain at least two phenomena
apparent in Gerry’s and Jacob’ s accounts of limit as well as the corpus of litera-
ture on limits. Given the conceptual difficulty of the notion of infinity, whether
actual or potential (Tirosh, 1991), it is not surprising that Jacob, Gerry, and their
thousands of counterparts in calculus classes stumble over whether a limit is
reached. The notion of reaching alimit rests on the fundamental distinction between
actual and potential infinity. Moreover, the € — & definition, and indeed most of
modern mathematics, categorically rejects the concept of actual infinity (Tirosh,
1991). Thuswith the concept of limit, students' informal conceptions that depend
on coming to gripswith actua infinity meet mathematical formalism head on. Given
that the avoidance of actua infinity within modern mathematics is motivated by
the desire to avoid rather subtle and mathematically complex paradoxes, it is not
surprising that few students see the need to reject their informal model. This
explainsin part the conceptual difficulties surrounding limit consistently reported
in the literature, the robust nature of those difficulties, and the problems associ-
ated with teaching and learning the € — d definition. Actual infinity may thus be
the most important cognitive obstacle to learning the formal definition.

Issues Related to Theory and Methodol ogy

Certainly no one method can capture the richness and variety that characterizes
human thinking. Any method will necessarily obscure some aspectsasit highlights
others. Had Gerry and Jacob engaged in other kinds of tasks, different kinds of
knowledge and rel ationships may have emerged. At the sametime, such amethod-
ology may also have obscured the fundamental models and metaphors that Gerry
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and Jacob used to make sense of limits. The methodology employed here,
combining repertory grids with an interpretation drawing on predication and
metaphorical extension, seemswell suited to getting at these fundamental models
and, at the same time, sensitive enough to capture growth over the course of the
7-week experimental sessions.

Gerry, for example, distinguished between practical and theoretical aspects of
limit throughout the sessions, but both aspects were refined as Gerry attended the
experimental sessions. Gerry began to be aware of these distinctions as he came
to understand differences between how he thought about limits and how he actu-
ally evaluated limits. Thischangeisreflected in the differences between theinitial
andfinal predication structures. Similarly, although Jacob held adynamic view of
limit throughout the sessions, his view aso matured to include a greater attention
to verifying what is meant by “getting close enough.”

Finally, this technique allowed aspects of the limit notion that were personally
meaningful for both studentsto emerge, rather than only those which were part of
the researcher’ s agenda. Thus, instead of beginning with amathematical analysis
of limit, and the assumption of certain mental objects and processes (asin, e.g.,
genetic decomposition), this method begins with students' own reports of what is
significant about limit. For example, the division between practical and theoret-
ical notionsof limit, which wasfundamental not only for Gerry but for all students
inthelarger study, becameamajor organizing themein his predicationa structures.
Moreover, whereas the “ sandwich” model had not completely emerged during the
first elicitation, it was strongly represented in the second grid and formed a core
of the associated predicational structure. The ability to let constructs emerge from
the subjectsthemsel ves haslong been seen asastrength of repertory grid techniques,
and this study confirmstheir value in addressing idiosyncratic mental models. Of
course, interpretation of the grids, and the predicational relationshipsthat comefrom
them, isstill necessary. Indeed, interpretation isanecessary part of any attempt to
understand another person’s thinking. Whether we choose to approach this task
through asking verbal questions, giving written tasks, observing problem-solving
behaviors, or any of a myriad of other methods, we will always be interpreting
tangible data and inferring thinking patterns from it. Thus, although the method-
ology of thisstudy is not free of interpretation, it nevertheless allowsfor agreater
chance for students' idiosyncratic thinking to emerge.

In this regard, it should be noted that the methodology offered some insight
beyond what was obtained by analysis of verbal data (e.g., interviews). As an
example, Jacob’ sfina wordsin theinterview seem to suggest that he had not given
up hisdynamic view of limit and would not do so until someone could show him
an“easier” way. Y et, the predicational relationshipsfrom hislast grid suggest that
although he had not abandoned adynamic view, it had been distanced from the core
of histhinking—the “true” and “liked” statements. This subtle difference, which
emerged in the predicational analysis, suggests that such analysis might help
discover more stable understandings and beliefs than the students may be able to
express through answers to interview questions. This methodology, then, seems
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particularly suited asameansto supplement and enrich verba protocolsas evidence
of understanding.

Repertory grid methodology, viewed asameans of capturing predication, offers
promise for exploring students' informal approaches to understanding. In this
case, coupled with interview data, it was helpful inidentifying akey stumbling block
to understanding the limit concept.
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