Author index

ADKINS, JACKSON B. Goals in algebra. May, 367-70.
AHRENDT, M. H. How your subscription is processed. Dec., 552-54.
—— Membership report. 442.
—— The national council is big business. Dec., 552.
—— Notes from the Washington office. 442, 552.
ALLARD, NONA MARY. An individual laboratory kit for the mathematics student. Feb., 100-101.
AYRE, H. GLENN. Affiliated Groups. 555.
—— A message to Affiliated Groups. Dec., 555-56.
BEATLEY, RALPH. Reason and rule in algebra. Apr., 234-44.
BENTZ, R. P. Critical mathematics requirements for the program of the community college. Jan., 51-52.
BERGER, EMIL J. Editor, Devices for a mathematics classroom. 32, 100, 184, 254, 398, 405, 498, 546.
—— “Eureka.” Feb., 105.
—— A model for explaining how latitude may be determined by making observations on Polaris. Oct., 405-406.
—— A model for giving meaning to superposition in solid geometry. Jan., 33-35.
—— A model for teaching infinite series to high-school students. Feb., 101-105.
—— A tetrahedron with planes bisecting three dihedral angles. Mar., 186-88.
BOYD, ELIZABETH N. The cultural course in mathematics for college students. Nov., 479-81.
BROWN, KENNETH E. Editor, Research in mathematics education. 51, 204.
—— The mathematics teacher's opportunities for guidance. May, 311-14.
BROWN, JOHN A. Editor, What is going on in your school? 48, 129, 211, 274, 365, 428, 491, 557.
BULMER, HAROLD. The mathematical house. Apr., 254-56, 278.
BURCH, ROBERT L. The editor's mail. Oct., 431.
BURINGTON, R. S. Mathematics for our time. May, 295-98.
CARTER, W. L. A new basis of organization for the junior high-school mathematics program. Mar., 204-205.
CLIFFORD, PAUL C. Editor, Mathematical miscellanea. 28, 115, 189, 265, 346, 411, 488, 561.
—— Out of the mouths of babes . . . Feb., 115.
CRUMLEY, RICHARD D. Editor, Reviews and evaluations. 418, 496, 559.
DURE, MARY WHITE. How I teach algebra. Feb., 131-34.
EAVES, J. C. The Pythagorean theorem—proof number one thousand. May, 346-47.
GIBBS, NEIL L. Historical extra credit. Nov., 488-89.
—— Using a carpenter's folding rule to teach the meaning of perimeter. Jan., 32.
GOLD, BEN. Los Angeles City College Mathematics Prize Competition. Feb., 129-31.
GROSSNICKLE, FOSTER E. Teaching arithmetic in the junior high school. Dec., 520-27.
GRUENBERGER, FRED. Imaginaries. Jan., 11-12.
GUSTAFSON, CARL B. A simple device for demonstrating addition and subtraction in the binary number system. Nov., 499-500.

564 The Mathematics Teacher | December, 1954

Johnson, Donovan A. Editor, Aids to teaching. 93, 268, 328.

---. A slide rule for addition and subtraction of numbers having the base 12. May, 339.

---. Complex numbers: an example of recurring themes in the development of mathematics—II. Apr., 257-63.

---. Complex numbers: an example of recurring themes in the development of mathematics—III. May, 340-45.

---. Large roman numerals. Mar., 194-95.

Karnes, Houston T. Editor, What is going on in your school? 48, 129, 211, 274, 365, 428, 491, 557.

Kozak, A. V. Kaligometrics: An experiment in the teaching of plane geometry, trigonometry, analytic geometry, differential calculus, and integral calculus to selected tenth-grade pupils in the high school. Mar., 204.

Krueger, Raymond L. Tying mathematics to its history. Oct., 408.

Lankford, Francis G., Jr. Editor, Tips for beginners. 46, 208, 362, 425.

---. Checking the answers is not enough. Jan., 46-47.

---. Handling reviews. May, 362-63.

Lovelace, Cynthia. Sonnet for the geometric mind. Mar., 189.

McLenann, Roderick C. Editor, Reviews and evaluations. 418, 496, 559.

Manheimer, Wallace. Some classroom problems from the field of atomic energy. Feb., 86-90.

Mayor, John R. Common goals of mathematics teachers and of the National Council. Apr., 281-82.

---. The NCTM and the NEA. Mar., 197-98.

Menger, Dr. Karl. You will like geometry. Mar., 188.

Oliver, Robert J. Mathematics bulletin board displays. Feb., 91-92.

Peek, Philip. Editor, Have you read? 12, 70, 203, 248, 319, 433, 462, 481, 500, 551, 556.

Read, Cecil B. Editor, Reviews and evaluations. 55, 120, 206, 277, 355.

---. An interesting paradox. Apr., 265.

Rogers, Mary C. Editor, Affiliated Groups. 279, 368.

Classified Index 565
The high school mathematics library—
I. Feb., 121-25.
II. Mar., 199-203.
Mathematics and people. May, 350-54.
Probability, gambling, and game strategy. Apr., 271-73.
The teaching of mathematics—
I. Mar., 185-86.
Shuster, Carl N. Constructing graphs with the slide rule. Jan., 8-10.
Sornito, Juan E. Vector representation of multiplication and division of complex numbers. May, 320-22, 382.
Theme paper, a ruler, and the central conics. Mar., 189-93.
Syer, Henry W. Editor. Aids to teaching. 93, 268, 328.
Tagerstrom, T. H. Fourth annual mathematical contest sponsored by Metropolitan New York Section of the Mathematical Association of America. Mar., 211-12.

Title index
Affiliated Groups. Mary C. Rogers, Editor. 279, 368.
The angle mirror—a teaching device for plane geometry. Lauren G. Woodby. Feb., 71-72.
Applications editor resigns. Feb., 96.
Blackboard compasses that every student can afford. Kenneth Walters. Mar., 185-86.
Checking the answers is not enough. Francis G. Lankford, Jr. Jan., 46-47.
Thérault, Victor. On numbers which terminate perfect squares. May, 348-49.
Van Engen, Henry. Points and viewpoints. 41, 371.
Walters, Kenneth. Blackboard compasses that every student can afford. Mar., 185-86.
Points and viewpoints. 432, 505, 550.
Who does the work?—NCTM committee structure. Dec., 550-51.
The yearbook planning committee. Nov., 505.
Willerding, Margaret F. Units on four states. Jan., 25-27.
Woodby, Lauren G. The angle mirror—a teaching device for plane geometry. Feb., 71-72.

Complex numbers: an example of recurring themes in the development of mathematics—II. Philip S. Jones. Apr., 257-63.
The editor's mail. 92, 233, 253, 273, 282.

Kalimetrics: an experiment in the teaching of plane geometry, trigonometry, analytic geometry, differential calculus, and integral calculus to selected tenth-grade pupils in the high school. A. V. Kozak. May, 204.

Los Angeles City College Mathematics Prize Competition. Ben Gold. Feb., 129-34.

The NCTM and the NEA. John R. Mayor. Mar., 197-98.

NCTM—Annual Summer Meeting. May, 373.

Notes from the Washington office. M. H. Ahrendt. 422, 552-54.

The pupil discovers algebra. Eunice Lewis. Feb., 81-85.

The Pythagorean theorem—proof number one thousand. J. C. Eaves. May, 346-47.

Reason and rule in arithmetic and algebra. Ralph Beatley. Apr., 234-44.

Registrations at the Thirteenth Summer Meeting. Feb., 120.

A slide rule for addition and subtraction of numbers having the base 12. Donovan A. Johnson. May, 339.

Some classroom problems from the field of atomic energy. Wallace Manheimer. Feb., 86-90.

Theme paper, a ruler, and the central conics. Adrian Struyk. Mar., 189-93.

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra</td>
</tr>
<tr>
<td>Curriculum</td>
</tr>
<tr>
<td>Goals in algebra, 367-70.</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Detective story, 183.</td>
</tr>
<tr>
<td>The function concept in secondary school mathematics, 401.</td>
</tr>
<tr>
<td>Teaching methods</td>
</tr>
<tr>
<td>How I teach algebra, 131-34.</td>
</tr>
<tr>
<td>The pupil discovers algebra, 81-85.</td>
</tr>
<tr>
<td>Reason and rule in arithmetic and algebra, 234-44.</td>
</tr>
<tr>
<td>A scrapbook in algebra, 428.</td>
</tr>
<tr>
<td>Applications of Mathematics</td>
</tr>
<tr>
<td>Applications (Sheldon S. Myers, Editor), 25.</td>
</tr>
<tr>
<td>Applications (Lyman C. Peck, Guest editor), 97.</td>
</tr>
<tr>
<td>Applications—Gears, gear teeth and mathematics (Lyman C. Peck, Guest editor), 97-99.</td>
</tr>
<tr>
<td>An interesting paradox, 265.</td>
</tr>
<tr>
<td>Mathematics and people, 350.</td>
</tr>
<tr>
<td>A simple matter of interest, 28.</td>
</tr>
<tr>
<td>Some classroom problems from the field of atomic energy, 86-90.</td>
</tr>
<tr>
<td>Units on four states, 25.</td>
</tr>
<tr>
<td>Arithmetic</td>
</tr>
<tr>
<td>Curriculum</td>
</tr>
<tr>
<td>Units on four states, 25-27.</td>
</tr>
<tr>
<td>Teaching methods</td>
</tr>
<tr>
<td>The arithmetic of growth, 180-83.</td>
</tr>
<tr>
<td>Elementary and secondary school training in mathematics, 299-302.</td>
</tr>
<tr>
<td>A high-school teacher looks at arithmetic, 49-50, 54.</td>
</tr>
<tr>
<td>Historical extra credit, 488.</td>
</tr>
<tr>
<td>Issues in elementary and secondary school mathematics, 290-94.</td>
</tr>
<tr>
<td>Large roman numerals, 194.</td>
</tr>
<tr>
<td>Reason and rule in arithmetic and algebra, 234-44.</td>
</tr>
<tr>
<td>Solving percentage problems by the equation method, 425.</td>
</tr>
<tr>
<td>"Take-home" tests for the eighth-grade arithmetic class, 213-14.</td>
</tr>
<tr>
<td>Tangible arithmetic I: Napier's and Genaille's Rods, 482.</td>
</tr>
<tr>
<td>Tangible arithmetic II: the sector compasses, 555.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Subject Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching arithmetic in the junior high school, 520.</td>
</tr>
<tr>
<td>Awards and Contests</td>
</tr>
<tr>
<td>Fourth annual mathematical contest sponsored by Metropolitan New York Section of the Mathematical Association of America, 211-12.</td>
</tr>
<tr>
<td>Los Angeles City College Mathematics Prize Competition, 129-31.</td>
</tr>
<tr>
<td>Bibliographies</td>
</tr>
<tr>
<td>The high school mathematics library—I, 121.</td>
</tr>
<tr>
<td>The high-school mathematics library—II, 199.</td>
</tr>
<tr>
<td>Mathematics and money, 543.</td>
</tr>
<tr>
<td>References for mathematics teachers (William L. Schaaf, Editor), 43, 121, 199, 271, 350, 415, 493, 543.</td>
</tr>
<tr>
<td>Scales of notation, 415.</td>
</tr>
<tr>
<td>The slide rule, 493.</td>
</tr>
<tr>
<td>Calculators</td>
</tr>
<tr>
<td>Mathematicians and automata, 514.</td>
</tr>
<tr>
<td>Clubs, Mathematics</td>
</tr>
<tr>
<td>Conventions. See NCTM.</td>
</tr>
<tr>
<td>Core Curriculum. See Integration of Subjects.</td>
</tr>
<tr>
<td>Curriculum</td>
</tr>
<tr>
<td>College</td>
</tr>
<tr>
<td>Critical mathematics requirements for the program of the community college, 51.</td>
</tr>
<tr>
<td>High school</td>
</tr>
<tr>
<td>The mathematics required for graduation from high school, 315-19.</td>
</tr>
<tr>
<td>Which way mathematics? 371.</td>
</tr>
<tr>
<td>Junior high</td>
</tr>
<tr>
<td>A new basis of organization for the junior high-school mathematics program, 2-4.</td>
</tr>
<tr>
<td>Teaching arithmetic in the junior high school, 520.</td>
</tr>
<tr>
<td>Objectives</td>
</tr>
<tr>
<td>Mathematics for life adjustment, 308-10.</td>
</tr>
<tr>
<td>Mathematics for our time, 295-98.</td>
</tr>
<tr>
<td>Delegate Assembly</td>
</tr>
<tr>
<td>Conventions</td>
</tr>
<tr>
<td>The Fifth Delegate Assembly, 144.</td>
</tr>
<tr>
<td>Minutes</td>
</tr>
<tr>
<td>Minutes of Fifth Delegate Assembly, 438.</td>
</tr>
</tbody>
</table>
See Visual aids.

General Mathematics

Curriculum

The cultural course in mathematics for college students, 479.

General mathematics in the secondary school—Ⅰ, 73-80.

General mathematics in the secondary school—Ⅱ, 167-79.

Geometry

Analytic

Parabola, 400.

Pendulum patterns, 7.

The quadrature of the parabola: an ancient theorem in modern form, 36-37.

Theme paper and ruler finale, 411.

Theme paper, a ruler, and the central conics, 189-93.

Theme paper, a ruler, and the hyperbola, 29.

Plane

Company for Pythagoras, 411.

Euclidean constructions, 231-33.

A geometric approach to field-goal kicking, 463.

Models of loci, 546.

"More-than-similar" triangles, 561.

Out of the mouths of babes, 115.

The Pythagorean theorem—proof number one thousand, 346-47.

Quasi-right triangles, 116-18.

Solid

"Eureka," 105.

Parallelogram and parallelepiped, 266-67.

Spirals, 404.

Teaching methods

Direct vs. indirect memory in geometry, 13-15.

Graphs and Graphing

Constructing graphs with the slide rule, 8-10.

Guidance

Materials available for counseling in mathematics, 279-80.

The mathematics teachers' opportunities for guidance, 311-14.

National Science Foundation issues report on manpower resources in mathematics, 475.

Shall they take geometry? 557.

You will like geometry, 188.

History of Mathematics

Analysis: notes on the evolution of a subject and a name, 450.

Complex numbers: an example of recurring themes in the development of mathematics—Ⅰ, 106-14.

Complex numbers: an example of recurring themes in the development of mathematics—Ⅱ, 257.

Complex numbers: an example of recurring themes in the development of mathematics—Ⅲ, 340-45.

The Ganita-Sāra-Sangraha of Mahāvīra-cārya, 528.

Geometric progressions in America and Egypt, 37-40.

Historical extra credit, 488.

Historically speaking (Philip S. Jones, Editor), 36, 106, 194, 257, 340, 408, 482, 535.

"Large" roman numerals, 194.

Tangible arithmetic I: Napier's and Genaillé's rods, 482.

Tangible arithmetic II: the sector compasses, 535.

Tying mathematics to its history, 408.

Integration of Subjects

Kulgometrics: an experiment in the teaching of plane geometry, trigonometry, analytic geometry, differential calculus, and integral calculus to selected tenth-grade pupils in the high school, 204.

Literature

Have you read? (Philip Peak, Editor), 12, 70, 203, 248, 319, 433, 462, 481, 500, 551, 556.

Mathematical miscellanea (Paul C. Clifford and Adrian Struyk, Editors), 28, 115, 189, 265, 346, 411, 488, 561.

Research in Mathematics Education (Kenneth E. Brown, Editor), 51, 204.

Reviews and evaluations (Richard D. Crumley and Roderick McLennan, Editors), 418, 496, 559.

Reviews and evaluations (Cecil B. Read, Editor), 55, 126, 206, 277, 555.

Logarithms

Elementary calculation of logarithms, 115-16.

Magazines, Mathematical

Paradox, 519.

Mathematics, General

Beauty of Sonnet for the geometric mind, 189.

Mathematics as a creative art, 2-7.

Minutes

Minutes of the Annual Business Meeting, 434.

Minutes of Fifth Delegate Assembly, 438.

News

Affiliated Groups, 216, 279, 368, 553.

The NCTM and the NEA, 197.

Notes from the Washington office, 442, 552.

Periods of service of the officers of The National Council of Teachers of Mathematics, 22.

Revised edition of the guidance pamphlet, 441.

Who does the work?—NCTM committee structure, 550.
The yearbook planning committee, 505.

General
Common goals of mathematics teachers and
of the National Council, 281–82.
Points and viewpoints, 41, 119, 197, 281,
371, 432, 505, 550–51.

Numbers and number systems
Imaginaries, 11–12.
A note on the sequence of odd integers, 489.
On numbers which terminate perfect squares, 348–49.
Pythagorean numbers, 16–21.
Vector representation of multiplication and
division of complex numbers, 320–22, 382.

Plays
A mathematics assembly program, 476.

Probability
Probability, gambling, and game strategy,
271.
Probability theory of a simple card game,

Psychology
The role of insight in the learning of mathematics, 386.

Recreational mathematics
Cross-figure puzzle, 30–31.
Old wine in new bottles, 414.

Slide rule
A comparative study of the effectiveness of
lessons on the slide rule presented via
 television and in person, 323–27.
Constructing graphs with the slide rule,
8–10.
The slide rule, 493.
A slide rule for addition and subtraction of
numbers having the base 12, 339.

Teacher education
A new responsibility of teacher education
programs, 66–70.
The revision of certification requirements
for secondary mathematics teachers in
Oklahoma, 467.

Teaching methods
General
Aids to teaching. (Henry W. Syer and
Donovan A. Johnson, Editors), 93, 268,
328.
A comparative study of the effectiveness of
lessons on the slide rule presented via
 television and in person, 323–27.
Have you read? (Philip Peak, Editor), 12,
References for mathematics teachers, 43,
121, 199, 271, 350, 415, 493, 543.
Tips for beginners (Francis G. Lankford,
Editor), 46, 208, 362, 425.
What is going on in your school? (John A.
Brown and Houston T. Kernes, Editors),
Which way mathematics? 371.

High school
Elementary and secondary school training
A geometry project at Thornton Township
High School, 491.
Handling reviews, 362–63.
The high school mathematics library—I,
121.
The high-school mathematics library—II,
199.
How I teach analysis of verbal problems,
275–76.
How I teach understanding of definition,
274–75.
Improving the learning of mathematics,
393.
Issues in elementary and secondary school
mathematics, 290–94.
The status of mathematics in my school,
48–49.
The teaching of mathematics in Italian
schools, 162–66.

Junior high
The arithmetic of growth, 180–83.
A note on writing fractions, 527.
Teaching arithmetic in the junior high
school, 520.

Vectors
Vector representation of multiplication and
division of complex numbers, 320–22,
382.

Visual aids
The angle mirror—a teaching device for
plane geometry, 71–72.
Blackboard compasses that every student
can afford, 185–96.
Devices for a mathematics classroom
(Emil J. Berger, Editor), 32, 100, 184,
An individual laboratory kit for the mathemat­
cs student, 100–101.
Mathematics bulletin board displays, 91–
92.
The mathematical house, 254–56, 278.
A model for explaining how latitude may be
determined by making observations on
Polaris, 405.
A model for giving meaning to superposi­
tion in solid geometry, 33–35.
A model for teaching infinite series to high­
school students, 101–105.
Models of loci, 546.
Semi-permanent chalk for teaching, 407.
A simple device for demonstrating addition
and subtraction in the binary number
system, 499.
A simple multiple purpose dynamic device,
184–85.
A simple quadrant compasses, 498.
A tetrahedron with planes bisecting three
dihedral angles, 186–88.
Using a carpenter's folding rule to teach the
meaning of perimeter, 32.

Vocational mathematics. See also Guidance
National Science Foundation issues report
on manpower resources in mathematics,
475.