Author Index


ASSOCIATION OF TEACHERS OF MATHEMATICS IN PUBLIC INSTRUCTION, FRANCE. The Chambery Plan—Stages and Perspectives in the Reform of Mathematics Instruction. Feb., 129-38.


BAILEY, WILLIAM T. Friday-the-Thirteenth. May, 363-64.


BELL, E. T. Buddha's Advice to Students and Teachers of Mathematics. May, 373-83.


BRUNE, IRVIN H. Announcing a New Department. Apr., 335.

BRUNE, IRVIN H. Editor, "Points and Viewpoints." Apr., 335; Dec., 679-80.


COXFORD, ARTHUR F. Reviews of Films. Dec., 685-86.


CROSSWHITE, F. Joe, Editor, "Classics in Mathematics Education." Jan., 19-23; Mar., 205-12; Apr., 295-304; May, 373-83.

DAMASEOS, NICKANDER J. A Case Study in Mathematics—the Cone Problem. Dec., 642-49.

DODGE, CLAYTON W. Guido Fubini. Jan., 44-46.


FEHR, HOWARD F. The Education of Mathematics Teachers in Other Countries. Jan., 48-56.

Fehr, Howard F. Editor, "International Mathematical Education." Jan., 48-56; Feb., 129-38; Mar., 231-39; Apr., 329-33; May, 410-17; Oct., 505-9; Nov., 589-93; Dec., 673-78.


FREUND, JOHN. Pi (Poem). Apr., 348.


HIGHT, DONALD W. Little Old Mega. Jan., 56; Feb., 99; Mar., 204; Apr., 348; Nov., 545.
HLAVATY, JULIUS H. Message from the President. Feb., 151; Mar., 245-50.
HOLMES, ALLEN, and SIMON, JULIAN L. A New Way to Teach Probability Statistics. Apr., 283-88.
HURWITZ, W. A. Excelsior! Feb., 94-95.
Id, YUSUF. An Analemma Construction for Right and Oblique Ascensions. Dec., 669-72.
Id, YUSUF, and KENNEDY, E. S. A Medieval Proof of Heron’s Formula. Nov., 585-87.
JEFFREYES, JAMES. Let’s Play Wff ’n Proof. Feb., 113-17.
KENNEDY, E. S., and Id, YUSUF. A Medieval Proof of Heron’s Formula. Nov., 585-87.
KING, ROBERT W. Using Programmed Instruction to Investigate the Effects of Group Interaction on Learning Mathematics. May, 393-98.
McCREERY, LOUIS R. Lively Functions for Algebra One. Mar., 365-68.
MOSKOWITZ, SHEILA. The Crossnumber Puzzle Solves a Teaching Problem. Mar., 200-204.
NANNINI, AMOS. A Property of “Reciprocal” Algebraic Equations. Apr., 293.
NICHOLS, EUGENE D. Editor, “Experimental Programs.” Jan., 25-32; Feb., 115-17; Mar., 213-17; Apr., 311-15; May, 393-98; Oct., 473-75; Nov., 571-75; Dec., 651-59.
NORRIS, FLETCHER R. Student Mathematics Achievement as Related to Teacher In-Service Work. Apr., 321-27.
PEAK, PHILLIP. Editor, “Have You Read . . . ?” Jan., 35-38; Feb., 119-20; Mar., 220-21; Apr., 317-18; May, 399-400; Oct., 477-78; Nov., 576-77; Dec., 663-64.
---. Digital Sums of Perfect Numbers and Triangular Numbers. Mar., 179-82.


SWETZ, FRANK. Mathematical Education in Malaysia. May, 410–17.

THIGH, CHARLES W. Dig the Ten Digits (Poem). Apr., 291.


WEISS, SOL. What Mathematics Shall We Teach the Low Achiever? Nov., 571–75.


WILLSON, WILLIAM WYNNE. The Uniqueness of the Field of Complex Numbers. May, 369–72.


Title Index


An Analysed Construction for Right and Oblique Ascensions. YUSUF ID. Dec., 669-72.

Announcing a New Department. IRVIN H. BRUNE. Apr., 335.


Attitudes of College Freshmen towards Mathematics. FANNIE ROBERTS. Jan. 25-27.

Buddha’s Advice to Students and Teachers of Mathematics. E. T. BELL. MAY, 373-83.


A Case Study in Mathematics—the Cone Problem. NICKANDER J. DAMASKOS. Dec., 642-49.

The Chambery Plan—Stages and Perspectives in the Reform of Mathematics Instruction. ASSOCIATION OF TEACHERS OF MATHEMATICS IN PUBLIC INSTRUCTION, FRANCE. Feb., 129-38.

„Classics in Mathematics Education.” F. JOE CROSSWHITE, Editor. Jan., 19-23; Mar., 205-12; Apr., 295-304; May, 373-83.

A Classroom Illustration of a Nonintuitive Probability. RICHARD S. KLEBER. May, 361-62.


The Crossnumber Puzzle Solves a Teaching Problem. SHEILA MOSKOWITZ. MAR., 200-204.


Developing a Meaningful Algorithm for Factoring Quadratic Trinomials. BETTY L. BAKER. Dec., 629-31.

Dig the Ten Digits (Poem). CHARLES W. TRIGG. Apr., 291.

Digital Sums of Perfect Numbers and Triangular Numbers. ROBERT W. PRIELIPP. Mar., 179-82.

The Dilemma in Geometry. CARL B. ALLENDOERFER. MAR., 165-69.

The Education of Mathematics Teachers in Other Countries. HOWARD F. FEHR. JAN., 48-56.


“Experimental Programs.” EUGENE D. NICHOLS, Editor. Jan., 25-32; Feb., 113-17; Mar., 213-17; APRIL, 311-15; May 293-98; OCT., 473-75; NOV., 571-75; DEC., 651-59.


Friday-the-Thirteenth. WILLIAM T. BAILEY. MAY, 363-64.


A Geometry Capsule Concerning the Five Platonic Solids. HOWARD EYES. JAN., 42-44.

“George” Helps Students Multiply Binomials. TONI M. MASSEY. JAN., 18.

Golden Jubilee Year Activities. NOV., 601-3.

Golden Jubilee Year Activities of the Affiliated Groups. DEC., 687-93.

Graphing True-False Statements. MARGARET WISCAMB. NOV., 553-56.

Guido Pubini. CLAYTON W. DODGE. JAN., 44-46.


“Have You Read ... ?” PHILIP PEAK, Editor. JAN., 35, 37-38; FEB., 119-20; MAR., 220-21; APRIL, 317-18; MAY, 399-400; OCT., 477-78; NOV., 576-77; DEC., 663-64.

The Hazards of Sets. DOBOTHY GEDDES and SALLY I. LIPSEY. OCT. 454-59.

He That Has Eyes, Let Him See! RAYMOND H. SCHULZ, JR. MAR., 198-99.

A Heuristic Approach to Pythagorean Triples. JOHN WILSON. MAY, 357-60.

“Historically Speaking...” HOWARD EYES, Editor. JAN., 42-46; FEB., 121-27; MAR., 223-28; MAY, 401-9; OCT., 479-90; NOV., 579-87; DEC., 665-72.

Excellence in Mathematics Education—For All 699
Holiday Gratitude, IRVIN H. BRUNE. Dec., 683-84.


Independence of the Incidence Postulates. DAVID C. HUFFMAN. Apr., 269-77.


"International Mathematical Education." HOWARD F. FEHR, Editor. Jan., 48-56; Feb., 129-38; Mar., 231-39; Apr., 320-33; May, 410-17; Oct., 505-9; Nov., 589-93; Dec., 673-78.

Intuition and Logic in Mathematics. HENRI POINCARÉ. Mar., 205-12.

The Last Word on Solving Inequalities. HENRY FRANDSEN. Oct., 439-41.

Let's Play Wff'n Proof. JAMES JEFFREYS. Feb., 113-17.

Little Old Mega. DONALD W. HIGHT. Jan., 56; Feb., 90; Mar., 204; Apr., 348; Nov., 545.

Lively Functions for Algebra One. LOUIS R. McCREEERY. May, 365-68.

Mathematical Definitions and Teaching. HENRI POINCARÉ. Apr., 295-304.

Mathematical Education in Malaysia. FRANK SWETZ. May, 410-17.


A Medieval Proof of Heron's Formula. YUSUF ID and E. S. KENNEDY. Nov., 585-87.


Message from the President. JULIUS H. HLAVATY. Feb., 151; Mar., 243-46.


Modern Mathematics or Traditional Mathematics. WERNER E. BURK. Dec., 639-41.


The "New Mathematics" in Historical Perspective. F. LYNWOOD WREN. Nov., 579-85.

A New Way to Teach Probability Statistics. JULIAN L. SIMON, and ALLEN HOLMES. Apr., 283-88.

Niels Henrik Abel. ROBERT W. PRIELIPP. Oct., 482-84.


On the Positive Square Root of Two. EDWIN F. BECKENBACH. Apr., 261-67.


The Parallel Postulate. RAYMOND H. ROLWING and MATTA LEVENE. Dec., 665-69.

Patterns for Professional Progress. MINNESOTA COUNCIL OF TEACHERS OF MATHEMATICS. Oct., 497-503.


A Philosophy for the Mathematics Teacher. CARROLL V. NEWSOM. Jan., 19-23.

Pi (Poem). JOHN FREUND. Apr., 348.

Pi-three versus Pi-four. M. H. GREENBLATT. Mar., 223-25.

"Points and Viewpoints." IRVIN H. BRUNE, Editor. Apr., 335; Dec., 678-80.


Pretesting for the College Boards. DONALD W. STOVER. Nov., 537-41.


Program of Mathematics for the First Year of Study in the Junior High School (Seventh School Year) in Belgium. Nov., 589-93.

A Property of "Reciprocal" Algebraic Equations. AMOS NANNINI. Apr., 293.


Proposed Bylaw Changes. Mar., 246-49.


The Readability of Junior High School Mathematics Textbooks. FRANK SMITH. Apr., 289-91.


The Remarkable Bernoulli Family. DALE W. LICK. May, 401-9.

Research in Programmed Instruction in Mathematics. EDWARD J. ZOLL. Feb., 103-10.


A Simple "1" Divisibility Rule. E. REBECCA MATTHEWS. Oct., 461-64.

San Diego Meeting—March 12–14

Celebrate the Golden Jubilee Year in the Golden State!
And the program of the March 12–14, 1970, Name-of-Site Meeting in San Diego gives good reason to celebrate. After section meetings Thursday afternoon, Dr. Edward Teller will give the keynote address that evening, followed by a reception.

A full-day schedule of general sessions, section meetings, demonstration classes, and workshops will be held on both Friday and Saturday. Among the general session speakers are David Page, Lou Cohen, Ernest Ranucci, Henry Pollack, and Raymond Redheffer. Patrick Suppes will give a three-lecture series on logic for the upper elementary grades. More than sixty section meetings will be held in special grade-level or subject-matter areas. Fifteen workshops and five demonstration classes are also part of the extensive program.

Julius Hlavaty, president of the NCTM, will discuss the next fifty years of the NCTM at the Friday night banquet, and Frank Sullivan of Loyola University in Los Angeles will be the luncheon speaker on Saturday.

In all, the meeting will be a great way to end the NCTM's first fifty years and to begin California's second two hundred. We'll see you there.

Excellence in Mathematics Education—For All 701
Subject Index

ABILITY GROUPING
Academic Stimulation of Mathematics Pupils from Their Classroom Association with Brighter Pupils, 473–75.
What Mathematics Shall We Teach the Low Achiever?, 571–75.

ALGEBRA
Curriculum
Mathematics in the Schools of the USSR, 231–39.
Miscellaneous
The Hazards of Sets, 454–59.
The Witch of Agnesi—Exorcised, 480–82.
Teaching Methods
"George" Helps Students Multiply Binomials, 18.
Homomorphism: A Unifying Concept, 617–22.
The Last Word on Solving Inequalities, 439–41.
Quadratic Equations—Computer Style, 305–9.
Topics in
A Heuristic Approach to Pythagorean Triples, 357–60.
A Hunch and a Proof, 17–18.
Lively Functions for Algebra One, 365–68.
Niels Henrik Abel, 482–84.
Notes on an Extension of Pythagorean Triples in Arithmetic Progression, 633–35.
A Property of "Reciprocal" Algebraic Equations, 293.
Quadratic Equations—Computer Style, 305–9.
The Uniqueness of the Field of Complex Numbers, 369–72.
Why Not Relate the Conic Sections to the Cone? 13–15.

APPLICATIONS
Business and Consumer
Miscellaneous
Art by Carmelita C. Cadle, 217.

Science and Engineering
A Case Study in Mathematics—the Cone Problem, 642–49.
Lively Functions for Algebra One, 365–68.
Summer Employment of Mathematics Teachers in Industry, 549–51.

ARITHMETIC
Miscellaneous
The Hazards of Sets, 454–59.
The Teaching of Arithmetic in England from 1550 until 1800 as Influenced by Social Change, 484–90.
Teaching the Low Achiever in Mathematics, 443–46.
Teaching Methods
Homomorphism: A Unifying Concept, 617–22.
Topics in
A Simple "7" Divisibility Rule, 461–64.

ARTICULATION
Who Should Place College Freshmen in Mathematics?, 557–59.

ASTRONOMY
An Analemma Construction for Right and Oblique Ascensions, 669–72.

CALCULUS
Miscellaneous
Achievement in Senior Advanced Mathematics and First-Year College Mathematics, 311–15.
The Demise of Analytic Geometry, 447–52.
Teaching Methods
Using Programmed Learning in the College Classroom: A Case History, 27–32.
Topics in
A Case Study in Mathematics—the Cone Problem, 642–49.
On the Shape of Plane Curves, 91–94.

CALENDARS
Friday-the-Thirteenth, 363–64.

COMPUTATION
Approximation
He That Has Eyes, Let Him See! 198–99.
Miscellaneous
A Case Study in Mathematics—the Cone Problem, 642–49.

Computers and Calculators
Announcing a New Department, 335.
A Case Study in Mathematics—the Cone Problem, 462–49.
He That Has Eyes, Let Him See! 198–99.
Prime Triplets, 467–71.
Quadratic Equations—Computer Style, 305–9.
Summer Employment of Mathematics Teachers in Industry, 549–51.

Curriculum
College
The Demise of Analytic Geometry, 447–52.
The Descent of Analytic Geometry, 447–52.
Junior High School
Program of Mathematics for the First Year of Study in the Junior High School (Seventh School Year) in Belgium, 580–93.
The Readability of Junior High School Mathematics Textbooks, 289–91.
What Mathematics Shall We Teach the Low Achiever?, 571–75.
Miscellaneous
The Demise in Geometry, 165–69.
Homomorphism: A Unifying Concept, 617–22.

Evaluation
Pretesting for the College Boards, 537–41.

General Mathematics
What Mathematics Shall We Teach the Low Achiever?, 571–75.
Teaching Methods
Teaching the Low Achiever in Mathematics, 443–46.

Geometry
Curriculum
The Dilemma in Geometry, 165–69.
Mathematics in the Schools of the USSR, 231–39.
Miscellaneous
Buddha’s Advice to Students and Teachers of Mathematics, 373–83.
The Demise of Analytic Geometry, 447–52.
Guido Fubini, 44–46.
Teaching Methods
The “New Mathematics” in Historical Perspective, 579–85.

Topics in
An Analemma Construction for Right and Oblique Ascensions, 669–72.
The Area of a Pythagorean Triangle and the Number Six, 547–48.

Exploring Geometric Maxima and Minima, 85–90.
A Geometry Capsule Concerning the Five Platonic Solids, 42–44.
A Heuristic Approach to Pythagorean Triples, 457–60.
Independence of the Incidence Postulates, 469–77.
A Medieval Proof of Heron’s Formula, 585–87.
Modern Mathematics or Traditional Mathematics, 639–40.
On the Positive Square Root of Two, 261–67.
On the Shape of Plane Curves, 91–94.
The Parallel Postulate, 665–69.
Pencils of Rays and the Sieve of Eratosthenes, 279–81.
Why Not Relate the Conic Sections to the Cone? 13–15.

Graphs and Graphing
Graphing True-False Statements, 553–56.
The Last Word on Solving Inequalities, 439–41.

Guidance
A Study of Placement Methods for Entering College Freshmen in the Proper Mathematics Sequence at Michigan Technological University, 651–59.
Who Should Place College Freshmen in Mathematics?, 557–59.

History of Mathematics
Famous Mathematicians
A Geometry Capsule Concerning the Five Platonic Solids, 42–44.
Guido Fubini, 44–46.
Intuition and Logic in Mathematics, 205–12.
Niels Henrik Abel, 482–84.
The Remarkable Bernoulli Family, 401–9.
Three Famous Mathematicians, 125–27.
A Visit to a Mathematical Shrine, 479–80.
The Witch of Agnesi—Exorcised, 480–82.
Miscellaneous
The “New Mathematics” in Historical Perspective, 579–85.

Topics in
An Analemma Construction for Right and Oblique Ascensions, 669–72.
Anomalous Mathematical Nomenclature, 121–25.
A Geometry Capsule Concerning the Five Platonic Solids, 42–44.
A Medieval Proof of Heron’s Formula, 585–87.
The Parallel Postulate, 665–69.
The Teaching of Arithmetic in England from 1550 until 1800 as Influenced by Social Change, 484–90.

Humor, Drama, Poetry
Algebra Class (Poem), 509.
Dig the Ten Digits (Poem), 291.
Excellsiors (Poem), 94–95.

Excellence in Mathematics Education—For All 703
PI (Poem), 348.
PI-Three versus PI-Four, 223-25.
INDUCTION, MATHEMATICAL
Psychological Set in Relation to the Construction of Mathematics Tests, 636-38.
LANGUAGE OF MATHEMATICS
Mathematical Definitions and Teaching, 295-304.
LITERATURE
A Philosophy for the Mathematics Teacher, 19-23.
Research in Programmed Instruction in Mathematics, 103-110.
Miscellaneous
Have You Read...?, 35-38; 119-20; 220-21; 317-18; 399-400; 477-78; 576-77; 663-64.
A Study of Placement Methods for Entering College Freshmen in the Proper Mathematics Sequence at Michigan Technological University (bibliography), 651-59.
What's New? 47; 101, 110; 243; 318-19; 400-27; 490-94; 556, 600, 610; 686.
Reviews
Reviews and Evaluations, 57-64; 141-48; 241-43; 418-27; 511-13; 663-64.
Reviews of Films, 685-86.
LOGIC
Graphing True-False Statements, 553-56.
Homomorphism: A Unifying Concept, 617-22.
Intuition and Logic in Mathematics, 205-12.
Let's Play Wff'n Proof, 113-17.
Systems in Nonmathematical Disciplines, 171-77.
MATHEMATICS, GENERAL
Education
Mathematical Structures and the Role of Algebra in School Mathematics, 673-78.
Intuition and Logic in Mathematics, 205-12.
MATHEMATICS IN OTHER COUNTRIES
The Education of Mathematics Teachers in Other Countries, 48-56.
Elitism and Excellence, 505-9.
Mathematical Education in Malaysia, 410-17.
Mathematical Structures and the Role of Algebra in School Mathematics, 673-78.
Mathematics in the Schools of the USSR, 231-39.
Program of Mathematics for the First Year of Study in the Junior High School (Seventh School Year) in Belgium, 589-93.
NCTM
Affiliated Groups
Golden Jubilee Year Activities of the Affiliated Groups, 687-93.
Your Professional Dates, 77-78; 157-59; 251-53; 350-51; 433-34; 528-29; 609-10; 693-94.
Committee Reports
Golden Jubilee Year Activities, 601-3.
Corporate Structure
Bylaws, 521-23
Proposed Bylaw Changes, 246-49.
Finances
Meetings
Registrations at NCTM Conventions, 607-8.
Membership
Memberships and Subscriptions, 606-7.
Minutes
Minutes of the Annual Business Meeting, 520-21.
Proceedings of the Nineteenth Annual Delegate Assembly, 153, 155.
Miscellaneous
Announcing a New Department, 335.
Officers
NCTM Representatives, 428-32.
President's Messages
President's Messages, 151; 245-46; 517-19.
NOTATION AND TERMINOLOGY
Anomalous Mathematical Nomenclature, 121-25.
Mathematical Definitions and Teaching, 295-304.
Program of Mathematics for the First Year of Study in the Junior High School (Seventh School Year) in Belgium, 589-93.
NUMBERS AND NUMBER SYSTEMS, THEORY
The Area of a Pythagorean Triangle and the Number Six, 547-48.
Digital Sums of Perfect Numbers and Triangular Numbers, 179-82.
Generating "Random" Numbers Using Modular Arithmetic, 385-91.
A Heuristic Approach to Pythagorean Triples, 357-60.
Notes on an Extension of Pythagorean Triples in Arithmetic Progression, 303-35.
On the Positive Square Root of Two, 261-67.
Pencils of Rays and the Sieve of Eratosthenes, 279-81.
Pi-Three versus Pi-Four, 223-25.
Prime Triples, 467-71.
A Simple "7" Divisibility Rule, 461–64.
The Uniqueness of the Field of Complex Numbers, 369–72.

Opinions and Philosophies
Miscellaneous
Buddha's Advice to Students and Teachers of Mathematics, 373–83.
Intuition and Logic in Mathematics, 205–12.
Mathematical Definitions and Teaching, 295–304.
A Philosophy for the Mathematics Teacher, 19–23.

Probability
A Classroom Illustration of a Nonintuitive Probability, 361–62.

Problem Solving

Psychology
Attitudes of College Freshmen Towards Mathematics, 25–27.
Psychological Set in Relation to the Construction of Mathematics Tests, 636–38

Recreational Mathematics
Art by Carmelita C. Cadle, 217.
The Crossnumber Puzzle Solves a Teaching Problem, 200–204.
Letter to the Editor re Mathematics, 138.
Little Old Mega, 56, 90, 204, 348, 545.
Teaching the Low Achiever in Mathematics, 443–46.

Research
The Readability of Junior High School Mathematics Textbooks, 289–91.

Education
Academic Stimulation of Mathematics Pupils from Their Classroom Association with Brighter Pupils, 473–75.
Achievement in Senior Advanced Mathematics and First-Year College Mathematics, 311–15.
Research in Programmed Instruction in Mathematics, 103–110.
Student Mathematics Achievement as Related to Teacher In-Service Work, 321–27.
A Study of Placement Methods for Entering College Freshmen in the Proper Mathematics Sequence at Michigan Technological University, 651–59.
Using Programmed Learning in the College Classroom: A Case History, 27–32.

Teacher Education
The Education of Mathematics Teachers in Other Countries, 48–56.
Patterns for Professional Progress, 497–503.
Student Mathematics Achievement as Related to Teacher In-Service Work, 321–27.
Summer Employment of Mathematics Teachers in Industry, 549–51.

Miscellaneous
Patterns for Professional Progress, 497–503.
A Philosophy for the Mathematics Teacher, 19–23.

Teaching Methods
Miscellaneous
The Crossnumber Puzzle Solves a Teaching Problem, 200–204.
Elitism and Excellence, 505–9.
The "New Mathematics" in Historical Prospective, 579–85.
Providing for Individual Rates of Learning in Mathematics, 543–45.
Teaching the Low Achiever in Mathematics, 443–46.

Programmed Instruction
Research in Programmed Instruction in Mathematics, 103–10.
Using Programmed Instruction to Investigate the Effects of Group Interaction on Learning Mathematics, 393–98.

Using Programmed Learning in the College Classroom: A Case History, 27–32.

Tests
Elitism and Excellence, 505–9.
Pretesting for the College Boards, 537–41.
Providing for Individual Rates of Learning in Mathematics, 543–45.
Psychological Set in Relation to the Construction of Mathematics Tests, 636–38.

Textbooks
The Readability of Junior High School Mathematics Textbooks, 289–91.

Trigonometry
Exploring Geometric Maxima and Minima, 85–90.