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Sometimes when we add fractions, the sum
can be reduced even though we have used
the least common denominator. Other times,

the sum cannot be reduced. For example, if we add
1/3 + 1/6, the sum 3/6 can be reduced to 1/2. How-
ever, 2/5 + 1/6 = 17/30 cannot be reduced.

Let’s look at another example:

This fraction can be reduced to 23/35. However,
when we add 2/21 + 4/15, we obtain 10/105 +
28/105 = 38/105, which cannot be reduced.

There are pairs of denominators for which it
seems we never can reduce the sum. For example,

cannot be reduced. If we try 3/10 and 5/12, we ob-
tain 18/60 + 25/60  =  43/60, which still cannot be re-
duced. By trying other numerator values, the reader
will discover that whenever you add a/10 + b/12,
where each of the two addends is in lowest terms, the
resulting sum having denominator equal to 60 (the
least common denominator) cannot be reduced.

On the other hand, there are pairs of denomina-
tors for which it seems we always can reduce the
sum. Choose an a and b for which a/20 and b/12
are reduced and add them using the least common
denominator 60. Every choice seems to produce an
answer that can be reduced. You should now be
wondering if this is true for all choices of a and b.

Several years ago, while discussing adding and
reducing fractions in a workshop, we observed that
certain sums of two fractions can be reduced, while
others cannot be reduced, and we wondered why. If
there was a pattern, it was not immediately obvi-
ous; and searches of the literature did not provide
us with any background information. This observa-
tion led us to pose the following general question:
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Given a pair of natural numbers, c and d, when
does there exist a pair of natural numbers a and
b for which, when a/c and b/d are added to form
a single fraction, that fraction can be reduced?

It is assumed that the denominator of the sum is
the least common multiple of c and d and that the
addends a/c and b/d are in lowest terms.

As is common practice, we shall say that u and v
are relatively prime if they have no common factor.
For example, 15 and 14 are relatively prime, since
15 = (3)(5) and 14 = (2)(7). If a/c is reduced to low-
est terms, then a and c must be relatively prime.

Adding 7/60 to 11/36, we write 60 = (22)(5)(3)
and 36 = (22)(32), find the least common multiple to
be (22)(5)(32), and multiply the numerator and de-
nominator of the first fraction by u = 3 and the sec-
ond by v = 5. Notice that u and v are relatively
prime, which will always be true, as we shall see
shortly. That is, if m is the least common multiple
of numbers c and d, then there are relatively prime
integers, u and v, where m = cu = dv.

To proceed from here, we need two useful facts:

FACT 1. If r, s, t are given integers with r + s = t
and if the number n divides any two of the num-
bers r, s, and t, then n divides the third number.

For example, consider 18 + 49. We know that 
7 divides 49 but not 18. Therefore, by fact 1, we
know—without even doing the arithmetic—that 
7 cannot divide 18 + 49.

FACT 2. r and s are relatively prime if and only if
there exist integers x and y for which rx + sy = 1.

For example, 15x + 14y = 1 when x = 1 and 
y = –1. It should be noted that, in this result, x and
y also have to be relatively prime, as are y and r and
s and x. The proof of fact 2 is based on the result in
number theory stating that if r and s are any
nonzero integers, then there exist x and y such that
rx + sy is equal to the greatest common factor of r
and s. Proof of this can be found in Burton (1998).

THE GENERAL CASE
In number theory, we often need to know the exact
power of a prime that divides an integer. This
power for a prime p and an integer n is called the
“p-order of n,” written ordp(n). So, for example,
since 150 = (2)(3)(52), ord5(150) = 2, ord3(150) = 1,
and ord7(150) = 0. It turns out that the answer to
our question about whether or not the sum of two
fractions can be reduced depends on the existence of
a common prime factor of the denominators that
shows up with exactly the same exponent in their
prime factorizations. In other words, everything 

depends on the primes p with the property that
ordp(c) = ordp(d). As a shorthand, we call such a
prime balanced for c and d. Primes for which 
ordp(c) ≠ ordp(d) will be called unbalanced for c and d.

Example

Suppose 

and

are reduced. Adding these fractions, we obtain

where u = (32)(5) and v = (2)(72). Notice that 11
and 13 are balanced prime factors for the denomi-
nators, while 2, 3, 5, and 7 are unbalanced prime
factors of the denominators. We make the follow-
ing observations in this example:

• u and v are relatively prime
• the balanced primes 11 and 13 divide neither 

u nor v
• the unbalanced prime factors 3 and 5 divide 

u but not b (because b/d is reduced)
• the unbalanced prime factors 2 and 7 divide 

v but not a (because a/c is reduced)

Generalizing from this example provides an un-
derstanding of lemmas 1 and 2.

Throughout what follows, we will always use 
m = cu = dv to mean the least common multiple of 
c and d.

LEMMA 1. u and v are relatively prime.

LEMMA 2. Suppose that a/c and b/d are reduced. If
p is an unbalanced prime factor of c or d, then p di-
vides u and not b, or p divides v and not a. If p is a
balanced prime for c and d, then it does not divide
u, v, a, or b.

LEMMA 3. Suppose that a/c and b/d are reduced. If
p is an unbalanced prime factor for c or d, then p
does not divide au + bv.

PROOF. By lemma 2, either p divides u and not b,
or p divides v and not a. Without loss of general-
ity, suppose p divides u and not b. Since u and v
are relatively prime, p does not divide v. There-
fore, p does not divide bv. Since p divides u, and
therefore au, and since p does not divide bv, it
follows from fact 1 that p does not divide au + bv.
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THEOREM 1. There exist natural numbers a and b
for which a/c and b/d are reduced and (au + bv)/m
can be reduced if and only if c and d have a bal-
anced prime factor.

PROOF. Assume that a/c and b/d are reduced and
write

By lemma 3, an unbalanced prime factor of c or d
cannot be a divisor of au + bv. So, if there exist nat-
ural numbers a and b for which a/c and b/d are re-
duced and (au + bv)/m can be reduced, then c and
d must have a balanced prime factor. Notice that if
(au + bv)/m can be reduced, the only possible com-
mon prime factors of the numerator and denomi-
nator are the balanced prime factors of c and d.

Conversely, suppose c and d have a balanced
prime factor. If P denotes the product of all the
balanced primes for c and d, then P is a divisor
of m. Since u and v are relatively prime, u2 and v2

are relatively prime. So, by fact 2, there exist in-
tegers x and y such that

xu2 + yv2 = 1,
so

Pxu2 + Pyv2 = P,

and

(Pxu – v + gPuv2)u + (Pyv + u + gPvu2)v
= P(1 + 2gu2v2),

where g is a natural number large enough that
Pxu – v + gPuv2 and Pyv + u + gPvu2 are both pos-
itive. If we define a = Pxu – v + gPuv2 and b = Pyv
+ u + gPvu2, then the fraction (au + bv)/m can be
reduced by P, since P is a divisor of au + bv = 
P(1 + 2gu2v2) and of m. 

Also, it turns out that a is relatively prime to c
and b is relatively prime to d. Here is why: 

To see that a and c are relatively prime, take any
prime divisor q of c. If q is a balanced prime, then q
divides P so it divides Pxu + gPuv2. But q does not
divide v so it does not divide a. If q is an unbal-
anced prime factor of c or d, then q divides u or v
but not both. So q divides –v + gPuv2 but not Pxu.
Hence q does not divide a, or q divides Pxu + gPuv2

but not v, so q does not divide a. Thus a and c are
relatively prime. We may show that b and d are rel-
atively prime in the same way.

Let us look at two of our earlier examples in the
context of theorem 1. We saw that when we add

4/21 + 7/15, the sum 69/105 can be reduced. Since
the denominators 21 and 15 have a balanced prime
factor, namely, 3, the theorem assures us that this
was no accident and that there do exist natural
numbers a and b for which a/21 and b/15 are re-
duced and (5a + 7b)/105 is not reduced. It also
seemed that each time we added a/10 + b/12, for
any pair of integers a and b, where each of the two
addends is in lowest terms, the resulting sum having
denominator equal to 60 (the least common denomi-
nator) could not be reduced. Since the denominators
10 and 12 do not have a balanced prime factor, the
theorem assures us that what seemed to be true is
indeed true.

In the proof of theorem 1, under the assumption
that c and d have a balanced prime factor, we con-
structed a sum a/c + b/d that could be reduced by
the product P of all the balanced primes for c and d.
This is summarized by the following:

COROLLARY. If c and d have at least one balanced
prime factor, then there exist natural numbers 
a and b for which a/c and b/d are reduced and 
au + bv is divisible by every balanced prime factor
of c and d.

THEOREM 2. Let c and d be given natural numbers.
The fraction

can be reduced for all natural numbers a and b
where a/c and b/d are reduced if and only if 2 is a
balanced prime factor for c and d.

PROOF. If 2 is a balanced prime for c and d, then u
and v are both odd. If a and b are natural numbers
for which a/c and b/d are reduced, then a and b are
odd. Therefore, au + bv is even and, consequently,

can be reduced.
Suppose 2 is not a balanced prime of c and d.

We shall show that there exists a and b for
which a/c, b/d, and (au + bv)/m are all reduced.

If there are no balanced prime factors of c and
d, then by theorem 1 (au + bv)/m is always re-
duced when a/c and b/d are reduced, and we are
done. So assume c and d have at least one bal-
anced prime. By the corollary, there exist natu-
ral numbers, A and B, for which A/c and B/d are
reduced and Au + Bv is divisible by every bal-
anced prime factor of c and d.

Let g be the maximum of all prime factors of 
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c and d and define q to be the product of all odd
primes less than or equal to g. Then q + 2 has no
prime factors less than or equal to g. So, c + q + 2
is relatively prime to c.

Let a = (c + q + 2)A and b = B to get:

Suppose (c + q + 1)Au + (Au + Bv) and m have a
common prime factor p. By lemma 3, p must be a 
balanced prime for c and d. Therefore, p is odd
and p divides c. Also, since Au + Bv is divisible by
every balanced prime factor of c and d, p divides
Au + Bv as well. Recall that A and c, and u and c
are relatively prime. Then p divides neither A nor
u, since p divides c. Also, since p divides c and p di-
vides q, p does not divide c + q + 1. Therefore, p
does not divide (c + q + 1)Au. Consequently, by
fact 1, p does not divide (c + q + 1)Au + (Au + Bv),
contradicting our assumption. Therefore, a/c, b/d,
and (au + bv)/m are all reduced.

Let us look at an earlier example in the context of
theorem 2. We observed that for every choice of a
and b, when you add a/20 + b/12 using the least com-
mon denominator 60, where each of the two addends
is reduced, the resulting sum can be reduced, and we
wondered if this is always true. Since 2 is a balanced
prime for the denominators 20 and 12, the theorem
does in fact assure us that this is always true.

RATIONAL FUNCTIONS
The questions we have examined also arise in the
addition of ratios of polynomials, called rational
functions. For example, the sum

where a and b are nonzero numbers, cannot be re-
duced. To verify this, observe that there do not
exist nonzero numbers a and b such that (a + b)x +
2a – 3b is a constant multiple of either x – 3 or x +
2. Likewise, we can show that if

where a and b are nonzero numbers, is to be 
written as a single fraction having denominator 
(x – 3)(x + 1)(x)(2x – 5)(x + 3), this rational ex-
pression cannot be reduced.

However, there do exist nonzero constants a
and b such that the sum 

can be reduced. For example, let a = 3 and b = 1, then

In this last example, the factor x – 2 appears
with multiplicity 1 in each denominator. It appears
to play a role analogous to that of a balanced prime
factor in our previous work. There is much known
about the way that polynomials factor and divide
each other and even the way some of them behave
like primes. It would be interesting to know how
much of the facts about reducing numerical frac-
tions carry over to the class of rational functions.
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Editors’ notes: Harris S. Shultz and Ray C. Shi-
flett provide yet another example of “mathematics
for teaching”: mathematical investigations con-
nected to the teaching profession. The question
When can you reduce the sum of two fractions? is
certainly more likely to come up in the teachers’
lounge than in an engineering firm. And while
Shultz and Shiflett carry out the investigation for
its own sake, the resulting theorems will be useful
to teachers as they design activities and problem
sets around rational number arithmetic. We suspect
that more than a few areas of mathematics were in-
spired by mathematical problems teachers face as
they design activities for their students. One that
we recently encountered is how to devise two lin-
ear equations in two unknowns with small integer
coefficients so that students will not be able to get
exact coordinates for the intersection of the graphs
simply by zooming with their calculators. Articles
that address such questions make ideal submissions
to this department.

Shultz and Shiflett end the article with an in-
triguing question: How much of their result carries
over to rational functions in, say, one variable with
rational coefficients? This is again a question
closely related to our profession, because two basic
algebraic systems of precollege mathematics—the
integers and polynomials in one variable—have
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deep structural similarities that allow many results
in one system to be transported to the other with
minor modification. For example, fact 2 (and the
more general result about greatest common divisor)
holds for polynomials, too, and for the same rea-
sons. Thus, both systems have a fundamental theo-
rem of arithmetic: the unique prime decomposition
property that is used throughout this article. We
would be interested in future articles that investi-
gate the problem Shultz and Shiflett pose and, more
generally, in articles that investigate the carryover
to polynomials of results in arithmetic. ∞
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• “Slices of Pi: Rounding up Ideas for Cel-
ebrating Pi Day,” by Larry Lesser, in
Texas Mathematics Teacher 51, no. 2
(Fall 2004), www.tenet.edu/tctm /
downloads/TMT_Fall_04.pdf

• “The p Pages,” www.cecm.sft.ca/pi/pi.html
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• “A History of Pi,” www-groups.dcs.st-

and.ac.uk/~history/HistTopics/Pi_
through_the_ages.html
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