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Readerreflections

We appreciate the interest and value the 
views of those who write. Readers comment­
ing on articles are encouraged to send  
copies of their correspondence to the au­
thors. For publication: All letters for publica­
tion are acknowledged, but because of the 
large number submitted, we do not send let­
ters of acceptance or rejection. Letters to be 
considered for publication should be sent to 
mt@nctm.org. type and double-space 
letters that are sent by mail. Letters should 
not exceed 250 words and are subject to 
abridgement. At the end of the letter include 
your name and affiliation, if any, including 
zip or postal code and e-mail address, in the 
style of the section.

determine what the translation of that 
word was. The Comer article prompted 
me to search for the Chió method on 
the Internet. Information at mathworld.
wolfram.com/ChioPivotalCondensation 
.html indicates basically that Comer’s 
method is a particular case of the Chió 
method. Despite its being something 
that some use around the world and 
something already discovered, I share 
Michelle Genovese’s elation that a  
student discovered this method for 
herself.

Steven Willott
Steven_Willott@fhsd.k12.mo.us

National Board Certified Teacher
Francis Howell North High School

St. Charles, MO 63303

COMER’S RULE (III)
I believe Michelle Genovese’s student 
Kristina Comer rediscovered a rule that 
Charles Dodgson, better known as Lewis 
Carroll, wrote about in his book Con-
densation of Determinants (1866). I have 
used this rule with some of my algebra 2 
students and find that it works well. Stu-
dents enjoy the connection with Lewis 
Carroll.

Since Comer also saw how to correct 
the method when the center element is 
zero, she might also see how to apply 
Cramer’s rule more easily than is shown 
in the textbooks. In my class, students 
were initially confused by Cramer’s rule 
because the matrices in the numera-
tor for x and y aren’t symmetrical. But 
just as switching rows changes the 
sign of determinants, so does switch-
ing columns. If students can remember 
to change the sign, they don’t have to 
memorize Cramer’s rule and can extend 
the method to the 3 × 3 case.

Example: 2x + 2y = 10
                      x + 4y = 11

Put a pencil over the 10 and 11 and find 
the determinant of the coefficient matrix 

2*4 – 1*2 = 6. Since this is not zero, 
there is a unique solution, and we write 
4 under the constants (on the right). 
Now move the pencil over the 2y and  
4y and find the next determinant:  
2*11 – 1*10 = 12. Put this under the  
y column. Move the pencil and find the 
last determinant: 2*11 – 4*10 = –18. 
Here we must change the sign and write 
18 under the x column.

Now we read off the answer: x =  
18/6 = 3 and y = 12/6 = 2.

Jeffrey Jones
jkentjones@yahoo.com

Detroit Lakes Area Learning Center
Detroit Lakes, MN 56502

DISTANCE FROM A POINT TO A 
LINE
On pages 4, 5, 61, and 62 of the August 
2005 issue of the Mathematics Teacher 
we find various proofs of the formula  
for the distance from a given point P(x0, 
y0) to a given straight line l: ax + by +  
c = 0. Each proof is interesting in its 
own way but makes explicit use of 
square roots, trigonometric functions, 
and a fair amount of algebra. All of these 
difficulties can be avoided by using just 
a modicum of elementary vector algebra. 
See figure 1 (Kandall).

We denote by F the foot of the per-
pendicular from P to l, and we use the 
vector notation X = [x, y], N = [a, b]. The 
vector N is perpendicular to l. (The rea-
son is that if X1 and X2 are any two dis-
tinct points of l, then N • X1 = N • X2 = 
–c; consequently, N • (X2 – X1) = 0, that 
is, N is perpendicular to X1X2.)

Thus, PF = tN for some scalar t; we 
are seeking a formula for d = |tN| =  
|t| |N|, where d represents the distance 
from point P to line l. Since F = P + tN 
lies on l, we have N • (P + N) = –c, that 
is, N • P + t|N|2 = –c. Therefore,
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COMER’S RULE (I)
The February 2006 issue of the Math-
ematics Teacher includes an article about 
an alternative way of evaluating a 3 × 3 
determinant: “You’ve Heard of Cramer’s 
Rule, Now Try Comer’s: An Alternative 
Approach to Finding Determinants.” 
Readers might be interested to know 
that the method Kristina Comer found is 
a special case of a result for n × n deter-
minants found by J. J. Sylvester in 1851. 
To read about it, search the Web for Syl-
vester’s determinant identity. It is nice 
when students discover something they 
had not known, and exciting when the 
teacher also does not know it. It is excit-
ing in a different way when one learns 
that a famous mathematician had found 
the result earlier. Some of the students 
who are rediscovering results now will 
be the ones whose work (often in special 
cases) will be rediscovered by a student 
in a future generation.

Richard Askey
askey@math.wisc.edu

University of Wisconsin—Madison
Madison, WI 53706

COMER’S RULE (II)
While student teaching, I had an 
exchange student from Brazil who 
used something like Comer’s method. 
He called it Chió, though no one could 
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hence,
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Geoffrey A. Kandall
gkandall@snet.net

Hamden, CT 06514

MORE ON MULTIPLYING 
POLYNOMIALS
In the articles “Multiplying Polynomi-
als,” Michael O’Neil (Mathematics 
Teacher, March 2006) shared a teach-
ing strategy that I, too, have found 
successful in my algebra classes. This 
method, which I like to call the “box 
method,” has been an invaluable tool 
for my inclusion and regular educa-
tion classes alike. Besides displaying 
beautiful symmetry, this method is 
also a wonderful organizational tool 
that makes visual sense to many of my 
students.

In my classroom, there are actually 
two procedures that my students and I 
call the box method. The second proce-
dure, which I was taught by my trigo-
nometry students, involves factoring 
quadratic trinomial expressions.

This method was primarily developed 
for factoring quadratic expressions of 
the form ax2 + bx + c. Students begin 
by setting up a 2 × 2 box as shown in 
figure 1 (Becker). To fill in the two 
empty boxes, students must find factors 
of a(c) whose sum is equal to b.

Example 1. 6x2 + 19x + 10

Traditionally, when factoring an 

expression like that in example 1, stu-
dents are required to find all of the fac-
tors of 6 and 10 and, by trial and error, 
discover the correct combination that 
results in the sought-after binomial fac-
tors. The box method eliminates the 
trial-and-error work and requires stu-
dents to sift through the factors of only 
one number. In example 1, students 
need to know the two factors of 60 that, 
when added together, equal 19. See 
figure 2 (Becker). With a little effort, 
they find that the missing numbers 
are 15 and 4. See figure 3 (Becker). 
Since the middle term is 19x, we fill the 
empty blocks of our box with 15x and 
4x, in no particular order. See figure 4 
(Becker).

To find the binomials that were mul-
tiplied together to generate the original 
problem, students must find the greatest 
common factor of each row and column. 
We can see from figure 5 (Becker) that 
the greatest common factors for the rows 
are 2x and 5. From figure 6 (Becker) 
we see that the greatest common factors 
for the columns are 3x and 2.

The factors of 6x2 + 19x + 10 are  
2x + 5 and 3x + 2. Students can check 
their answer by multiplying the binomi-
als and verifying that they produce the 
original expression.

Example 2. 2x2 + 5x – 12

In example 2, we will see how the 
box method handles subtraction within 
the quadratic expression. To begin, stu-
dents insert the first and last terms into 
the appropriate blocks, including the 
negative sign with the 12. See figure 7 
(Becker). Next, students find the fac-
tors of –24 whose difference is +5. They 
place the 8x and –3x into the blocks, 
remembering that order does not mat-
ter. We determine the greatest common 
factors for the rows to be x and 4. The 
greatest common factors of the columns 
are 2x and –3. Our final answer is 2x2 + 
5x – 12 = (2x – 3)(x + 4).

Michael A. Becker
Spring Grove Area High School

Spring Grove, PA 17362

Fig. 1 (Kandall)
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Fig. 1 (Becker)

6x2 ___ + ___ = 19x

10 ___ × ___ = 60

Fig. 2 (Becker)  Initial setup

Fig. 3 (Becker)  Find the right pair

6x2 15x + 4x = 19x

10 15 × 4 = 60

6x2 4x 15x + 4x = 19x

15x 10 15 × 4 = 60

Fig. 4 (Becker)  Complete the box

Fig. 5 (Becker)  GCF of rows

GCF = 2x 6x2 4x

GCF = 5 15x 10

GCF = 3x GCF = 2  

6x2 4x

15x 10

Fig. 6 (Becker)  GCF of columns

Fig. 7 (Becker)  Complete solution to example 2

GCF = 2x GCF = –3

GCF = x 2x2 –3x 8x + –3x = 5x

GCF = 4 8x –12 8 × –3 = –24
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VERTICES AND x-INTERCEPTS  
OF PARABOLAS (I)
I enjoyed reading James Metz’s letter in 
the “Reader Reflections” of February 
2006. I would like to propose a general-
ization of his method of finding the  
x = coordinate of the vertex of a parab-
ola and use the result to find the zeroes 
of the parabola.

For f(x) = ax2 + bx + c, then x is the  
vertex of the parabola if f(x + d) =  
f(x – d) for any d.

Let’s find x. Substitution leads to:

a(x + d)2 + b(x + d) + c = a(x – d)2 +  
    b(x – d) + c → 4axd = –2bd

As d = 0 is of no interest, we divide by 
d to get
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This result leads to the quadratic for-
mula without completing the square. 
Let’s see how.

It is easy to find the zeroes of the 
parabola f(x) = ax2 + c whose axis of 
symmetry is the y axis.

Every parabola f(x) = ax2 + bx + c can 
be translated so that its axis of symmetry 
is the y axis:
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is the translated parabola. Solving
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will give us the two zeroes of the 
translated parabola. We shall find the 
zeroes:
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These are the zeroes of the translated 
parabola, and it is easy to see the zeroes 
of the original one.

Many students fail to see the con-
nection between the solutions of the 
quadratic equation and the zeroes of the 
parabola. Proving the famous formula 
again in the setting of functions can be 
interesting and productive. This method 
also provides us with an application of 
translations.

Ayana Touval
Ayana.Touval@montgomerycollege.edu

Montgomery College
Rockville, MD 20850-1733

VERTICES AND x-INTERCEPTS OF 
PARABOLAS (II)
In “Finding the x-Coordinate of the 
Vertex of a Parabola” (“Reader Reflec-
tions,”  Mathematics Teacher 99 [Feb-
ruary 2006]: 390), James Metz gives 
another, simpler, noncalculus way 
of finding the vertex of a parabola. It 
should be noted that the vertex can be 
found more directly using calculus.

Consider the equation of a parabola, 
the function f(x) = ax2 + bx + c. Its deriv-
ative, the slope of the curve, is f′(x) = 
2ax + b. The x-coordinate of the vertex is 
found from f′(x0) = 0, the position of 
zero slope. It follows immediately that
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Of course, the y-coordinate also follows 
immediately:
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John F. Goehl Jr.
jgoehl@mail.barry.edu

Barry University
Miami Shores, FL 31161

PROBLEM 29, OCTOBER 2005
“Calendar” problem 29, from October 
2005, reads:

Suppose q is an angle between 0° and 
90° for which cos (q) cos (2q) = 1/4. 
What is the value of q?

The solution presented is obtained by 
multiplying both sides of the equation by 
4 sin q and using a trigonometric iden-
tity to obtain sin (4q) = sin (q). Relying 
on the fact that 0° ≤ q ≤ 90°, it is shown 
that q = 36°. The extraneous root q = 0° 
must be rejected.

In the spirit of one of the excellent 
departments of the Mathematics Teacher, 
let us engage in “delving deeper.” Specif-
ically, we will drop the restriction on q, 
and find the general solution of cos (q) 
cos (2q) = 1/4. Let Z be the set of inte-
gers. By the periodic nature of the cosine 
function, q is a solution precisely if q + 
360°n is a solution, for n ∈ Z. Since cos 
q is an even function, q is a solution if 
and only if –q is one. Therefore, it suf-
fices to restrict the consideration to the 
interval q ∈[0°, 180°].

As in the presented solution, the 
restriction of q to the first quadrant 
forces 4q to be in the second quadrant, 
and q = 36°. When q ∈ [90°, 180°],  
4q ∈ [360°, 720°]. However, for sin  
(4q) = sin (q) to be true, sin (4q) must 
be positive, which reduces the interval 
to 4q ∈ [360°, 540°], angles in the first 
and second quadrant. When 4q is in the 
first quadrant, it is 360° greater than 
reference angle 180° – q:

4q = 360° + 180° – q
             5q = 540°
             q = 108°

If 4q is in the second quadrant,

4q = 360° + q
                       3q = 360°
                       q = 120°.

Therefore the general solution is

o o o o o o

o

36 360 108 360 120 360

36
1 2 3

+ + +

− +

n n n, , ,  

3360 108 360

120 360
4 5

6

1 2

o o o

o o

n n

n

n n n

, ,

;

, ,

  − +

− +

33 4 5 6

1 5
4

1 5
4

, , ,

.

n n n

z

∈

























=
±

+






 Z


 =

−







 =

×

36

1 5
4

108

5 6

o

o.

( / )

A doesn't win
   

B doesn't win
  

C wins

 

A doesn'

( / ) ( / )5 6 1 6
×

tt

win on

1st round
  

B doesn't

win on

1s

[( / )5 6

×
tt round

  

C doesn't

win on

1st round

( / ) ( /5 6 5

×

66 5 6)] ( / )

  

A doesn't

win on

2nd round
  

B do

× ×

eesn't

win on

2nd round
  

C wins

on

2nd ro

( / )5 6

×
uund

A

doesn't

win on

1st

round

  

B

do

( / )

[( / )

1 6

5 6

×

eesn't

win on

1st

round

  

C

doesn't

win on

1

( / )5 6

×
sst

round

  

A

doesn't

win on

2nd

round

( / )] [( /5 6 5

×

66 5 6) ( / )

  

B

doesn't

win on

2nd

round

  

C

doesn'

× ×

tt

win on

2nd

round

  

A

doesn't

win on

3rd

r

( / )]5 6

×

oound

  

B

doesn't

win on

3rd

round

  

( / ) ( / )5 6 5 6

× ×

CC

wins

on

3rd

round

( / )

–
,

1 6

1
s

f
r

=



Vol. 100, No. 3 • October 2006 | Mathematics Teacher  173

An alternative, although more diffi-
cult, approach is instructive. In the given 
equation cos (q) cos (2q) = 1/4, replace 
cos (2q) by 2 cos2θ –1:

cos (q) cos (2q) = 1/4
cos (q)(2 cos2q – 1) = 1/4
4 cos (q)(2 cos2q – 1) = 1
8 cos3q – 4 cos q – 1 = 0

Letting z = cos q yields the cubic equa-
tion 8z3 – 4z – 1 = 0. The rational root 
theorem finds the root z = (–1/2), and 
the quadratic formula completes the 
solution:
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Restricting q to [0°, 180°] as above, we 
immediately find the root q = 120° cor-
responding to z = (–1/2). A computer 
algebra system shows that
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arccos

and
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This approach produces no extraneous 
roots.

It is instructive to view the graphs 
of the functions in question: y = cos 
(x) cos (2x), in blue, and y = 1/4, in 
red, are shown on the interval [–180°, 
180°] in figure 1 (Stanton). The six 
roots in this interval are represented 
by the intersections of the two graphs. 
Note the symmetry with respect to the 
y-axis.

Figure 2 (Stanton) shows y = sin 
(x) in red and y = sin (4x) in blue. Aside 
from the extraneous roots when y = 0, 
the intersections of the two graphs cor-
respond to the solutions of the original 
equation. As expected with sine func-
tions, the graphs display symmetry 
about the origin.
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