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The Case of Turkey Bingo
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T
he Wednesday before Thanksgiving 
presents a challenge to teachers in 
many U.S schools. Some students are 
absent because they are traveling to be 
with their extended families for the hol-

iday. Other students, assuming that nothing impor-
tant will happen at school when so many of their 
peers are absent, may also be absent. One school’s 
solution to the attendance problem on this day is to 
have a daylong bingo game. This article recounts a 
mathematics problem that arose in this schoolwide 
game in one recent year, explores the mathematics 
behind solving the problem, and briefly examines 
two technological approaches to the solution.

This problem provides an example of a type of 
probability analysis we recommend doing with high 
school students. In particular, we show how to use 
a software package—Fathom—to simulate a prob-
ability situation that is too complicated for direct 
theoretical analysis, and we compare the results 
with an estimated computation. The techniques 
described here could be used to solve a variety of 
interesting probability problems.

THE GAME
During the first period of the school day, students 
construct a Turkey Bingo card by completing a 5 × 
5 grid with selections chosen from a common list 
of 40 seasonal words (e.g., turkey, etc.). During the 
year discussed, 5 words were to be read out at the 
end of the first, second, third, and fifth periods, 

making a total of 20 words in play.
Turkey Bingo differs from the traditional bingo 

game in three important ways (see fig. 1): 

Copyright © 2008 The National Council of Teachers of Mathematics, Inc.  www.nctm.org. All rights reserved.
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tional bingo. The object is to get five shaded squares in 
a horizontal row, in a vertical column, or on one of the 
two main diagonals (see fig. 2). (The cover-all varia-
tion, in which all spaces of the card must be covered 
to win, and other variations are not part of Turkey 
Bingo.) The game continues through the end of the 
day rather than finishing with the first winner. Win-
ners receive five dollars to spend at the school store.

THE PROBLEM
Co-author Eric Jenson was in his first year of teach-
ing mathematics at this school when he encoun-
tered Turkey Bingo. Following the first period of 
the Wednesday before Thanksgiving that year, 5 
words were randomly drawn and read over the 
public address system as planned. However, before 
the next 5 words were read after the second period, 
a change in the rules of the game was announced: 
Because many students already had 4 words in a 
row after just the first period, only one word would 
be drawn and read after the subsequent periods.

1. Turkey Bingo offers no free space. Each student 
must choose 25 words to fill in the squares on 
the grid. 

2. The numbers on a standard bingo card are restricted 
to specific columns: Numbers 1 through 15 must go 
in the B column, numbers 16 through 30 must go 
in the I column, and so on. In Turkey Bingo, there 
are no restrictions on where the words are placed, 
except that exactly one word goes in each square 
and a word may not be repeated on a card.

3. Students fill out their own Turkey Bingo cards, 
so we cannot be sure that all cards are different 
from one another, nor can we be sure that two 
or more cards do not share important character-
istics (such as having the word turkey in the cen-
ter square). In standard bingo, players are given 
preprinted cards to ensure variation.

Words are chosen randomly and read over the 
school’s public address system. Each student colors in 
the corresponding square on his or her grid, as in tradi-

Probability
in Practice

(a) (b)

Fig. 1  a typical bingo card (a) and a typical turkey Bingo card (b)

turkey thanks
giving

cran
berries stuffing thursday

Pilgrims indians thanks harvest fall

travel family friends weekend pumpkins

apples yams mashed 
potatoes

green 
beans pie

football indoors white linen 
tablecloths

school
vacation Lincoln

Fig. 2  On a standard bingo card, there are 12 winning lines, and lines 3, 8, 11, and 12 each include the free space. in turkey 

Bingo, there is no free space, but a player wins in turkey Bingo in the same way as in traditional bingo.
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Jenson was certain that 5 words per period 
would be too many—resulting in many, many win-
ners—but that switching to 1 word per period (for a 
total of 8 words: the 5 from first period, the 1 from 
second period, and 1 for each of the remaining two 
periods) would not be enough to yield a substantial 
number of winners. He called the office and learned 
that the game’s sponsors were prepared for as many 
as 20 winners in this school of approximately 1000 
students. Quickly, Jenson had his class of eleventh 
graders estimate probabilities of winning Turkey 
Bingo on the basis of the number of words drawn. 
The class determined that if 12 words were to be 
drawn, there would be 14 winning lines on 1000 
Turkey Bingo cards and recommended that 3 words 
be read after each of the two remaining periods. 
Before elaborating on the class’s estimation tech-
niques and providing the school’s results, we exam-
ine the mathematics of bingo and Turkey Bingo.

BINGO MATH
Bingo as a mathematical activity has been the sub-
ject of several Mathematics Teacher articles over the 
years. Bay et al. (2000) analyzed the probabilities of 
winning several variations of bingo on the fewest 
number of draws (e.g., five draws for a vertical row); 
Mercer (1993) analyzed the probabilities of winning 
cover-all bingo on various numbers of draws; and 
Catlett (1991) outlined a 3 × 3 bingo game to be used 
for practicing and reviewing computational skills. 
This article introduces a variation on bingo and 
considers the application of popular computer tech-
nology that did not exist when the previous articles 
were written or was not the articles’ focus. 

Traditional Bingo
Although counting possible cards in traditional 
bingo is straightforward, the probabilities associated 
with winning are complex. The B column has five 
empty squares and 15 numbers to choose from 
(without replacement), and the numbers are ran-
domly ordered from top to bottom. This yields 15 • 
14 • 13 • 12 • 11 = 360,360 possible first columns. The 
setup is the same in columns 2 (I), 4 (G), and 5 (O), 
but column 3 (N) has a free space, leaving only four 
squares to be filled in. This yields 15 • 14 • 13 • 12 = 
32,760 possible third columns. In total, there are 
(360,360)4 • 32,760 ≈ 5.52 • 1026 possible bingo cards.

Each card has 12 possible winning lines (see  
fig. 2). The vertical winning lines (indicated as 
numbers 1–5 in fig. 2) are counted above, except 
that we do not care about order within the col-
umn—for instance, {1, 2, 3, 4, 5} will win when-
ever {2, 3, 4, 5, 1} does. Therefore, there are only
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different winning combinations in the B, I, G, and 
O columns, and only
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winning combinations in the N column. Possible 
horizontal lines (numbers 6–10 in fig. 2) are more 
numerous because the columns are independent of 
one another. Consider the top row: There are 15 
possibilities for the first square (in the B column), 
15 for the second square, and so on. Thus, there 
are 155 = 759,375 possible first rows. Although the 
squares within each row are independent of one 
another, the rows themselves are not independent; 
once we have chosen the first row, we have fewer 
choices for each square in the second row. In fact, 
there are 145 = 537,824 second rows, 134 = 28,561 
third rows (recall the free space), 124 • 13 = 269,568 
fourth rows, and 114 • 12 = 175,692 fifth rows. Note 
that this analysis leads to the same total number of 
bingo cards as counting columns yielded above:

155 • 145 • 134 • (124 • 13) • (114 • 12) 
 = (15 • 14 • 13 • 12 • 11)4 • (15 • 14 • 13 • 12)
 ≈ 5.52 • 1026

The possibilities for each main diagonal, because the 
squares are independent of one another and include 
the center free space, are the same as for the third row.

To complicate matters, the rows, columns, and 
diagonals of a traditional bingo card are not indepen-
dent. Once we have chosen the columns, the rows 
and the diagonals are fixed. Each square is part of at 
least two possible wins: a row and a column. Eight 
of the 24 nonfree squares are part of three possible 
wins: a row, a column, and a diagonal.

There are many questions we can ask about tra-
ditional bingo, including these:

•	 How many winning lines can we expect with  
x draws?

•	 How many winning cards can we expect with  
x draws?

•	 What is the probability of card y winning in  
x draws?

Each of these questions requires a different sort of 
analysis. Although these analyses are not the focus 
of this article, the technology-based estimation tech-
niques described here could easily be adapted to 
answer them.

Turkey Bingo
Turkey Bingo introduces the simplification that the 
squares are completely independent of one another, 
with the exception of nonreplacement. No particu-
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lar words are restricted to particular columns. As a 
result, there are
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ways to choose the words and 25! ≈ 1.55 • 1025 ways 
to organize them, yielding approximately 6.24 • 1035 
possible cards. As with traditional bingo, however, 
the resulting columns, rows, and diagonals are not 
independent of one another. In the following analy-
ses, we will assume that students fill out their Tur-
key Bingo cards randomly and that any two cards 
are independent of each other. Biased behavior on 
the part of students (such as a tendency to put the 
word turkey in the center square) would affect the 
calculations we perform here.

The question of particular interest in Jenson’s 
school was this: How many words should be drawn 
so that the expected number of winners is close to 
20, without going over? The next section outlines 
two uses of technology to answer this question.

TWO APPROACHES TO THE PROBLEM
Currently, the relationship between experimental 
probability and theoretical probability is a standard 
topic in the secondary school probability curriculum. 
An important way to explore experimental probabil-
ity and set the stage for a theoretical solution is by 
using simulations. Turkey Bingo has many possible 
outcomes; it is difficult to simulate many trials by 
hand. The software package Fathom Dynamic assists 
us in finding complex and computation-heavy experi-
mental probabilities, while a spreadsheet (such as 
Microsoft Excel) is a useful tool for calculating theo-
retical probabilities. Each will be used in turn.

A Simulation with Fathom
There are many reasons for simulating a probabil-
ity problem, including these:

•	 To analyze problems whose theoretical solutions 
are beyond our current knowledge

•	 To develop intuition about a complex problem
•	 To develop intuition that can lead to a theoreti-

cal solution

Each of these reasons applies to the Turkey Bingo 
problem. 

Recall that the question at hand asks about 20 
winners in a group of 1000 players, a rate of 2 per-
cent. Such a small number will be difficult to detect 
with a small number of trials. A computer can run 
a simulation much more quickly than we can draw 
blocks from a bag or record results from a random 
number generator. Fathom is computer software 
designed to do statistical and probability analyses, 

including sampling and simulation. 
The basic unit with which Fathom works is a 

case, symbolized on-screen by a ball (see fig. 3). 
Cases have attributes. If we consider a person to be 
a case, we might be interested in attributes such as 
height, eye color, IQ, or favorite food. In a prob-
ability situation, a case might be a roll of a weighted 
die. Cases are grouped in collections. A collection 
might be a class full of people or a set of ten rolls of 
a weighted die. The power of Fathom in creating 
probability simulations comes in its capability to 
sample a collection randomly, compute a measure 
of the sample (e.g., mean height or the sum of ten 
rolls), and record this measure as a case in a new 
collection. Each of these capabilities will be used in 
the Turkey Bingo simulation.

In Turkey Bingo, we may simplify by using num-
bers (1–40) instead of words, and we consider a case 
to be a numbered ball waiting to be drawn. The first 
collection, then, is the set of these 40 balls (see fig. 4).

From this collection, we can sample a given 
number of draws. The original Turkey Bingo game 
called for sets of 5 words to be drawn at the end of 
each of four periods—for 20 words altogether—so 
we take a sample of this size (see fig. 5). This sam-
ple is a new collection. Fathom allows for sampling 
with or without replacement. In Turkey Bingo, 
we never call the same number twice in the same 
game, so we choose Without Replacement here.

The first analysis is to find the probability that 
an arbitrary line of 5 words (horizontal, vertical, 
or diagonal) will win. We may use any line, so con-
sider the combination {1, 2, 3, 4, 5}. (Note that stu-
dents may see this line as special rather than arbi-
trary. Discuss this perception and allow students to 
choose their own arbitrary line, perhaps randomly.) 
We set up a measure (called row 1) to determine 
whether this line wins after 20 draws (see fig. 6).

The setup so far has required a significant effort, 
especially in writing the formula in figure 6 to 
determine whether the line wins. But now that the  

Fig. 3  a collection of cases. Each case is symbolized by a 

ball. Each case also represents a ball—a bingo ball waiting 

to be drawn at random. 
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setup has been done, the simulation is easy to run. 
We can quickly generate 1000 samples of 20 draws 
and see that the experimental probability of this line 
winning is 2.3 percent (see fig. 7). Because there are 
12 lines on a card (for simplification, we now con-
sider these independent), we calculate a 27.6 percent 
chance of any given card winning in 1000 samples of 
20 draws. The cards are assumed to be independent 
of one another, so this probability corresponds to 
the proportion of 1000 cards that should win on any 
given trial with 20 draws. The result: 276 winners. 
Because we have assumed that the lines on each card 
are independent of one another when in fact they 
are not, we know this estimate is not quite right (we 
will analyze the reason for this shortly).

In Fathom, a measure of a collection can become 
a case in a new collection, allowing us to generate 
and analyze sampling distributions. This process 
naturally leads to finding the mean of several col-
lections of 1000 samples of 20 draws. In one such 
simulation, 5 collections of 1000 samples of 20 had 
a mean of 15.8 wins. Keeping in mind that each 
student has 12 lines, we estimate 190 winners on 
1000 cards. (At this point, time becomes a factor. 
On an iMac with an 800 Mhz G4 processor, this 
simulation [5 sets of 1000 simulations of 20 draws] 
takes about three minutes.) This number is far 
above the desired 20 winners, and we can see that 
the school administration was smart to cut back on 
the number of words being drawn each period.

At this stage in the investigation, we encourage 
students to ask questions that can be answered by 
modifying the current simulation. Ultimately, we 
wish to have approximately 20 winners. We could 
guess-and-check our way by rerunning the simulation 
with 19 draws, 18 draws, and so on. But if we are 
going to learn something about probabilities, we need 
to think about the results of our simulation and plan 
the next move. Potential questions include these:

•	 If we cut the number of draws in half (to 10), do 
we cut the number of winners in half?

•	 What is the relationship between the number of 
draws and the number of expected winners?

Fig. 4  Eight out of 40 cases in the Bingo Balls collection, 

represented in table form. hereafter, only the numbers, not 

the words, will be considered. Fig. 5  the first 8 cases in a sample of 20

 (a) (b)

Fig. 6  a formula (a) for determining whether the line {1, 2, 3, 4, 5} wins; the result (b) (under Value) for the sample partially 

shown in figure 5

Fig. 7  Bar graph of the number of wins for the line {1, 2, 3, 4, 

5} in 1000 trials of 20 draws. the win bar represents 23 wins.
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•	 What should we do next to investigate this 
relationship?

In the end, according to our estimate, drawing 
a total of 13 words tends to produce about 19 win-
ners. This electronic simulation gives us the power 
to ask and answer complex questions quickly with 
experimental data. 

We can also build on our previous efforts. The 
analysis presented here considered the probability of 
an arbitrary row winning in 1000 draws. We could 
consider the probability of an arbitrary card winning 
in 1000 draws and use this simulation to check the 
accuracy of our estimate. To do so, we set up a sepa-
rate measure for each line on an arbitrary card. For 
example, the first column would be {1, 6, 11, 16, 21}, 
and a diagonal would be {1, 7, 13, 19, 25}; see figure 
8. A final measure checks whether any of the 12 
lines wins and takes on the value “win” if the card 
contains at least one winning line. With this in hand, 
we may test the assumption that

P(a card winning) = 12 • P(a line winning).

This assumption turns out to be false. Whether 
the estimate is close enough depends on one’s 
purposes. A comparison of means of these two 
measures failed to find a meaningful correlation 
between the number of estimated wins and the 
number of actual wins in 50 sets of 1000 trials of 
20 draws, although the mean of the estimate was 
larger than the actual mean (mean estimate wins: 
284; mean actual wins: 251) and this difference 
was statistically significant (p < .001).

The suggestion earlier, when we estimated the 
number of wins, was that 13 words is a good number. 
Checking this by simulating the number of winning 
cards in a school of 1000 students 50 times gave a 
mean of 20.66 and standard deviation of 5.041. Thus, 
if the desire is to get close to 20 winners, 13 words is 
a good choice. If it is imperative not to exceed 20 win-

ners, 13 words are too many, and we should choose 
12 instead (yielding, in one simulation, a mean of 
13.36 and a standard deviation of 3.19).

Turning from the experimental solution to a 
computational or theoretical one, we move from 
Fathom to a spreadsheet: Microsoft Excel.

Analysis with Excel
For this analysis, we also begin with an arbitrary 
row, say {1, 2, 3, 4, 5}. Following the Bay et al. 
(2000) analysis, we may ask what the probability is 
of this line winning in the first 5 draws. For this to 
happen, the first draw could be any of the 5 num-
bers in the row, and there are 40 numbers to choose 
from, so the first draw has a 5/40 chance of being 
successful. Now there are 4 numbers left in the row 
and 39 left “in the bag.” This leads to the following:

P(win on 5 draws) = 
5/40 • 4/39 • 3/38 • 2/37 • 1/36 ≈ 1.52 • 10–6

We multiply this by 12 to obtain the probability of 
each student winning to get the value in cell B2 in 
figure 9 (we are under the simplifying assumption 
that the 12 lines are independent of one another) 
and then by 1000 to obtain the expected number of 
winning lines in a school of 1000 students (this is 
the value in cell C2). Note that some of these lines 
are likely to be held by the same student, who can 
win only once. Therefore, the number of winning 
students should be slightly less.

There are 5 places that a nonwinning number 
could be drawn and still allow our hypothetical line 

Fig. 8  a typical turkey Bingo card in which numbers have 

replaced words

Fig. 9  theoretical probabilities computed for number of 

independent winning lines among 1000 players in a game 

of turkey Bingo
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to win in 6 draws. (The nonwinning number could 
be drawn first, followed by 5 winning draws, and 
so on, but it could not be drawn sixth.) Therefore, 
the formula for calculating cell B3 is B2 • 5. Simi-
larly, B4 is B3 • 6/2, dividing by 2 because the order 
of the extra numbers does not matter. In general, 
cell Bx is multiplied by
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Each time, we multiply by 12,000 to obtain the 
number of winning lines in the school in column 
C. From these calculations, Jenson and his students 
suggested drawing 12 words to obtain about 19 
winners; 13 words would have been too many.

Notice that the theoretical estimate closely 
matches the experimental estimate from Fathom 
for 20 draws: We calculate about 279 winning 
lines here, while our simulation produced a mean 
of 284.16 winning lines over 50 trials. Notice, too, 
that the reasoning behind the spreadsheet is differ-
ent from the reasoning behind the simulation. To 
write the formula for 20 draws, we had to work our 
way up from 5 draws (why not 1 draw?), whereas 
the Fathom solution required no such relational 
thinking. We could arbitrarily choose the number 
of trials in Fathom. The tendency may be to con-
sider the cases individually.

RESOLUTION
Recall the major question of interest at Jenson’s 
school: How many words should we draw to have 
the expected number of winners be close to 20 
without exceeding that number? The Fathom simu-
lation analyzing the probability of a given card win-
ning gives the answer 12 words, which yields about 
13 winners. The computational estimate with Excel 
(together with the Fathom simulation analyzing 
the probability of a given row winning) gives the 
answer 12 words, which yields an expected 19 win-
ners (according to the estimate, 13 words yields 30 
winners, which is too large).

Jenson’s class suggested that 12 draws be made 
to yield 19 winners, and this is what the school 
did. Jenson’s results arrived too late to affect the 
second-period drawing of a single word, but 3 
words were drawn at the end of each of the third 
and fifth periods. Knowing what we know from the 
Fathom investigation about the error produced by 
our estimate, we can adjust the spreadsheet predic-
tions to 88 percent of their values (the ratio of the 
two means of 50 trials). Factoring in attendance 
on the day before Thanksgiving, we can rerun 
the numbers for the 930 instead of 1000 students. 
This yields a final prediction of 15.7 winners on 12 
draws and 24.6 winners on 13 draws. 

Jenson recounted the results in an e-mail:

The office decided to go with the lower estimate, read-
ing 3 more words each of the remaining two periods. 
The actual number of winning students was 12, but 
since the actual attendance was less than the 1000 
we based our predictions on [it was closer to 930], I 
decided that the actual results closely followed our 
predicted results.

For teachers interested in using a Turkey Bingo 
simulation in their own class, step-by-step instruc-
tions for using Fathom to simulate the game are 
available at www.nctm.org/mt10204-248a. 
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