

Squares and Pegs

Use a 5 peg $\times 5$ peg geoboard, like the one shown here, or 5×5 dot paper. What different-sized squares can you create? Assume that you must use pegs (or dots) as vertices.

solve it! solutions

(Continued from p. 455)
Eight different-sized squares can be built on the 5 peg $\times 5$ peg geoboard. By dimension the squares are-

- 1×1,
- $\sqrt{2} \times \sqrt{2}$,
- 2×2,
- $\sqrt{5} \times \sqrt{5}$,
- $2 \sqrt{2} \times 2 \sqrt{2}$,
- 3×3,
- $\sqrt{10} \times \sqrt{10}$, and
- 3×3.

By area, the squares are $1,2,4$, $5,8,9,10$, and 16 square units. Although not all students will be able to determine the dimensions or area of these eight differentsized squares, they should be able to draw all eight.

Note: See the August 2009 "Mathematical Explorations: Tilting
Squares" for further development of these squares and their area.

