Mission Statement: The National Council of Teachers of Mathematics is the public voice of mathematics education, supporting teachers to ensure equitable mathematics learning of the highest quality for all students through vision, leadership, professional development, and research.

Teaching Children Mathematics (TCM), an official journal of the National Council of Teachers of Mathematics (NCTM), supports the improvement of pre-K–grade 6 mathematics education by serving as a resource for teachers so as to provide more and better mathematics for all students. It is a forum for the exchange of mathematics ideas, activities, and pedagogical strategies, and for sharing and interpreting research. NCTM publications present a variety of viewpoints. The views expressed or implied in TCM, unless otherwise noted, should not be interpreted as official positions of NCTM. The appearance of advertising in NCTM's publications and on its websites in no way implies endorsement or approval by NCTM of any advertising claims or of the advertiser, its product, or services. NCTM disclaims any liability whatsoever in connection with advertising appearing in NCTM's publications and on its websites.

All correspondence should be addressed to Teaching Children Mathematics, 1906 Association Drive, Reston, VA 20191-1502. Manuscripts should be prepared according to the Chicago Manual of Style and the United States Metric Association's Guide to the Use of the Metric System. No author identification should appear on the manuscript; the journal uses a blind-review process. To send submissions, access tcm.msubmit.net. Send letters to the editor to tcm@nctm.org.

Permission to photocopy material from Teaching Children Mathematics is granted to persons who wish to distribute items individually (not in combination with other articles or works), for educational purposes, in limited quantities, and free of charge or at cost; to librarians who wish to place a limited number of copies on reserve; to authors of scholarly papers; and to any party wishing to make one copy for personal use. Permission must be obtained to use journal material for course packets, commercial works, advertising, or professional development purposes. Uses of journal material beyond those outlined above may violate U.S. copyright law and must be brought to the attention of the National Council of Teachers of Mathematics. For a complete statement of NCTM's copyright policy, see the NCTM website, www.nctm.org.

For information on article photocopies or back issues, contact the Customer Care Department in the headquarters office.

The index for each volume appears online with the May issue. A cumulative index appears on the NCTM Web site at www.nctm.org. Teaching Children Mathematics is indexed in Academic Index, Biography Index, Contents Pages in Education, Current Index to Journals in Education, Education Index, Exceptional Child Education Resources, Literature Analysis of Microcomputer Publications, Media Review Digest, and Zentralblatt für Didaktik der Mathematik.

Information is available from the Headquarters Office regarding the three other official journals, the Mathematics Teacher, Mathematics Teaching in the Middle School, and the Journal for Research in Mathematics Education. Dues support development, coordination, and delivery of NCTM's services. Dues for individual membership are $81 (U.S.) and include $37 for a Teaching Children Mathematics subscription. Each additional school journal (Mathematics Teacher and Mathematics Teaching in the Middle School) subscription is $37.

Each additional subscription to the Journal for Research in Mathematics Education is $61. Foreign subscribers, add $18 (U.S.) postage for the first journal and $4 (U.S.) postage for each additional journal. Special rates for students, institutions, bulk subscribers, and emeritus members are available from the Headquarters Office.

Teaching Children Mathematics (ISSN 1073-5836) (IPM 1124463) is published monthly except June and July, with a combined December/January issue, by the National Council of Teachers of Mathematics at 1906 Association Drive, Reston, VA 20191-1502. Periodicals postage is paid at Herndon, Virginia, and at additional mailing offices.

POSTMASTER: Send address changes to Teaching Children Mathematics, 1906 Association Drive, Reston, VA 20191-1502. Telephone: (703) 620-9840; orders: (800) 235-7566; fax: (703) 476-2970; email: nctm@nctm.org; World Wide Web: www.nctm.org.

Copyright © 2015, the National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved. This material may not be copied or distributed electronically or in any other format without written permission from NCTM.
PULLING TOGETHER

Join NCTM in Boston as we bring together thousands of education professionals for the nation's largest math education event.

Go outside the classroom to examine the innovative ideas that can improve the quality of learning for every student.

- Gain insights into implementation and assessment of the Common Core State Standards for Mathematics.
- Learn about Principles to Actions: Ensuring Mathematical Success for All, which describes what is essential for a high-quality mathematics education.
- Collaborate with peers on concepts that diversify instruction and support student learners.
- Explore more than 700 sessions that help you grow and develop as a teacher.
- Discover fresh ways to integrate mathematics into other disciplines.

WHO SHOULD ATTEND?
- Pre-K–12 teachers
- Math teacher educators
- New and soon-to-be-teachers
- Math coaches and specialists
- Math researchers
- School and district administrators

REGISTER TODAY! Group discounts available.
Classroom-Based Formative Assessments—Guiding Teaching and Learning

FRANCIS (SKIP) FENNELL, BARBARA ANN SWARTZ, BETH McCORD KOBETT, AND JONATHAN A. WRAY

Principles to Actions: Ensuring Mathematical Success for All (NCTM 2014) recognizes the need to find a way to leverage assessment opportunities to improve teaching and learning at the classroom and school level. And although we know a lot about the importance and potential impact of formative assessment done right and well (NMAP 2008; Black and Wiliam 2010), a disconnect continues to exist among planning, teaching, and assessment—and thus, between teaching and learning—in too many classrooms. Assessment must be linked to the planning and instruction of a lesson—every day—ensuring that lesson activities inform teaching and learning for all students. Principles to Actions’s eighth Mathematics Teaching Practice directs teachers to “elicit and use evidence of student thinking” (NCTM 2014, p. 53, emphasis added), but what are some ways to elicit this evidence?

We have defined a small set of classroom-based formative assessment (CBFA) techniques that we think of as a “five-color palette” for teachers to use on a regular basis, sometimes mixing the “colors” to consider how best to assess teaching and learning, and using student responses to monitor and adjust instructional decision making during a lesson as well as to aid in planning. Each of the following techniques has roots within the formative assessment literature and should be considered daily as teachers plan and implement instruction:

- Observations
- Interviews
- Show Me activities
- Hinge questions
- Exit tasks

One way to organize this palette of assessments is by considering observations, interviews, and Show Me activities as assessments that monitor and guide classroom instruction that day; whereas responses to hinge-point questions (Wiliam 2011) and exit tasks help assess daily progress and more directly influence planning for the next day’s lesson. We will further discuss two of these techniques, the Show Me method and the hinge-questions method.

Show Me

The Show Me technique is most likely an activity that teachers use to augment an observation. Like the observation, the Show Me technique monitors the lesson but also provides the teacher with a glimpse of student performance of particular concepts and skills. Consider the language here: Show Me implies that students can demonstrate what they are learning. Our experience has been that the Show Me technique is used, typically, within number-related lessons. However, such demonstrations might occur within any content domain. Consider the following Show Me examples:

- 1.NBT.A.1—Use base-ten blocks to represent or show me 57 in three different ways.
- 3.NF.A.3b—Using your pattern blocks, show me two different ways to represent 1/3.
- 3.OA.B.6—Use a drawing to show me 32 ÷ 4.
Hinge question
Our work with teachers using the five-technique palette of classroom-based formative assessments has shown the hinge question to be the most challenging technique to plan for and use regularly. The hinge question (Wiliam 2011) provides a check for understanding and proficiency at a “hinge-point” in a lesson. In essence, responses to this question help define not only the success of the lesson but also next steps in planning. However, regular use of the hinge question implies that as teachers plan, they consider and even frame that “deal breaker” of a question that not only helps provide an indication of how the class is doing but also begins to frame the planning needs for the next day’s lesson. Daily use of a hinge question also implies a thorough understanding of the intent of the lesson and its mathematical and pedagogical focus. Consider the following examples of a hinge question, noting that the multiple-choice formatted example below includes distractors, which offer clues to possible misconceptions:

- **Primary level (1.G.A.2):**
 What are ways in which squares and rectangles are similar and different?

- **Primary level (2.NBT.B.9):**
 Is 45 + 59 > or < 100? How do you know?

- **Intermediate level (4.NF.A.2):**
 What is the order of 4/5; 4/6; and 4/8 from least to greatest?

 A. 4/5, 4/6, 4/8
 B. 4/6, 4/5, 4/8
 C. 4/8, 4/5, 4/6
 D. 4/8, 4/6, 4/5

- **Intermediate level (5.MD.A.1):**
 500 mL of water was needed for the recipe. If that amount were tripled, how many liters (L) would be needed? How do you know?

Classroom-based formative assessments—frequency and importance

Principles to Actions (NCTM 2014) advocates “ongoing and continual” formative assessment (p. 94), and we believe that such techniques as observations, classroom-based interviews, *Show Me*, hinge questions, and exit tasks are accessible for teachers. However, what is most important is the intentional use of these techniques. This five-option palette of assessment opportunities must become an integral component of planning and teaching every day.

Ed. note: At http://www.mathspecialists.org, find recent presentations on the classroom-based formative assessments (CBFAs) noted in this article. For a complete description of the CBA techniques presented here, see the chapter titled “Classroom-Based Formative Assessments—Guiding Teaching and Learning” in *Annual Perspectives in Mathematics Education 2015: Assessment to Enhance Teaching and Learning* (NCTM 2015).

REFERENCES

Francis (Skip) Fennell is the L. Stanley Bowlsbey Professor of Education and Graduate and Professional Studies at McDaniel College in Westminster, Maryland, where he directs the Brookhill Foundation–supported Elementary Mathematics Specialists and Teacher Leaders project (ems&tl). A past president of the National Council of Teachers of Mathematics (NCTM), he is a 2012 recipient of NCTM’s Life-time Achievement Award. He has had a multi-decade interest in and passion for mathematics specialists at the elementary school level and also has interests related to teacher education and mathematics, diagnosis and intervention, CCSSM implementation, and fractions. Barbara Swartz, bswartz@mcdaniel.edu, is an
Lesson closers provide fabulous opportunities to engage students and hold them accountable for learning throughout the lesson. Moreover, lesson closers give teachers immediate feedback about their students’ understanding so that programming is as accurate as it can be. Encourage your teachers to design lesson closers by asking questions that relate to the lesson’s goal and assess conceptual understanding rather than having students perform computation. For example, “How can I determine whether my students reached the lesson’s learning goal?”

“How can I help students digest and reflect on their new learning?” Questions should help students identify a concept’s “big ideas.”

“How will the data that I collect from this lesson closer help me plan tomorrow’s instruction?” Questions will give teachers information about what students know and what they have yet to learn, so that teachers can tailor instruction specifically to students’ needs.

Example
Goal: 4.NF.6—Find whole-number quotients (and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models).

Lesson closer: Partner talks or a group talk, a demonstration, or whiteboard responses. Questions might include these:

• How are division and place value connected?
• What are some ways you can check to see if you divided correctly? Why do your checking methods make sense?
• You divide 402 by 3 and by 6. Without actually dividing, predict which quotient will be greatest. Explain your thinking.
• What pictures would you draw to show 121 ÷ 5?

The value of lesson closers is the immediate feedback provided to students and teachers alike. Summarizing knowledge by articulating it verbally reinforces pride in learning as it celebrates accomplishment. Starting tomorrow, help teachers make lesson closers part of their daily teaching practice.

Questions? Comments? Contact robyn@robynsilbey.com.