Don’t spend another minute poring over the mathematics standards. Focus instead on how to teach to them with these one-stop guides to what the standards say, mean, and look like in practice.

Page by page, NCTM past-president Linda Gojak and mathematics coach Ruth Harbin Miles clearly lay out:

- The mathematics embedded in each standard for a deeper understanding of the content
- Examples of what effective teaching and learning look like in the classroom
- Connected standards within each domain so teachers can better appreciate how they relate
- Priorities within clusters so teachers know where to focus their time
- Vocabulary and suggested materials, grade by grade, across a domain

Wherever you are with Common Core implementation, chances are, like most teachers, you fear you aren’t far enough. That’s all going to change, thanks to Gojak and Miles.

To order your copies, visit www.corwin.com/math!
Volume 21, Number 8

Editorial Panel

Wendy Bray, University of Central Florida, Orlando; Chair
Cathy Martin, Denver Public Schools, Colorado; Board of Directors Liaison
Ralph Connelly, Ontario, Canada
Lisa Englard, Adventura City of Excellence School, Florida
Pamela Grunzynski, Bloomingdale District 13, Hoffman Estates, Illinois
Drew Polly, University of North Carolina–Charlotte; Digital Liaison
Bonnie Reyes, San Antonio Independent School District, Texas
Andrew M. Tyminski, Clemson University, Clemson, South Carolina
Jane M. Wilburne, Penn State Harrisburg, Hershey, Pennsylvania

Journals Staff

Ken Krebels, Associate Executive Director for Communications
Joanne Hodges, Senior Director of Publications
Elizabeth M. Skipper, Journal Editor
Luanne M. Flom, Copy Editor
Sheila J. Barker, Review Services Assistant
Christine Noddin, Publications Assistant
Pamela Grainger-Tilson, Gretchen Smith Mui, Rick Anderson, Tara Slesar, Contributing Editors

To contact a journal staff member, email tcm@nctm.org.

Mission Statement: The National Council of Teachers of Mathematics is the public voice of mathematics education, supporting teachers to ensure equitable mathematics learning for all students through vision, leadership, professional development, and research.

Teaching Children Mathematics (TCM), an official journal of the National Council of Teachers of Mathematics (NCTM), supports the improvement of pre-K–grade 6 mathematics education by serving as a resource for teachers so as to provide more and better mathematics for all students. It is a forum for the exchange of mathematics ideas, activities, and pedagogical strategies, and for sharing and interpreting research. NCTM publications present a variety of viewpoints. The views expressed or implied in TCM, unless otherwise noted, should not be interpreted as official positions of NCTM. The appearance of advertising in NCTM’s publications and on its websites in no way implies endorsement or approval by NCTM of any advertising claims or of the advertiser, its product, or services. NCTM disclaims any liability whatsoever in connection with advertising appearing in NCTM’s publications and on its websites.

All correspondence should be addressed to Teaching Children Mathematics, 1906 Association Drive, Reston, VA 20191-1502. Manuscripts should be submitted in the manner specified below. Authors should follow the guidelines for submission set by NCTM, which are available online.

Permission to photocopy material from Teaching Children Mathematics is granted to persons who wish to distribute items individually (not in combination with other articles or works), for educational purposes, in limited quantities, and free of charge or at cost; to librarians who wish to place a limited number of copies on reserve; to authors of scholarly papers; and to any party wishing to make one copy for personal use. Permission must be obtained to use journal material for course packets, commercial works, advertising, or professional development purposes. Uses of journal material beyond those outlined above may violate U.S. copyright law and must be brought to the attention of the National Council of Teachers of Mathematics. For a complete statement of NCTM’s copyright policy, see the NCTM website, www.nctm.org.

For information on article photocopies or back issues, contact the Customer Care Department in the headquarters office.

The index for each volume appears online with the May issue. A cumulative index appears on the NCTM Web site at www.nctm.org. Teaching Children Mathematics is indexed in Academic Index, Biography Index, Contents Pages in Education, Current Index to Journals in Education, Education Index, Exceptional Child Education Resources, Literature Analysis of Microcomputer Publications, Media Review Digest, and Zentralblatt für Didaktik der Mathematik.

Information is available from the Headquarters Office regarding the three other official journals, the Mathematics Teacher, Mathematics Teaching in the Middle School, and the Journal for Research in Mathematics Education. Dues support development, coordination, and delivery of NCTM’s services. Dues for individual membership are $81 (U.S.) and include $37 for a Teaching Children Mathematics subscription. Each additional school journal (Mathematics Teacher and Mathematics Teaching in the Middle School) subscription is $37. Each additional subscription to the Journal for Research in Mathematics Education is $61. Foreign subscribers, add $18 (U.S.) postage for the first journal and $4 (U.S.) postage for each additional journal. Special rates for students, institutions, bulk subscribers, and emeritus members are available from the Headquarters Office.

Teaching Children Mathematics (ISSN 1073-5836) (IPM 1124463) is published monthly except June and July, with a combined December/January issue, by the National Council of Teachers of Mathematics at 1906 Association Drive, Reston, VA 20191-1502. Periodicals postage is paid at Herndon, Virginia, and at additional mailing offices.

POSTMASTER: Send address changes to Teaching Children Mathematics, 1906 Association Drive, Reston, VA 20191-1502. Telephone: (703) 629-9840; orders: (800) 235-7566; fax: (703) 476-2970; email: nctm@nctm.org; World Wide Web: www.nctm.org.

Copyright © 2015, the National Council of Teachers of Mathematics, Inc. www.nctm.org. All rights reserved. This material may not be copied or distributed electronically or in any other format without written permission from NCTM.
Making formative assessment multidimensional

KYLE T. SCHULTZ AND KATERI THUNDER

The emphasis on standardized testing for more than a decade has caused many teachers to cringe at the mention of the term assessment. Although preparation for end-of-year, high-stakes tests can be stressful for students and teachers alike, other types of assessment can enhance mathematics instruction, keeping it harmonious, productive, and efficient. The recently published Principles to Actions: Ensuring Mathematical Success for All (National Council of Teachers of Mathematics [NCTM] 2014) names assessment as one of the essential elements of effective school mathematics programs, describing specific beliefs and practices with respect to the assessment necessary to ensure that all students succeed in mathematics. In particular, effective assessment “includes a variety of strategies and data sources, and informs feedback to students, instructional decisions, and program improvement” (p. 5). Planned, ongoing, and continual data collection during instructional activities, known as formative assessment, enables teachers to make decisions about the mathematics they teach as well as how they teach it. When done effectively, formative assessment can drive instruction and result in more efficient use of instructional time.

What effective formative assessment looks like

Whereas summative assessment data, usually in the form of test scores, present a concise picture of a students’ achievement with respect to district or state standards, formative assessment data can provide a continuous multidimensional view of students’ mathematical thinking and understanding. Van de Walle, Karp, and Bay-Williams (2013) highlighted this distinction using the analogies of summative assessment as a digital snapshot and formative assessment as a streaming video. Much like a video provides additional dimensions of sound and movement, formative assessment can provide additional detail regarding students’ mathematical proficiency, such as understanding and misconceptions with respect to particular concepts, reasoning and problem-solving skills, and attitudes toward mathematics. For example, during a unit of instruction (in this case, a unit on subtracting multidigit whole numbers), a teacher might use the following variety of techniques:

• Contextual performance-based tasks that allow students to use a variety of strategies and ways of thinking about a concept to solve a task: Mary sold 85 boxes of cookies during the first two weeks of the fundraiser. After the third week, she had sold a total of 119 boxes. How many boxes did she sell during the third week?
• Writing prompts that elicit student thinking about learned concepts and procedures: When calculating 300 – 48, Roberto said you can just take away 1 from both numbers, 299 – 47, to make the problem easier. Will his method always work? Why do you think so?
• Student self-assessments: How well do you think you understand subtracting numbers with more than one digit? What is the most difficult thing to remember when subtracting?
• Observations of students during classroom activities and discussions and systematic documentation of these observations: for example, using an observation guide that allows the teacher to quickly note students’ performance on a task as proficient, developing, or novice as well as to record relevant details.

Regardless of the technique used, NCTM urges teachers to ask, “What evidence
Good first steps for the classroom

Holding productive beliefs about assessment is crucial to implementing effective practices. These beliefs include viewing assessment as (a) having the primary purpose of improving teaching and learning, (b) an ongoing process embedded in instruction, and (c) requiring a variety of forms to measure mathematical understanding and processes (NCTM 2014). With these beliefs in place, teachers can analyze and reflect on their practices using existing frameworks, such as Wiliam’s (2000) four elements of effective formative assessment:

1. Questioning strategies: Do I ask questions that elicit students’ current understandings and misconceptions of mathematical content as opposed to questions that elicit simple one-word or yes/no answers?

2. Providing feedback: Do I give students comments that enable them to build on their current understanding as opposed to evaluating their progress in terms of final outcomes (“right or wrong”) with respect to the learning goal?

3. Sharing criteria: Do I share and discuss with my students my goals for their learning and the benchmarks I use to evaluate their work and mathematical thinking?

4. Student self-assessment: Do my students have the opportunity to evaluate and reflect on their own progress toward learning goals using these same criteria?

By considering these questions, teachers can begin to think about broadening their formative assessment practices, moving from static snapshots to a richer and more fluid model of their students’ learning and mathematical understands, leading to mathematical success for all.

REFERENCES

Response to the November Coaches’ Corner

Your Coaches’ Corner in the November issue of Teaching Children Mathematics (“A Closer Look at Mathematical Practice 6: Attend to Precision,” p. 199) was incredibly helpful! I used this to help me give teachers words and visuals they could use with parents at our upcoming parent/teacher conferences, while also delivering a staff-wide message as to what this mathematical practice really means. I’d love to see you do something with each of the other seven practices. Thank you again for such a wonderful message!

Robin Vechazone
Instructional Specialist
West Maple Elementary School
Bloomfield Hills, Michigan

Ed. note: For “A Closer Look at Mathematical Practice 1” and “A Closer Look at Mathematical Practice 3,” see the News & Views department of TCM December 2013/January 2014, p. 279, and September 2013, p. 70, respectively.

Excel as a math coach: 7 surefire strategies

BY ROBYN SILBEY, PD AND CAMPUS CONSULTANT

As educational leaders, coaches teach teachers with the goal of ensuring that all students become proficient in, and enthusiastic users of, mathematics. Meeting this goal can be accomplished more easily if a coach is part of a thriving, cohesive community of learning leaders who value knowledge in all content areas. With this in mind, here are seven strategies to help coaches reach their goals:

- See math as part of the big picture. View the mathematics program objectively from a variety of lenses, optimizing the academics and values of the school. Compromises in time, personnel, and budget can be expected as math takes its part within the total program. Patience and grace are appreciated by colleagues and reciprocated when appropriate.

- Enlist and manage colleagues. Great coaches are effective managers. A clear vision accompanied by a specific implementation plan and committed people—ideally from a cross-section of stakeholders—will bring the vision to fruition.

- Prioritize. A coach helps teachers channel their efforts. With a coach’s help, teachers can identify what must be implemented immediately and what can be worked on for the short term. A coach can anticipate and value the long-term, end result and relay that to teachers—as well as to administration—if needed.

- Share professional upgrades. A coach will share opportunities for growth that may be received with mixed feelings. A coach’s job is to convey the value of growth; champion the upgrades as occasions to learn; and offer as much support as possible during transition periods.

- Grow those around you. A coach’s greatest asset is the ability and willingness to mentor others. Encourage those who are seen as potential leaders to volunteer for special activities, share ideas in public forums, and seek additional growth prospects.

- Celebrate growth for all. A coach is expected to be the expert—clearly articulating and guiding the math program. As obstacles arise, a coach is expected to address them. The staff will appreciate seeing a coach reach out to obtain additional information, data, and answers to the staff’s concerns.

We need strong leaders if math education is to improve for all students. Effective coaches make the best of their leadership roles.

Questions? Comments? Contact robyn@robynsilbey.com.

Share Your Journal

Passing along journal articles to your colleagues is an easy way to gain support and get others excited about trying new activities or techniques when teaching mathematics. Sharing and talking about the journal yield great returns for you and your fellow teachers.

Try it, then tell us about your experiences by writing to tcm@nctm.org, noting Readers Exchange in the subject line.